1
|
Cho YE, Chen S, Crouch K, Yun J, Klingelhutz A. Impact of Aging and a High-Fat Diet on Adipose-Tissue-Derived Extracellular Vesicle miRNA Profiles in Mice. Biomedicines 2024; 12:100. [PMID: 38255206 PMCID: PMC10813715 DOI: 10.3390/biomedicines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Middle-aged adults have the highest obesity rates, leading to significant health complications in later years. Obesity triggers the release of altered molecules, including extracellular vesicles (EVs) from excess adipose tissue (AT), contributing to various health complications. In this study, we assessed the effects of age and a high-fat diet on AT-derived EV miRNA profiles to understand their potential roles in aging and obesity. METHOD C57BL/6 male mice were subjected to a normal chow diet (NCD) or a high-fat diet (HFD) for either 10-12 weeks (young mice, n = 10) or 50-61 weeks (middle-aged mice, n = 12). After evaluating metabolic characteristics, peri-gonadal white AT was isolated and cultured to obtain EVs. AT-derived EV miRNAs were profiled using a NanoString miRNA panel (n = 599). RESULTS Middle-aged mice exhibited obesity regardless of diet. Young mice fed an HFD showed similar metabolic traits to middle-aged mice. In the NCD group, 131 differentially expressed miRNAs (DE-miRNAs) emerged in middle-aged mice compared to young mice, including miR-21, miR-148a, and miR-29a, associated with cancer, neuro/psychological disorders, and reproductive diseases. In the HFD group, 55 DE-miRNAs were revealed in middle-aged mice compared to young mice. These miRNAs were associated with significantly suppressed IGF1R activity. CONCLUSION This study demonstrates the potential significant impact of miRNAs of AT EVs on aging- and obesity-related diseases.
Collapse
Affiliation(s)
- Young-Eun Cho
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Shaoshuai Chen
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Keith Crouch
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Joseph Yun
- Predictiv Care, Inc., 800 West El Camino Real, Mountain View, CA 94040, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, Martinez-Rachadell L, Fernandez AM, Esparza J, Vega M, Nuñez A, Aleman IT. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 2022; 44:2243-2257. [PMID: 35604612 DOI: 10.1007/s11357-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jansen Fernandes
- Cajal Institute (CSIC), Madrid, Spain.,Universidade Federal São Paulo, São Paulo, Brazil
| | | | | | | | - Kentaro Suda
- Cajal Institute (CSIC), Madrid, Spain.,Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain. .,IKERBASQUE Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Bale LK, West SA, Conover CA. Brain-specific PAPP-A knock-out mice? Exp Gerontol 2021; 154:111548. [PMID: 34509589 DOI: 10.1016/j.exger.2021.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
PAPP-A knock-out (KO) mice are a valuable model for investigating the effects of down-regulating localized insulin-like growth factor (IGF) action, which has been shown to extend lifespan and healthspan when the PAPP-A gene is globally deleted. Based on previous mouse models of brain-specific reduction in IGF signaling associated with longevity, we sought to generate brain-specific PAPP-A KO mice and determine effects on metabolism and lifespan. Mice with the PAPP-A gene floxed (fPAPP-A) were crossed with Nestin promoter-driven Cre recombinase transgenic mice. This cross-breeding of mice for Nestin-Cre and mice with other floxed target alleles has been used extensively to investigate brain-specific effects. Our cross-breeding generated four genotypes for study: fPAPP-A/Nestin positive (brain-specific PAPP-A KO); fPAPP-A/Nestin negative (Control for floxed PAPP-A); WT/Nestin positive (Control for Nestin-Cre); WT/Nestin negative (Wild-type Control). The basic genotype screen of neonatal tail snip DNA clearly indicated PAPP-A gene status and the presence (pos) or absence (neg) of Nestin-Cre. We then determined tissue specificity of PAPP-A gene excision. We had expected fPAPP-A/pos mice to be relatively brain-specific for PAPP-A gene deletion and the controls (fPAPP-A/neg, WT/neg and WT/pos mice) to show no effect on PAPP-A expression in brain or other tissues. However, in fPAPP-A/neg mice we found evidence of PAPP-A excision in all tissues examined, i.e., in the presumed absence of Nestin-Cre, indicating germline recombination. We further found that fPAPP-A/pos mice showed near complete excision of the PAPP-A gene in brain, but some also showed germline recombination affecting all tissues tested. To determine if the level of excision indicated by tissue genotyping approximated PAPP-A mRNA expression, we performed RT-qPCR. fPAPP-A/pos mice that showed markedly decreased whole brain PAPP-A mRNA expression (~80%), with little or no effect on expression in the other tissues tested, were designated as "brain-specific" PAPP-A KO. fPAPP-A/pos mice that showed germline recombination had similar decreases in PAPP-A expression in brain but also showed 40-65% decreased PAPP-A mRNA expression in other tissues as well, which was especially striking in kidney, tibia, thymus and spleen. These were designated as "non-specific" PAPP-A KO mice. With unknown and unpredictable specificity until harvest, we chose to assess a surrogate marker of lifespan i.e., thymic involution, in 15- to 18-month-old fPAPP-A/pos and WT/pos mice, the latter an important control for a possible effect of Nestin-Cre per se. Diminished thymic involution as indicated by increased thymic weight (135%, P = 0.035) and decreased histological disruption was seen in "non-specific" PAPP-A KO mice, similar to what was previously reported in 18-month-old global PAPP-A KO mice. There was no significant difference between "brain-specific" PAPP-A KO and control mice. This study highlights the importance of thorough characterization of assumed tissue-specific mouse models and awareness of potential germline recombination for proper data interpretation.
Collapse
Affiliation(s)
- Laurie K Bale
- Division of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Sally A West
- Division of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America.
| |
Collapse
|
4
|
Postnatal Catch-Up Growth Programs Telomere Dynamics and Glucose Intolerance in Low Birth Weight Mice. Int J Mol Sci 2021; 22:ijms22073657. [PMID: 33915805 PMCID: PMC8037520 DOI: 10.3390/ijms22073657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/06/2023] Open
Abstract
Low birth weight and rapid postnatal weight gain are independent predictors of obesity and diabetes in adult life, yet the molecular events involved in this process remain unknown. In inbred and outbred mice, this study examines natural intrauterine growth restriction (IUGR) in relation to body weight, telomere length (TL), glucose tolerance, and growth factor gene (Igf1, Igf2, Insr, Igf1r, and Igf2r) mRNA expression levels in the brain, liver, and muscle at 2- and 10 days of age and then at 3- and 9 months of age. At birth, ~15% of the animals showed IUGR, but by 3 and 9 months, half of these animals had regained the same weight as controls without IUGR (recuperated group). At 10 days, there was no difference in TL between animals undergoing IUGR and controls. However, by 3 and 9 months of age, the recuperated animals had shorter TL than the control and IUGR-non recuperated animals and also showed glucose intolerance. Further, compared to controls, Igf1 and Igf2 growth factor mRNA expression was lower in Day 2-IUGR mice, while Igf2r and Insr mRNA expression was higher in D10-IUGR animals. Moreover, at 3 months of age, only in the recuperated group were brain and liver Igf1, Igf2, Insr, and Igf2r expression levels higher than in the control and IUGR-non-recuperated groups. These data indicate that catch-up growth but not IUGR per se affects TL and glucose tolerance, and suggest a role in this latter process of insulin/insulin-like growth signaling pathway gene expression during early development.
Collapse
|
5
|
Schell M, Wardelmann K, Kleinridders A. Untangling the effect of insulin action on brain mitochondria and metabolism. J Neuroendocrinol 2021; 33:e12932. [PMID: 33506556 DOI: 10.1111/jne.12932] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mareike Schell
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristina Wardelmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
6
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
7
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
8
|
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr Rev 2019; 40:575-601. [PMID: 30576428 PMCID: PMC6416709 DOI: 10.1210/er.2018-00216] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
The important role of GH in the control of mammalian longevity was first deduced from extended longevity of mice with genetic GH deficiency (GHD) or GH resistance. Mice with isolated GHD (IGHD) due to GHRH or GHRH receptor mutations, combined deficiency of GH, prolactin, and TSH, or global deletion of GH receptors live longer than do their normal siblings. They also exhibit multiple features of delayed and/or slower aging, accompanied by extension of healthspan. The unexpected, remarkable longevity benefit of severe endocrine defects in these animals presumably represents evolutionarily conserved trade-offs among aging, growth, maturation, fecundity, and the underlying anabolic processes. Importantly, the negative association of GH signaling with longevity extends to other mammalian species, apparently including humans. Data obtained in humans with IGHD type 1B, owing to a mutation of the GHRH receptor gene, in the Itabaianinha County, Brazil, provide a unique opportunity to study the impact of severe reduction in GH signaling on age-related characteristics, health, and functionality. Individuals with IGHD are characterized by proportional short stature, doll facies, high-pitched voices, and central obesity. They have delayed puberty but are fertile and generally healthy. Moreover, these IGHD individuals are partially protected from cancer and some of the common effects of aging and can attain extreme longevity, 103 years of age in one case. We think that low, but detectable, residual GH secretion combined with life-long reduction of circulating IGF-1 and with some tissue levels of IGF-1 and/or IGF-2 preserved may account for the normal longevity and apparent extension of healthspan in these individuals.
Collapse
Affiliation(s)
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
9
|
Djelti F, Dhenain M, Terrien J, Picq JL, Hardy I, Champeval D, Perret M, Schenker E, Epelbaum J, Aujard F. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates. Aging (Albany NY) 2017; 9:173-186. [PMID: 28039490 PMCID: PMC5310663 DOI: 10.18632/aging.101148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.
Collapse
Affiliation(s)
- Fathia Djelti
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France.,Université Sorbonne Paris Cité, 75013 Paris, France
| | - Marc Dhenain
- Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, 92265 Fontenay-aux-Roses, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, 92265 Fontenay-aux-Roses, France
| | - Jérémy Terrien
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Jean-Luc Picq
- Laboratoire de Psychopathologie et de Neuropsychologie, EA 2027, Université Paris 8, 93200 Saint-Denis, France
| | - Isabelle Hardy
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Delphine Champeval
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Martine Perret
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Esther Schenker
- Institut de Recherches Servier, 78290 Croissy-sur-Seine, France
| | - Jacques Epelbaum
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France.,Université Sorbonne Paris Cité, 75013 Paris, France.,Centre Psychiatrie & Neurosciences, UMR S894 INSERM, Université Paris Descartes, 75014 Paris, France
| | - Fabienne Aujard
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| |
Collapse
|
10
|
Tian X, Seluanov A, Gorbunova V. Molecular Mechanisms Determining Lifespan in Short- and Long-Lived Species. Trends Endocrinol Metab 2017; 28:722-734. [PMID: 28888702 PMCID: PMC5679293 DOI: 10.1016/j.tem.2017.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Aging is a global decline of physiological functions, leading to an increased susceptibility to diseases and ultimately death. Maximum lifespans differ up to 200-fold between mammalian species. Although considerable progress has been achieved in identifying conserved pathways that regulate individual lifespan within model organisms, whether the same pathways are responsible for the interspecies differences in longevity remains to be determined. Recent cross-species studies have begun to identify pathways responsible for interspecies differences in lifespan. Here, we review the evidence supporting the role of anticancer mechanisms, DNA repair machinery, insulin/insulin-like growth factor 1 signaling, and proteostasis in defining species lifespans. Understanding the mechanisms responsible for the dramatic differences in lifespan between species will have a transformative effect on developing interventions to improve human health and longevity.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
11
|
Dammann P. Slow aging in mammals-Lessons from African mole-rats and bats. Semin Cell Dev Biol 2017; 70:154-163. [PMID: 28698112 DOI: 10.1016/j.semcdb.2017.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Traditionally, the main mammalian models used in aging research have been mice and rats, i.e. short-lived species that obviously lack effective maintenance mechanisms to keep their soma in a functional state for prolonged periods of time. It is doubtful that life-extending mechanisms identified only in such short-lived species adequately reflect the diversity of longevity pathways that have naturally evolved in mammals, or that they have much relevance for long-lived species such as humans. Therefore, some complementary, long-lived mammalian models have been introduced to aging research in the past 15-20 years, particularly naked mole-rats (and to a lesser extent also other mole-rats) and bats. Here, I summarize and compare the most important results regarding various aspects of aging - oxidative stress, molecular homeostasis and repair, and endocrinology - that have been obtained from studies using these new mammalian models of high longevity. I argue that the inclusion of these models was an important step forward, because it drew researchers' attention to certain oversimplifications of existing aging theories and to several features that appear to be universal components of enhanced longevity in mammals. However, even among mammals with high longevity, considerable variation exists with respect to other candidate mechanisms that also must be taken into account if inadequate generalizations are to be avoided.
Collapse
Affiliation(s)
- Philip Dammann
- Central Animal Laboratory, Faculty of Medicine, University of Duisburg, Essen, Germany.
| |
Collapse
|
12
|
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol 2016; 28:10.1111/jne.12433. [PMID: 27631195 PMCID: PMC5129466 DOI: 10.1111/jne.12433] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.
Collapse
Affiliation(s)
- A. Kleinridders
- German Institute of Human Nutrition Potsdam‐RehbrueckeCentral Regulation of MetabolismNuthetalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
13
|
Brohus M, Gorbunova V, Faulkes CG, Overgaard MT, Conover CA. The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat. PLoS One 2015; 10:e0145587. [PMID: 26694858 PMCID: PMC4694111 DOI: 10.1371/journal.pone.0145587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process.
Collapse
Affiliation(s)
- Malene Brohus
- The Division of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States of America
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg Oe, Denmark
| | - Vera Gorbunova
- University of Rochester, Department of Biology, 434 Hutchinson Hall, River Campus, Rochester, New York, 14627, United States of America
| | - Chris G. Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Michael T. Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg Oe, Denmark
| | - Cheryl A. Conover
- The Division of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States of America
- * E-mail:
| |
Collapse
|
14
|
Davies KT, Tsagkogeorga G, Bennett NC, Dávalos LM, Faulkes CG, Rossiter SJ. Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived, small-bodied mammals. Gene 2014; 549:228-36. [DOI: 10.1016/j.gene.2014.07.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
|