1
|
Rose RA, Howlett SE. Preclinical Studies on the Effects of Frailty in the Aging Heart. Can J Cardiol 2024; 40:1379-1393. [PMID: 38460611 DOI: 10.1016/j.cjca.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Age is a major risk factor for the development of cardiovascular diseases in men and in women. However, not all people age at the same rate and those who are aging rapidly are considered frail, compared with their fit counterparts. Frailty is an important clinical challenge because those who are frail are more likely to develop and die from illnesses, including cardiovascular diseases, than fit people of the same age. This increase in susceptibility to cardiovascular diseases in older individuals might occur as the cellular and molecular mechanisms involved in the aging process facilitate structural and functional damage in the heart. Consistent with this, recent studies in murine frailty models have provided strong evidence that maladaptive cardiac remodelling in older mice is the most pronounced in mice with a high level of frailty. For example, there is evidence that ventricular hypertrophy and contractile dysfunction increase as frailty increases in aging mice. Additionally, fibrosis and slowing of conduction in the sinoatrial node and atria are proportional to the level of frailty. These modifications could predispose frail older adults to diseases like heart failure and atrial fibrillation. This preclinical work also raises the possibility that emerging interventions designed to "treat frailty" might also treat or prevent cardiovascular diseases. These findings might help to explain why frail older people are most likely to develop these disorders as they age.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Collinge CW, Razzoli M, Mansk R, McGonigle S, Lamming DW, Pacak CA, van der Pluijm I, Niedernhofer L, Bartolomucci A. The mouse Social Frailty Index (mSFI): a novel behavioral assessment for impaired social functioning in aging mice. GeroScience 2024:10.1007/s11357-024-01263-4. [PMID: 38987495 DOI: 10.1007/s11357-024-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Abstract
Various approaches exist to quantify the aging process and estimate biological age on an individual level. Frailty indices based on an age-related accumulation of physical deficits have been developed for human use and translated into mouse models. However, declines observed in aging are not limited to physical functioning but also involve social capabilities. The concept of "social frailty" has been recently introduced into human literature, but no index of social frailty exists for laboratory mice yet. To fill this gap, we developed a mouse Social Frailty Index (mSFI) consisting of seven distinct assays designed to quantify social functioning which is relatively simple to execute and is minimally invasive. Application of the mSFI in group-housed male C57BL/6 mice demonstrated a progressively elevated levels of social frailty through the lifespan. Conversely, group-housed females C57BL/6 mice manifested social frailty only at a very old age. Female mice also showed significantly lower mSFI score from 10 months of age onward when compared to males. We also applied the mSFI in male C57BL/6 mice under chronic subordination stress and in chronic isolation, both of which induced larger increases in social frailty compared to age-matched group-housed males. Lastly, we show that the mSFI is enhanced in mouse models that show accelerated biological aging such as progeroid Ercc1-/Δ and Xpg-/- mice of both sexes compared to age matched littermate wild types. In summary, the mSFI represents a novel index to quantify trajectories of biological aging in mice and may help elucidate links between impaired social behavior and the aging process.
Collapse
Affiliation(s)
- Charles W Collinge
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Christina A Pacak
- Greg Marzolf Jr. Muscular Dystrophy Center & Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, and Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of pathology in a mouse model of Alzheimer's disease. Nat Commun 2024; 15:5217. [PMID: 38890307 PMCID: PMC11189507 DOI: 10.1038/s41467-024-49589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jessica H Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dominique A Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Mishra M, Wu J, Kane AE, Howlett SE. The intersection of frailty and metabolism. Cell Metab 2024; 36:893-911. [PMID: 38614092 PMCID: PMC11123589 DOI: 10.1016/j.cmet.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Judy Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of Alzheimer's disease in mice. RESEARCH SQUARE 2024:rs.3.rs-3342413. [PMID: 37790423 PMCID: PMC10543316 DOI: 10.21203/rs.3.rs-3342413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J. Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dominique A. Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M. Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of Alzheimer's disease in mice. RESEARCH SQUARE 2024:rs.3.rs-3342413. [PMID: 37790423 PMCID: PMC10543316 DOI: 10.21203/rs.3.rs-3342413/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J. Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dominique A. Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M. Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Thiem J, Viskadourou M, Gaitanidis A, Stravopodis DJ, Strauß R, Duch C, Consoulas C. Biological aging of two innate behaviors of Drosophila melanogaster: Escape climbing versus courtship learning and memory. PLoS One 2024; 19:e0293252. [PMID: 38593121 PMCID: PMC11003613 DOI: 10.1371/journal.pone.0293252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Motor and cognitive aging can severely affect life quality of elderly people and burden health care systems. In search for diagnostic behavioral biomarkers, it has been suggested that walking speed can predict forms of cognitive decline, but in humans, it remains challenging to separate the effects of biological aging and lifestyle. We examined a possible association of motor and cognitive decline in Drosophila, a genetic model organism of healthy aging. Long term courtship memory is present in young male flies but absent already during mid life (4-8 weeks). By contrast, courtship learning index and short term memory (STM) are surprisingly robust and remain stable through mid (4-8 weeks) and healthy late life (>8 weeks), until courtship performance collapses suddenly at ~4.5 days prior to death. By contrast, climbing speed declines gradually during late life (>8 weeks). The collapse of courtship performance and short term memory close to the end of life occur later and progress with a different time course than the gradual late life decline in climbing speed. Thus, during healthy aging in male Drosophila, climbing and courtship motor behaviors decline differentially. Moreover, cognitive and motor performances decline at different time courses. Differential behavioral decline during aging may indicate different underlying causes, or alternatively, a common cause but different thresholds for defects in different behaviors.
Collapse
Affiliation(s)
- Jessica Thiem
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Maria Viskadourou
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alexandros Gaitanidis
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Roland Strauß
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Christos Consoulas
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
8
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Musazzi L, Carini G, Barbieri SS, Maggi S, Veronese N, Popoli M, Barbon A, Ieraci A. Phenotypic Frailty Assessment in SAMP8 Mice: Sex Differences and Potential Role of miRNAs as Peripheral Biomarkers. J Gerontol A Biol Sci Med Sci 2023; 78:1935-1943. [PMID: 37422721 DOI: 10.1093/gerona/glad160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 07/10/2023] Open
Abstract
Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research. The senescence-accelerated prone-8 (SAMP8) mouse strain exhibits early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as a model of aging and neurodegenerative diseases. Here, we examined the frailty phenotype, which includes body weight, strength, endurance, activity, and slow walking speed, in male and female SAMP8 and senescence-accelerated mouse resistant (SAMR1) mice at 6- and 9-months of age. We found that the prevalence of frailty was higher in SAMP8 mice compared with SAMR1 mice, regardless of sex. The overall percentage of prefrail and frail mice was similar in male and female SAMP8 mice, although the percentage of frail mice was slightly higher in males than in females. In addition, we found sex- and frailty-specific changes in selected miRNAs blood levels. In particular, the levels of miR-34a-5p and miR-331-3p were higher in both prefrail and frail mice, whereas miR-26b-5p was increased only in frail mice compared with robust mice. Finally, levels of miR-331-3p were also increased in whole blood from a small group of frail patients. Overall, these results suggest that SAMP8 mice may be a useful mouse model for identifying potential biomarkers and studying biological mechanisms of frailty.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| |
Collapse
|
10
|
Cassatt DR, Winters TA, PrabhuDas M. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:389-395. [PMID: 37702416 PMCID: PMC10599297 DOI: 10.1667/rade-22-00197.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ionizing radiation causes acute damage and loss of bone marrow and peripheral immune cells that can result in high mortality due to reduced resistance to infections and hemorrhage. Besides these acute effects, tissue damage from radiation can trigger inflammatory responses, leading to progressive and chronic tissue damage by radiation-induced loss of immune cell types that are required for resolving tissue injuries. Understanding the mechanisms involved in radiation-induced immune system injury and repair will provide new insights for developing medical countermeasures that help restore immune homeostasis. For these reasons, The Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID) convened a two-day workshop, along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN). This workshop, titled "Immune Dysfunction from Radiation Exposure," was held virtually on September 9-10, 2020; this Commentary provides a high-level overview of what was discussed at the meeting.
Collapse
Affiliation(s)
- David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
11
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
12
|
Xie K, Ehninger D. Ageing-associated phenotypes in mice. Mech Ageing Dev 2023; 214:111852. [PMID: 37454704 DOI: 10.1016/j.mad.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ageing is a continuous process in life featuring progressive damage accumulation that leads to physiological decline, functional deterioration and ultimately death of an organism. Based on the relatively close anatomical and physiological similarity to humans, the mouse has been proven as a valuable model organism in ageing research over the last decades. In this review, we survey methods and tools currently in use to assess ageing phenotypes in mice. We summarize a range of ageing-associated alterations detectable at two major levels of analysis: (1) physiology and pathophysiology and (2) molecular biomarkers. Age-sensitive phenotypes provided in this article may serve to inform future studies targeting various aspects of organismal ageing in mice. In addition, we discuss conceptual and technical challenges faced by previous ageing studies in mice and, where possible, provide recommendations on how to resolve some of these issues.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
13
|
Hu Y, Wang X, Lin L, Huan J, Li Y, Zhang L, Li Y. Association of remnant cholesterol with frailty: findings from observational and Mendelian randomization analyses. Lipids Health Dis 2023; 22:115. [PMID: 37537564 PMCID: PMC10399004 DOI: 10.1186/s12944-023-01882-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Recent insights suggest that remnant cholesterol (RC) plays a role in cellular senescence, yet its specific contribution to frailty remains indeterminate. Through the integration of observational and mendelian randomization (MR) studies, this research explores the impact of elevated serum RC levels on frailty susceptibility. METHODS A dual-method approach, combining an observational study with an MR study, was employed to investigate the connection between RC and frailty. The observational study included 11,838 participants from the National Health and Nutrition Examination Survey. Multivariable logistic regression and propensity score matching were employed to control for potential confounders. The non-linear relationship was assessed using restricted cubic splines. To circumvent observational study limitations, a two-sample MR analysis was conducted using the inverse-variance weighted method, leveraging genome-wide association studies (GWAS) data. RESULTS After adjusting for potential confounding variables, the observational study identified a significant association between high serum RC levels and frailty in middle-aged and older adults (odds ratio [OR] = 1.67, 95% confidence interval [CI] = 1.20 to 2.33, P = 0.003), exhibiting a non-linear dose-response correlation (non-linear P = 0.011). This association persisted after propensity score matching (OR = 1.53, 95% CI = 1.14 to 2.06, P = 0.005). The MR study echoed these results, demonstrating a causal association of RC with the frailty index (β = 0.059, 95% CI = 0.033 to 0.085, P = 1.05E-05), consistent with the observational findings (β = 0.017, 95% CI = 0.008 to 0.026, P = 4.51E-04). CONCLUSION This study provides evidence that higher RC levels amplify frailty risk in middle-aged and older adults, implying that the reduction of RC levels may present a promising strategy for frailty prevention and management.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaojie Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin Lin
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaming Huan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lei Zhang
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
14
|
Marcozzi S, Bigossi G, Giuliani ME, Giacconi R, Cardelli M, Piacenza F, Orlando F, Segala A, Valerio A, Nisoli E, Brunetti D, Puca A, Boschi F, Gaetano C, Mongelli A, Lattanzio F, Provinciali M, Malavolta M. Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice. GeroScience 2023; 45:2195-2211. [PMID: 36702990 PMCID: PMC10651584 DOI: 10.1007/s11357-023-00737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
- Scientific Direction, IRCCS INRCA, 60124, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRCA, 60015, Falconara Marittima (AN), Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research On Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129, Milan, Italy
| | - Annibale Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno, Italy
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Alessia Mongelli
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
15
|
Mishra M, Kane AE, Young AP, Howlett SE. Age, sex, and frailty modify the expression of common reference genes in skeletal muscle from ageing mice. Mech Ageing Dev 2023; 210:111762. [PMID: 36509213 DOI: 10.1016/j.mad.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Changes in gene expression with age are typically normalised to constitutively expressed reference genes (RGs). However, RG expression may be affected by age or overall health and most studies use only male animals. We investigated whether expression of common RGs (Gapdh, Gusb, Rplp0, B2m, Tubb5, Rpl7l1, Hprt, Rer1) was affected by age, sex and/or overall health (frailty index) in skeletal muscle from young (4-mos) and aged (25-26-mos) mice. Standard RG selection programs recommended Gapdh (RefFinder/Genorm/NormFinder) or Rpl7l1 (BestKeeper) without considering age and sex. Analysis of raw Cq values showed only Rplp0 was stable in both sexes at both ages. When qPCR data were normalised to Rplp0, age affected RG expression, especially in females. For example, Hprt expression declined with age (Hprt=9.8 ×10-2 ± 4.7 ×10-2 vs. 6.5 ×10-3 ± 8.8 ×10-4; mean±SEM), while Gusb expression increased (6.0 ×10-4 ± 5.5 ×10-5 vs. 1.7 ×10-3 ± 3.1 ×10-4; n = 5/group; p < 0.05). These effects were not seen in males. Tubb5 and Gapdh were not affected by age or sex when normalised to Rplp0. Similar results were seen with normalisation by Gapdh or the Rplp0/Gapdh pair. Interestingly, RG expression was graded not only by age but by frailty. These data demonstrate that age, sex, and frailty of animals must be carefully considered when selecting RGs to normalise mRNA abundance data.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA.
| | - Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
16
|
Height loss as an indicator of ageing through its association with frailty and sarcopenia: An observational cohort study. Arch Gerontol Geriatr 2022; 110:104916. [PMID: 36905804 DOI: 10.1016/j.archger.2022.104916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Height loss is associated with various health-related variables such as cardiovascular disease, osteoporosis, cognitive function, and mortality. We hypothesized that height loss can be used as an indicator of aging, and we assessed whether the degree of height loss for 2 years was associated with frailty and sarcopenia. METHODS This study was based on a longitudinal cohort, the Pyeongchang Rural Area cohort. The cohort included people aged 65 years or older, ambulatory, and living at home. We divided individuals according to the ratio of height change (height change for 2 years divided by height at 2 years from baseline): HL2 (<-2%), HL1 (-2%--1%), and REF (-1%≤). We compared the frailty index, diagnosis of sarcopenia after 2 years from baseline, and the incidence of a composite outcome (mortality and institutionalization). RESULTS In total, 59 (6.9%), 116 (13.5%), and 686 (79.7%) were included in the HL2, HL1, and REF groups, respectively. Compared with the REF group, groups HL2 and HL1 had a higher frailty index, and higher risks of sarcopenia and composite outcome. When groups HL2 and HL1 were merged, the merged group had higher frailty index (standardized B, 0.06; p = 0.049), a higher risk of sarcopenia (OR, 2.30; p = 0.006), and a higher risk of composite outcome (HR, 1.78; p = 0.017) after adjusting for age and sex. CONCLUSIONS Individuals with greater height loss were frailer, more likely to be diagnosed with sarcopenia and had worse outcomes regardless of age and sex.
Collapse
|
17
|
Avchaciov K, Antoch MP, Andrianova EL, Tarkhov AE, Menshikov LI, Burmistrova O, Gudkov AV, Fedichev PO. Unsupervised learning of aging principles from longitudinal data. Nat Commun 2022; 13:6529. [PMID: 36319638 PMCID: PMC9626636 DOI: 10.1038/s41467-022-34051-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Age is the leading risk factor for prevalent diseases and death. However, the relation between age-related physiological changes and lifespan is poorly understood. We combined analytical and machine learning tools to describe the aging process in large sets of longitudinal measurements. Assuming that aging results from a dynamic instability of the organism state, we designed a deep artificial neural network, including auto-encoder and auto-regression (AR) components. The AR model tied the dynamics of physiological state with the stochastic evolution of a single variable, the "dynamic frailty indicator" (dFI). In a subset of blood tests from the Mouse Phenome Database, dFI increased exponentially and predicted the remaining lifespan. The observation of the limiting dFI was consistent with the late-life mortality deceleration. dFI changed along with hallmarks of aging, including frailty index, molecular markers of inflammation, senescent cell accumulation, and responded to life-shortening (high-fat diet) and life-extending (rapamycin) treatments.
Collapse
Affiliation(s)
| | - Marina P Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | | - Andrei V Gudkov
- Genome Protection, Inc., Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | |
Collapse
|
18
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Mach J, Allore H, Gnjidic D, Gemikonakli G, Kane AE, Howlett SE, de Cabo R, Le Couteur D, Hilmer SN. Preclinical frailty assessments: Phenotype and frailty index identify frailty in different mice and are variably affected by chronic medications. Exp Gerontol 2022; 161:111700. [PMID: 35032570 DOI: 10.1016/j.exger.2022.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
Use of different objective frailty assessment tools may improve understanding of the biology of frailty and allow evaluation of effects of interventions on frailty. Polypharmacy is associated with increased risk of frailty in epidemiologic studies, regardless of frailty definition, but the pathophysiology of the association is not well understood. This study aims to (1) assess and compare the prevalence of frailty from middle to old age following control, chronic polypharmacy or monotherapy treatment, when measured using the clinical frailty index assessment and the mouse frailty phenotype tools; and (2) to evaluate and compare the effects of chronic polypharmacy regimens with zero, low and high Drug Burden Index (DBI) and monotherapies from middle to old age on the rate of deficit accumulation on the frailty index, mean number of phenotype criteria, odds of being frail assessed by the frailty index or phenotype, and the time to onset of frailty assessed by the frailty index or phenotype. In a longitudinal study, middle-aged (12 months) male C57BL/6J(B6) mice were administered non medicated control feed and water, or therapeutic doses of different polypharmacy combinations or monotherapies in feed and/or water. Frailty assessments were performed at 12, 15, 18, 21 and 24 months. There was limited overlap between animals identified as frail using different frailty assessments. Polypharmacy has measurable and different effects on each frailty assessment. Long-term chronic administration of some polypharmacy and monotherapy therapeutic drug regimens increased the number of frailty deficits (clinical frailty index: low DBI polypharmacy (15 and 21 months), high DBI polypharmacy (15-21 months), oxycodone (15-18 months), oxybutynin (15-18 months), citalopram (15-21 months) and metoprolol monotherapy (15 months) and modified frailty phenotype assessment (over the whole duration of treatment, low DBI polypharmacy (adjusted Risk Ratio(aRR) = 1.97, 95% confidence interval (CI) 1.43-2.72), high DBI polypharmacy (aRR = 1.88; 95% CI 1.36-2.60), oxybutynin (aRR = 1.48; 95% CI 1.01-2.16) and citalopram monotherapy (aRR = 1.96; 95% CI 1.41-2.74), p < 0.05) . The odds of developing frailty measured with the clinical frailty index increased with high DBI polypharmacy (adjusted odds ratio (aOR) = 3.13; 95% CI 1.01-9.66) and when measured with the frailty phenotype assessment increased with low DBI polypharmacy (aOR = 4.38, 95% CI 1.40-13.74), high DBI polypharmacy (aOR = 3.43; 95% CI 1.12-10.50) and citalopram monotherapy (aOR = 4.63; 95% CI 1.39-15.54)). No treatment affected time to frailty using either frailty assessment. Analysis of the number of deficits on the frailty index or number of positive criteria on the frailty phenotype allows analysis of rate of change and provides greater sensitivity, while the odds of being frail analysis provided a clinically relevant indicator of whether mice had greater chance of reaching a cut-off for becoming frail with medication exposure than without. Our results are consistent with clinical studies, demonstrating that certain polypharmacy regimens induce frailty, with different relationships observed when using different frailty assessments and analyses.
Collapse
Affiliation(s)
- John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St Leonards, New South Wales, Australia; Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Heather Allore
- Department of Internal Medicine, Yale University, New Haven, CT, United States; Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Danijela Gnjidic
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St Leonards, New South Wales, Australia; Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Alice E Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan E Howlett
- Departments of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, Canada
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - David Le Couteur
- Ageing and Alzheimer's Institute (AAAI), Centre for Education and Research on Ageing (CERA), ANZAC Research Institute, Concord Hospital, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St Leonards, New South Wales, Australia; Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Fleyshman DI, Wakshlag JJ, Huson HJ, Loftus JP, Olby NJ, Brodsky L, Gudkov AV, Andrianova EL. Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging (Albany NY) 2021; 13:21814-21837. [PMID: 34587118 PMCID: PMC8507265 DOI: 10.18632/aging.203600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.
Collapse
Affiliation(s)
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Heather J Huson
- Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - John P Loftus
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Natasha J Olby
- North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA
| | - Leonid Brodsky
- Tauber Bioinformatic Research Center, University of Haifa, Haifa, Israel
| | - Andrei V Gudkov
- Vaika, Inc., East Aurora, NY 14052, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | |
Collapse
|
21
|
Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, Shapiro IM, Diekman BO, Risbud MV. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun 2021; 12:5213. [PMID: 34480023 PMCID: PMC8417260 DOI: 10.1038/s41467-021-25453-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
Collapse
Affiliation(s)
- Emanuel J. Novais
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga, Portugal
| | - Victoria A. Tran
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Shira N. Johnston
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Kayla R. Darris
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Alex J. Roupas
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Garrett A. Sessions
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Irving M. Shapiro
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Brian O. Diekman
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Makarand V. Risbud
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
22
|
Howlett SE, Rutenberg AD, Rockwood K. The degree of frailty as a translational measure of health in aging. NATURE AGING 2021; 1:651-665. [PMID: 37117769 DOI: 10.1038/s43587-021-00099-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/06/2021] [Indexed: 04/30/2023]
Abstract
Frailty is a multiply determined, age-related state of increased risk for adverse health outcomes. We review how the degree of frailty conditions the development of late-life diseases and modifies their expression. The risks for frailty range from subcellular damage to social determinants. These risks are often synergistic-circumstances that favor damage also make repair less likely. We explore how age-related damage and decline in repair result in cellular and molecular deficits that scale up to tissue, organ and system levels, where they are jointly expressed as frailty. The degree of frailty can help to explain the distinction between carrying damage and expressing its usual clinical manifestations. Studying people-and animals-who live with frailty, including them in clinical trials and measuring the impact of the degree of frailty are ways to better understand the diseases of old age and to establish best practices for the care of older adults.
Collapse
Affiliation(s)
- Susan E Howlett
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University & Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth Rockwood
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University & Nova Scotia Health, Halifax, Nova Scotia, Canada.
| |
Collapse
|
23
|
Kane AE, Howlett SE. Sex differences in frailty: Comparisons between humans and preclinical models. Mech Ageing Dev 2021; 198:111546. [PMID: 34324923 DOI: 10.1016/j.mad.2021.111546] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Frailty can be viewed as a state of physiological decline that increases susceptibility to adverse health outcomes. This loss of physiological reserve means that even small stressors can lead to disability and death in frail individuals. Frailty can be measured with various clinical tools; the two most popular are the frailty index and the frailty phenotype. Clinical studies have used these tools to show that women are frailer than men even though they have longer lifespans. Still, factors responsible for this frailty-mortality paradox are not well understood. This review highlights evidence for male-female differences in frailty from both the clinical literature and in animal models of frailty. We review evidence for higher frailty levels in female animals as seen in many preclinical models. Mechanisms that may contribute to sex differences in frailty are highlighted. In addition, we review work that suggests frailty may play a role in susceptibility to chronic diseases of aging in a sex-specific fashion. Additional mechanistic studies in preclinical models are needed to understand factors involved in male-female differences in frailty in late life.
Collapse
Affiliation(s)
- Alice E Kane
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, United States.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
24
|
Yang H, Zhao L, Zhang Y, Li FF. A comprehensive analysis of immune infiltration in the tumor microenvironment of osteosarcoma. Cancer Med 2021; 10:5696-5711. [PMID: 34258887 PMCID: PMC8366103 DOI: 10.1002/cam4.4117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Even though immunotherapy has been an effective treatment for solid tumors, its efficacy in osteosarcoma remains sub‐optimal. It is therefore imperative to understand the complex tumor microenvironment (TME) of osteosarcoma to facilitate the development of immunotherapies against this cancer. Methods The mRNA expression profiles of osteosarcoma tissues were downloaded from The Cancer Genome Atlas (TCGA) database. Next, the ssGSEA, MCP‐counter, CIBERSORT, and Xcell algorithm analyses were performed to characterize the tumor microenvironment of osteosarcoma tissues. The tumor tissues were divided into inflammatory and non‐inflammatory. A comprehensive assessment of immune cell infiltration in osteosarcoma tissues was then performed. Sub‐group analysis of immune cell infiltration between men and women patients with osteosarcoma was also carried out. Results The results revealed that the infiltration of immune cells including activated B cell, activated CD8 T cell, CD56dim natural killer cell, and cytotoxic lymphocytes cells, in osteosarcoma tissues was higher in male than in female patients. Based on the infiltration profile of different immune cells, the osteosarcoma tissues were grouped into four clusters. The four clusters were further divided into hot and cold tumors. The differently expressed genes (DEGs) between cold and hot tumors were mainly associated with the activation and regulation of immune response. Additionally, a neuronal pentraxin (NPTX2) expression which was upregulated in cold tumors was found to be negatively correlated with the expression of CD8a Molecule (CD8A), Granzyme B (GZMB), and Interferon Gamma (IFNG). NPTX2 decreased CCL4 secretion. Knockdown of NPTX2 in osteosarcoma cells inhibited tumor growth and increased tumor cell apoptosis. Moreover, a prognosis prediction model of osteosarcoma was constructed and validated in patients receiving immunotherapy using external data. Conclusions To the best of our knowledge, this is the first study to characterize the infiltration of immune cells in osteosarcoma tissues from patients receiving immune infiltration therapy.
Collapse
Affiliation(s)
- Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang-Fang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Erlandson KM, Piggott DA. Frailty and HIV: Moving from Characterization to Intervention. Curr HIV/AIDS Rep 2021; 18:157-175. [PMID: 33817767 PMCID: PMC8193917 DOI: 10.1007/s11904-021-00554-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW While the characteristics associated with frailty in people with HIV (PWH) have been well described, little is known regarding interventions to slow or reverse frailty. Here we review interventions to prevent or treat frailty in the general population and in people with HIV (PWH). RECENT FINDINGS Frailty interventions have primarily relied on nonpharmacologic interventions (e.g., exercise and nutrition). Although few have addressed frailty, many of these therapies have shown benefit on components of frailty including gait speed, strength, and low activity among PWH. When nonpharmacologic interventions are insufficient, pharmacologic interventions may be necessary. Many interventions have been tested in preclinical models, but few have been tested or shown benefit among older adults with or without HIV. Ultimately, pharmacologic and nonpharmacologic interventions have the potential to improve vulnerability that underlies frailty in PWH, though clinical data is currently sparse.
Collapse
Affiliation(s)
- Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Damani A Piggott
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| |
Collapse
|
26
|
Late-life intermittent fasting decreases aging-related frailty and increases renal hydrogen sulfide production in a sexually dimorphic manner. GeroScience 2021; 43:1527-1554. [PMID: 33675469 PMCID: PMC8492807 DOI: 10.1007/s11357-021-00330-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Global average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.
Collapse
|
27
|
Mishra M, Howlett SE. Preclinical models of frailty: Focus on interventions and their translational impact: A review. ACTA ACUST UNITED AC 2021. [DOI: 10.3233/nha-200103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of frailty refers to heterogeneity in the risk of adverse outcomes for people of the same age. It is traditionally thought of as the inability of the body to maintain homeostasis. It can help explain differences between chronological and biological age and can quantify healthspan in experimental studies. Although clinical studies have developed tools to quantify frailty over the past two decades, preclinical models of frailty have only recently been introduced. This review describes the notion of frailty and outlines two commonly used clinical approaches to quantify frailty: the frailty phenotype and the frailty index. Translation of these methodologies for use in animals is introduced and studies that use these models to evaluate interventions designed to attenuate or exacerbate frailty are discussed. These include studies involving manipulation of diet, implementation of exercise regimens and tests of pharmaceutical agents to exacerbate or attenuate frailty. Together, this body of work suggests that preclinical frailty assessment tools are a valuable new resource to quantify the impact of interventions on overall health. Future studies could deploy these models to evaluate new frailty therapies, test combinations of interventions and assess interventions to enhance the ability to resist stressors in the setting of ageing.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Kwak D, Baumann CW, Thompson LV. Identifying Characteristics of Frailty in Female Mice Using a Phenotype Assessment Tool. J Gerontol A Biol Sci Med Sci 2021; 75:640-646. [PMID: 30958526 PMCID: PMC7328207 DOI: 10.1093/gerona/glz092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
Preclinical studies are important in identifying the underlying mechanisms contributing to frailty. Frailty studies have mainly focused on male rodents with little directed at female rodents. Therefore, the purposes of this study were to identify the onset and prevalence of frailty across the life span in female mice, and to determine if frailty predicts mortality. Female C57BL/6 (n = 27) mice starting at 17 months of age were assessed across the life span using a frailty phenotype, which included body weight, walking speed, strength, endurance, and physical activity. The onset of frailty occurred at approximately 17 months (1/27 mice), with the prevalence of frailty increasing thereafter. At 17 months, 11.1% of the mice were pre-frail and by 26 months peaked at 36.9%. The percentage of frail mice progressively increased up to 66.7% at 32 months. Non-frail mice lived to 29 months whereas frail/pre-frail mice lived only to 26 months (p = .04). In closing, using a mouse frailty phenotype, we are able to identify that the prevalence of frailty in female mice increases across the life span and accurately predicts mortality. Together, this frailty phenotype has the potential to yield information about the underlying mechanisms contributing to frailty.
Collapse
Affiliation(s)
- Dongmin Kwak
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts
| | - Cory W Baumann
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - LaDora V Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts
| |
Collapse
|
29
|
Baumann CW, Kwak D, Thompson LV. Phenotypic Frailty Assessment in Mice: Development, Discoveries, and Experimental Considerations. Physiology (Bethesda) 2020; 35:405-414. [PMID: 33052773 DOI: 10.1152/physiol.00016.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The underlying mechanisms contributing to the onset of frailty, its progression, and its mortality risk remain unknown. Recently, the two most common human frailty assessments were reverse-translated to mice. Here, we highlight the development of the mouse frailty phenotype, unique discoveries, experimental considerations, and future perspectives.
Collapse
Affiliation(s)
- Cory W Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, Ohio
| | - Dongmin Kwak
- Division of Sport Science, Hanyang University, Ansan, South Korea.,Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts
| | - LaDora V Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts
| |
Collapse
|
30
|
Hall BM, Gleiberman AS, Strom E, Krasnov PA, Frescas D, Vujcic S, Leontieva OV, Antoch MP, Kogan V, Koman IE, Zhu Y, Tchkonia T, Kirkland JL, Chernova OB, Gudkov AV. Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell 2020; 19:e13219. [PMID: 32856419 PMCID: PMC7576241 DOI: 10.1111/acel.13219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga V. Leontieva
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Marina P. Antoch
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Valeria Kogan
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Igor E. Koman
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Yi Zhu
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | | | | | - Andrei V. Gudkov
- Everon Biosciences IncBuffaloNYUSA
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
- Genome Protection IncBuffaloNYUSA
| |
Collapse
|
31
|
Sex-specific components of frailty in C57BL/6 mice. Aging (Albany NY) 2020; 11:5206-5214. [PMID: 31355774 PMCID: PMC6682513 DOI: 10.18632/aging.102114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
Many age-related biochemical, physiological and behavioral changes are known to be sex-specific. However, how sex influences frailty status and mortality risk in frail rodents has yet to be established. The purpose of this study was therefore to characterize sex differences in frail mice across the lifespan. Male (n=29) and female (n=27) mice starting at 17 months of age were assessed using a frailty phenotype adjusted according to sex, which included body weight, walking speed, strength, endurance and physical activity. Regardless of sex, frail mice were phenotypically dysfunctional compared to age-matched non-frail mice, while non-frail females generally possessed a higher body fat percentage and were more physically active than non-frail males (p≤0.05). The prevalence of frailty was greater in female mice at 26 months of age (p=0.05), but if normalized to mean lifespan, no sex differences remained. No differences were detected in the rate of death or mean lifespan between frail male and female mice (p≥0.12). In closing, these data indicate that sexual differences exist in aging C57BL/6 mice and if the frailty criteria are adjusted according to sex, the prevalence of frailty increases across age with frail mice dying early in life, regardless of sex.
Collapse
|
32
|
Keller K, Kane A, Heinze-Milne S, Grandy SA, Howlett SE. Chronic Treatment With the ACE Inhibitor Enalapril Attenuates the Development of Frailty and Differentially Modifies Pro- and Anti-inflammatory Cytokines in Aging Male and Female C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2020; 74:1149-1157. [PMID: 30256910 DOI: 10.1093/gerona/gly219] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 11/13/2022] Open
Abstract
Studies on interventions that can delay or treat frailty in humans are limited. There is evidence of beneficial effects of angiotensin converting enzyme (ACE) inhibitors on aspects related to frailty, such as physical function, even in those without cardiovascular disease. This study aimed to longitudinally investigate the effect of an ACE inhibitor on frailty in aging male and female mice. Frailty was assessed with a clinical frailty index (FI) which quantifies health-related deficits in middle-aged (9-13 months) and older (16-25 months) mice. Chronic treatment with enalapril (30 mg/kg/day in feed) attenuated frailty in middle-aged and older female mice, and older male mice, without a long-term effect on blood pressure. Enalapril treatment resulted in a reduction in the proinflammatory cytokines interleukin (IL)-1α, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1a in older female mice, and an increase in the anti-inflammatory cytokine IL-10 in older male mice compared with control animals. These sex-specific effects on inflammation may contribute to the protective effects of enalapril against frailty. This is the first study to examine the longitudinal effect of an intervention on the FI in mice, and provides preclinical evidence that enalapril may delay the onset of frailty, even when started later in life.
Collapse
Affiliation(s)
- Kaitlyn Keller
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Alice Kane
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Stefan Heinze-Milne
- School of Health and Human Performance, Dalhousie University, Halifax, Canada
| | - Scott A Grandy
- Department of Pharmacology, Dalhousie University, Halifax, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Canada.,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Canada
| |
Collapse
|
33
|
Korotchkina L, Kazyulkin D, Komarov PG, Polinsky A, Andrianova EL, Joshi S, Gupta M, Vujcic S, Kononov E, Toshkov I, Tian Y, Krasnov P, Chernov MV, Veith J, Antoch MP, Middlemiss S, Somers K, Lock RB, Norris MD, Henderson MJ, Haber M, Chernova OB, Gudkov AV. OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis. Leukemia 2020; 34:1828-1839. [PMID: 31896781 DOI: 10.1038/s41375-019-0692-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Effective treatment of some types of cancer can be achieved by modulating cell lineage-specific rather than tumor-specific targets. We conducted a systematic search for novel agents selectively toxic to cells of hematopoietic origin. Chemical library screenings followed by hit-to-lead optimization identified OT-82, a small molecule with strong efficacy against hematopoietic malignancies including acute myeloblastic and lymphoblastic adult and pediatric leukemias, erythroleukemia, multiple myeloma, and Burkitt's lymphoma in vitro and in mouse xenograft models. OT-82 was also more toxic towards patients-derived leukemic cells versus healthy bone marrow-derived hematopoietic precursors. OT-82 was shown to induce cell death by inhibiting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway of NAD synthesis. In mice, optimization of OT-82 dosing and dietary niacin further expanded the compound's therapeutic index. In toxicological studies conducted in mice and nonhuman primates, OT-82 showed no cardiac, neurological or retinal toxicities observed with other NAMPT inhibitors and had no effect on mouse aging or longevity. Hematopoietic and lymphoid organs were identified as the primary targets for dose limiting toxicity of OT-82 in both species. These results reveal strong dependence of neoplastic cells of hematopoietic origin on NAMPT and introduce OT-82 as a promising candidate for the treatment of hematological malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jean Veith
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | | - Murray D Norris
- Children's Cancer Institute, Sydney, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
34
|
Todorovic S, Loncarevic-Vasiljkovic N, Jovic M, Sokanovic S, Kanazir S, Mladenovic Djordjevic A. Frailty index and phenotype frailty score: Sex- and age-related differences in 5XFAD transgenic mouse model of Alzheimer’s disease. Mech Ageing Dev 2020; 185:111195. [DOI: 10.1016/j.mad.2019.111195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
35
|
Kane AE, Keller KM, Heinze-Milne S, Grandy SA, Howlett SE. A Murine Frailty Index Based on Clinical and Laboratory Measurements: Links Between Frailty and Pro-inflammatory Cytokines Differ in a Sex-Specific Manner. J Gerontol A Biol Sci Med Sci 2019; 74:275-282. [PMID: 29788087 DOI: 10.1093/gerona/gly117] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/12/2022] Open
Abstract
A frailty index (FI) based on clinical deficit accumulation (FI-Clinical) quantifies frailty in aging mice. We aimed to develop a laboratory test-based murine FI tool (FI-Lab) and to investigate the effects of age and sex on FI-Lab scores, FI-Clinical scores, and the combination (FI-Combined), as well as to explore links between frailty and inflammation. Studies used older (17 and 23 months) C57BL/6 mice of both sexes. We developed an FI-Lab (blood pressure, blood chemistry, echocardiography) based on deviation from reference values in younger adults (12 months), which showed similar characteristics to a human FI-Lab tool. Interestingly, while FI-Clinical scores were higher in females, the opposite was true for FI-Lab scores and there was no sex difference in FI-Combined scores. All three FI tools revealed a positive correlation between pro-inflammatory cytokine levels and frailty in aging mice that differed between the sexes. Elevated levels of the pro-inflammatory cytokines interleukin (IL)-6, IL-9, and interferon-γ were associated with higher FI scores in aging females, while levels of IL-12p40 rose as FI scores increased in older males. Thus, an FI tool based on common laboratory tests can quantify frailty in mice; the positive correlation between inflammation and frailty scores in naturally aging mice differs between the sexes.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Kaitlyn M Keller
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Stefan Heinze-Milne
- School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| | - Scott A Grandy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
36
|
Bakula D, Ablasser A, Aguzzi A, Antebi A, Barzilai N, Bittner MI, Jensen MB, Calkhoven CF, Chen D, de Grey AD, Feige JN, Georgievskaya A, Gladyshev VN, Golato T, Gudkov AV, Hoppe T, Kaeberlein M, Katajisto P, Kennedy BK, Lal U, Martin-Villalba A, Moskalev AA, Ozerov I, Petr MA, Reason, Rubinsztein DC, Tyshkovskiy A, Vanhaelen Q, Zhavoronkov A, Scheibye-Knudsen M. Latest advances in aging research and drug discovery. Aging (Albany NY) 2019; 11:9971-9981. [PMID: 31770722 PMCID: PMC6914421 DOI: 10.18632/aging.102487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
An increasing aging population poses a significant challenge to societies worldwide. A better understanding of the molecular, cellular, organ, tissue, physiological, psychological, and even sociological changes that occur with aging is needed in order to treat age-associated diseases. The field of aging research is rapidly expanding with multiple advances transpiring in many previously disconnected areas. Several major pharmaceutical, biotechnology, and consumer companies made aging research a priority and are building internal expertise, integrating aging research into traditional business models and exploring new go-to-market strategies. Many of these efforts are spearheaded by the latest advances in artificial intelligence, namely deep learning, including generative and reinforcement learning. To facilitate these trends, the Center for Healthy Aging at the University of Copenhagen and Insilico Medicine are building a community of Key Opinion Leaders (KOLs) in these areas and launched the annual conference series titled "Aging Research and Drug Discovery (ARDD)" held in the capital of the pharmaceutical industry, Basel, Switzerland (www.agingpharma.org). This ARDD collection contains summaries from the 6th annual meeting that explored aging mechanisms and new interventions in age-associated diseases. The 7th annual ARDD exhibition will transpire 2nd-4th of September, 2020, in Basel.
Collapse
Affiliation(s)
- Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Ablasser
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Cornelis F. Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, AD Groningen, The Netherlands
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | - Jerome N. Feige
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Andrei V. Gudkov
- Roswell Park Comprehensive Cancer Center and Genome Protection, Inc., Buffalo, NY 14203, USA
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Cologne, Germany
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Brian K. Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Ageing, National University Healthy System, Singapore
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Unmesh Lal
- Frost and Sullivan, Frankfurt am Main, Germany
| | | | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Ozerov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Michael A. Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reason
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge CB2 0XY, UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Quentin Vanhaelen
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Rockville, MD 20850, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Banzato T, Franzo G, Di Maggio R, Nicoletto E, Burti S, Cesari M, Canevelli M. A Frailty Index based on clinical data to quantify mortality risk in dogs. Sci Rep 2019; 9:16749. [PMID: 31727920 PMCID: PMC6856105 DOI: 10.1038/s41598-019-52585-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Frailty is defined as a decline in an organism’s physiological reserves resulting in increased vulnerability to stressors. In humans, a single continuous variable, the so-called Frailty Index (FI), can be obtained by multidimensionally assessing the biological complexity of an ageing organism. Here, we evaluate this variability in dogs and compare it to the data available for humans. In dogs, there was a moderate correlation between age and the FI, and the distribution of the FI increased with age. Deficit accumulation was strongly related to mortality. The effect of age, when combined with the FI, was negligible. No sex-related differences were evident. The FI could be considered in epidemiological studies and/or experimental trials to account for the potential confounding effects of the health status of individual dogs. The age-related deficit accumulation reported in dogs is similar to that demonstrated in humans. Therefore, dogs might represent an excellent model for human aging studies.
Collapse
Affiliation(s)
- Tommaso Banzato
- Department of Animal Medicine, Productions and Health, University of Padua, Viale dell'Università 16, Legnaro, Italy.
| | - Giovanni Franzo
- Department of Animal Medicine, Productions and Health, University of Padua, Viale dell'Università 16, Legnaro, Italy
| | - Roberta Di Maggio
- Department of Animal Medicine, Productions and Health, University of Padua, Viale dell'Università 16, Legnaro, Italy
| | - Elisa Nicoletto
- Department of Animal Medicine, Productions and Health, University of Padua, Viale dell'Università 16, Legnaro, Italy
| | - Silvia Burti
- Department of Animal Medicine, Productions and Health, University of Padua, Viale dell'Università 16, Legnaro, Italy
| | - Matteo Cesari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Geriatric Unit, Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Marco Canevelli
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
38
|
Martinez de Toda I, Garrido A, Vida C, Gomez-Cabrera MC, Viña J, De la Fuente M. Frailty Quantified by the "Valencia Score" as a Potential Predictor of Lifespan in Mice. J Gerontol A Biol Sci Med Sci 2019; 73:1323-1329. [PMID: 29718119 DOI: 10.1093/gerona/gly064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/12/2022] Open
Abstract
The development of frailty scores suitable for mice and which resemble those used in the clinical scenario is of great importance to understand human frailty. The aim of the study was to determine an individual frailty score for each mouse at different ages and analyze the association between the frailty score and its lifespan. For this purpose, the "Valencia Score" for frailty was used. Thus, a longitudinal study in mice was performed analyzing weight loss, running time and speed, grip strength and motor coordination at the late-adult, mature and old ages (40, 56 and 80 weeks old, respectively). These parameters are equivalent to unintentional weight loss, poor endurance, slowness, weakness, and low activity level, respectively, in humans. A cut-off point was used to identify frail mice for each criterion. All the measurements were also performed on chronologically adult prematurely aging mice. The results show that by using the "Valencia Score" for frailty a prematurely aged phenotype can be identified even during the adulthood of animals. This opens up the possibility of carrying out preventive long-term interventions. Moreover, the individual frailty score of a given mouse at the late-adult, mature and old ages is shown to be a relevant predictor of its lifespan.
Collapse
Affiliation(s)
- Irene Martinez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Department of Physiology, Freshage Research Group, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Jose Viña
- Department of Physiology, Freshage Research Group, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| |
Collapse
|
39
|
Martínez de Toda I, Vida C, Sanz San Miguel L, De la Fuente M. When will my mouse die? Life span prediction based on immune function, redox and behavioural parameters in female mice at the adult age. Mech Ageing Dev 2019; 182:111125. [PMID: 31381890 DOI: 10.1016/j.mad.2019.111125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
The identification of predictive markers of life span would help to unravel the underlying mechanisms influencing ageing and longevity. For this aim, 30 variables including immune functions, inflammatory-oxidative stress state and behavioural characteristics were investigated in ICR-CD1 female mice at the adult age (N = 38). Mice were monitored individually until they died and individual life spans were registered. Multiple linear regression was carried out to construct an Immunity model (adjusted R2 = 75.8%) comprising Macrophage chemotaxis and phagocytosis and Lymphoproliferation capacity, a Redox model (adjusted R2 = 84.4%) involving Reduced Glutathione and Malondialdehyde concentrations and Glutathione Peroxidase activity and a Behavioural model (adjusted R2 = 79.8%) comprising Internal Locomotion and Time spent in open arms indices. In addition, a Combined model (adjusted R2 = 92.4%) and an Immunity-Redox model (adjusted R2 = 88.7%) were also constructed by combining the above-mentioned selected variables. The models were also cross-validated using two different sets of female mice (N = 30; N = 40). Correlation between predicted and observed life span was 0.849 (P < 0.000) for the Immunity model, 0.691 (P < 0.000) for the Redox, 0.662 (P < 0.000) for the Behavioural and 0.840 (P < 0.000) for the Immunity-Redox model. Thus, these results provide a new perspective on the use of immune function, redox and behavioural markers as prognostic tools in ageing research.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Luis Sanz San Miguel
- Department of Statistics and Operational Research, Faculty of Mathematics, Complutense University, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain.
| |
Collapse
|
40
|
Heinze-Milne S, Banga S, Howlett S. Frailty Assessment in Animal Models. Gerontology 2019; 65:610-619. [DOI: 10.1159/000501333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022] Open
|
41
|
Kane AE, Sinclair DA. Frailty biomarkers in humans and rodents: Current approaches and future advances. Mech Ageing Dev 2019; 180:117-128. [PMID: 31002925 PMCID: PMC6581034 DOI: 10.1016/j.mad.2019.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Even though they would have great benefit across research and clinical fields, currently there are no accepted biomarkers of frailty. Cross-sectional studies in humans have identified promising candidates including inflammatory markers such as IL-6, immune markers such as WBC count, clinical markers such as albumin, endocrine markers such as vitamin D, oxidative stress markers such as isoprostanes, proteins such as BDNF and epigenetic markers such as DNA methylation, but there are limitations to the current state of the research. Future approaches to the identification of frailty biomarkers should include longitudinal studies, studies using animal models of frailty, studies incorporating novel biomarkers combined into composite panels, and studies investigating sex differences and potential overlap between markers of biological age and frailty.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Charles Perkins Centre, The University of Sydney, Sydney, Australia.
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pharmacology, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
42
|
Mitchell SJ, Mitchell GJ, Mitchell JR. Modulation of frailty syndrome by diet: A review of evidence from mouse studies. Mech Ageing Dev 2019; 180:82-88. [DOI: 10.1016/j.mad.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
|
43
|
Fielder E, Weigand M, Agneessens J, Griffin B, Parker C, Miwa S, von Zglinicki T. Sublethal whole-body irradiation causes progressive premature frailty in mice. Mech Ageing Dev 2019; 180:63-69. [PMID: 30954485 PMCID: PMC6546927 DOI: 10.1016/j.mad.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022]
Abstract
There is an unmet need to develop and validate therapies that can treat or at least prevent premature therapy-induced frailty, multi-morbidity and mortality in long-term tumour survivors. In an approach to develop a first mouse model for therapy-induced long-term frailty, we irradiated male C57Bl/6 mice at 5-6 months of age sub-lethally with 3 × 3 Gy (whole body) and assessed subsequent frailty for up to 6 months using a Rockwood-type frailty index (FI). Frailty scorers were trained to obtain excellent inter- and intra-observer reproducibility. Irradiated mice developed progressive frailty approximately twice as fast as controls. This was premature frailty; it was phenotypically identical to that in non-irradiated mice at higher age. As expected, frailty was associated with decreased cognition and predicted mortality. In irradiated mice, frailty and neuromuscular performance, measured by Rotarod and Hanging Wire tests, were not associated with each other, probably because of long-term decreased body weights after irradiation. We conclude that progressive frailty following sub-lethal irradiation comprises a sensitive and easy to use test bed for interventions to stop premature ageing in long-term tumour survivors.
Collapse
Affiliation(s)
- Edward Fielder
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Melanie Weigand
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Julien Agneessens
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Brigid Griffin
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Craig Parker
- NIHR Newcastle Biomedical Research Centre, Institute of Neurosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Satomi Miwa
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Thomas von Zglinicki
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK.
| |
Collapse
|
44
|
Seldeen KL, Redae YZ, Thiyagarajan R, Berman RN, Leiker MM, Troen BR. High intensity interval training improves physical performance in aged female mice: A comparison of mouse frailty assessment tools. Mech Ageing Dev 2019; 180:49-62. [PMID: 30951786 PMCID: PMC9841971 DOI: 10.1016/j.mad.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/19/2023]
Abstract
Frailty syndrome increases the risk for disability and mortality, and is a major health concern amidst the geriatric shift in the population. High intensity interval training (HIIT), which couples bursts of vigorous activity interspersed with active recovery intervals, shows promise for the treatment of frailty. Here we compare and contrast five Fried physical phenotype and one deficit accumulation based mouse frailty assessment tools for identifying the impacts of HIIT on frailty and predicting functional capacity, underlying pathology, and survival in aged female mice. Our data reveal a 10-minute HIIT regimen administered 3-days-a-week for 8-weeks increased treadmill endurance, gait speed and maintained grip strength. One frailty tool identified a benefit of HIIT for frailty, but many were trending suggesting HIIT was beneficial for physical performance in these mice, but the 8-week timeframe may have been insufficient to induce frailty benefits. Finally, most frailty tools distinguished between surviving or non-surviving mice, whereas half correlated with functional capacity measured by nest building ability, and none correlated with underlying pathology. In summary, this study supports the ongoing development of mouse assessment tools as useful instruments for frailty research.
Collapse
Affiliation(s)
- Kenneth Ladd Seldeen
- Corresponding author at: 875 Ellicott Street, CTRC Room 8030A, Buffalo, NY 14203, USA. (K.L. Seldeen)
| | | | | | | | | | | |
Collapse
|
45
|
Palliyaguru DL, Moats JM, Di Germanio C, Bernier M, de Cabo R. Frailty index as a biomarker of lifespan and healthspan: Focus on pharmacological interventions. Mech Ageing Dev 2019; 180:42-48. [PMID: 30926563 DOI: 10.1016/j.mad.2019.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/09/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Although survival has been the focus of aging research for many years, the field is rapidly evolving towards incorporating healthspan and health indices in studies that explore aging-related outcomes. Frailty is one such measure that is tightly correlated with human aging. Several frailty measures have been developed that focus on phenotypes of aging, including physical, cognitive and metabolic health that define healthspan. The extent at which cumulative deficits associated with frailty predict functional characteristics of healthy aging and longevity is currently unknown. A growing consensus for the use of animal models has emerged to evaluate a composite measure of frailty that provides a translational basis to understanding human frailty. In this review, we will focus on the impact of several anti-aging interventions, some of which have been characterized as caloric restriction (CR) mimetics such as metformin, rapamycin, and resveratrol as well as more novel approaches that are emerging in the field - nicotinamide adenine dinucleotide precursors, small molecule activators of sirtuins, and senolytics - on a number of frailty measurements associated with aging-related outcomes in mice and discuss the translatability of such measures to human frailty.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline M Moats
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
46
|
Banga S, Heinze-Milne SD, Howlett SE. Rodent models of frailty and their application in preclinical research. Mech Ageing Dev 2019; 179:1-10. [PMID: 30703384 DOI: 10.1016/j.mad.2019.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
In clinical medicine, the concept of frailty is viewed as a state of high vulnerability to adverse health outcomes in people of the same age. Frailty is an important challenge because the loss of physiological reserve means that even minor stressors can lead to disability and death in those who are frail. Even so, the biology of frailty is not well understood. Rodent models of frailty are stimulating research into the biology of frailty. These pre-clinical models are based on "reverse-translation". Investigators have adapted either the "frailty phenotype" approach or the "frailty index" approach, originally developed in humans, for use in animals. This review briefly describes rodent models of frailty, discusses how these models have been used to explore mechanisms of frailty and how they have been employed to assess the impact of frailty on various experimental outcomes. The review also highlights studies that have used rodent models to investigate interventions to attenuate frailty, including drug treatment, dietary modifications and exercise. The ability to model frailty in animals is an exciting development that promises to accelerate the translation of laboratory discoveries into new clinical interventions, and situates frailty research in the larger context of geroscience.
Collapse
Affiliation(s)
- Shubham Banga
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
47
|
Abstract
The types of changes in physical appearance and behavior that occur in elderly people similarly develop in elderly animals. Signs and symptoms that might cause concern in younger people or mice may be normal in their elderly but generally healthy counterparts. Although numerous scoring methods have been developed to assess rodent health, these systems were often designed for young adults used in specific types of research, such as cancer or neurologic studies, and therefore may be suboptimal for assessing aging rodents. Approaches known as frailty assessments provide a global evaluation of the health of aged mice, rats, and people, and mouse frailty scores correlate well with the likelihood of death. Complementing frailty assessment, prediction of imminent death in aged mice can often be accomplished by focusing on 2 objective parameters-body weight and temperature. Before they die, many (but not all) mice develop marked reductions in body weight and temperature, thus providing signs that close monitoring, intervention, or preemptive euthanasia may be necessary. Timely preemptive euthanasia allows antemortem collection of data and samples that would be lost if spontaneous death occurred; preemptive euthanasia also limits terminal suffering. These approaches to monitoring declining health and predicting death in elderly research mice can aid in establishing and implementing timely interventions that both benefit the research and reduce antemortem suffering.
Collapse
Affiliation(s)
- Linda A Toth
- Emeritus Faculty, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
48
|
Pyrkov TV, Getmantsev E, Zhurov B, Avchaciov K, Pyatnitskiy M, Menshikov L, Khodova K, Gudkov AV, Fedichev PO. Quantitative characterization of biological age and frailty based on locomotor activity records. Aging (Albany NY) 2018; 10:2973-2990. [PMID: 30362959 PMCID: PMC6224248 DOI: 10.18632/aging.101603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
We performed a systematic evaluation of the relationships between locomotor activity and signatures of frailty, morbidity, and mortality risks using physical activity records from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) and UK BioBank (UKB). We proposed a statistical description of the locomotor activity tracks and transformed the provided time series into vectors representing physiological states for each participant. The Principal Component Analysis of the transformed data revealed a winding trajectory with distinct segments corresponding to subsequent human development stages. The extended linear phase starts from 35-40 years old and is associated with the exponential increase of mortality risks according to the Gompertz mortality law. We characterized the distance traveled along the aging trajectory as a natural measure of biological age and demonstrated its significant association with frailty and hazardous lifestyles, along with the remaining lifespan and healthspan of an individual. The biological age explained most of the variance of the log-hazard ratio that was obtained by fitting directly to mortality and the incidence of chronic diseases. Our findings highlight the intimate relationship between the supervised and unsupervised signatures of the biological age and frailty, a consequence of the low intrinsic dimensionality of the aging dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter O. Fedichev
- Gero LLC, Moscow 1015064, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia
| |
Collapse
|
49
|
Fedichev PO. Hacking Aging: A Strategy to Use Big Data From Medical Studies to Extend Human Life. Front Genet 2018; 9:483. [PMID: 30405692 PMCID: PMC6206166 DOI: 10.3389/fgene.2018.00483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022] Open
Abstract
Age is the most important single factor associated with chronic diseases and ultimately, death. The mortality rate in humans doubles approximately every eight years, as described by the Gompertz law of mortality. The incidence of specific diseases, such as cancer or stroke, also accelerates after the age of about 40 and doubles at a rate that mirrors the mortality-rate doubling time. It is therefore, entirely plausible to think that there is a single underlying process, the driving force behind the progressive reduction of the organism's health leading to the increased susceptibility to diseases and death; aging. There is, however, no fundamental law of nature requiring exponential morbidity and mortality risk trajectories. The acceleration of mortality is thus the most important characteristics of the aging process. It varies dramatically even among closely related mammalian species and hence appears to be a tunable phenotype. Here, we follow how big data from large human medical studies, and analytical approaches borrowed from physics of complex dynamic systems can help to reverse engineer the underlying biology behind Gompertz mortality law. With such an approach we hope to generate predictive models of aging for systematic discovery of biomarkers of aging followed by identification of novel therapeutic targets for future anti-aging interventions.
Collapse
Affiliation(s)
- Peter O. Fedichev
- Gero LLC, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| |
Collapse
|
50
|
Kane AE, Shin S, Wong AA, Fertan E, Faustova NS, Howlett SE, Brown RE. Sex Differences in Healthspan Predict Lifespan in the 3xTg-AD Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:172. [PMID: 29946252 PMCID: PMC6005856 DOI: 10.3389/fnagi.2018.00172] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/18/2018] [Indexed: 01/05/2023] Open
Abstract
Mouse models of Alzheimer's disease (AD) exhibit marked differences in life expectancy depending on their genotype and sex. The assessment of frailty could provide a measure of healthspan to facilitate comparisons between different AD models. We used a validated mouse frailty index (FI) assessment tool to explore genotype and sex differences in lifespan and healthspan of 3xTg-AD mice and their B6129F2 wild-type (WT) controls. This tool is based on an approach commonly used in people and quantifies frailty by counting the accumulation of age-related health deficits. The number of deficits in an individual divided by the total number measured yields an FI score theoretically between 0 and 1, with higher scores denoting more frailty. Male 3xTg-AD mice aged 300-600 days had higher FI scores (Mean FI = 0.21 ± 0.03) than either male WT (Mean FI = 0.15 ± 0.01) or female 3xTg-AD mice (Mean FI = 0.10 ± 0.01), and the elevated frailty scores were accompanied by parallel increases in mortality. Frailty increased exponentially with age, and higher rates of deficit accumulation elevated mortality risk in all groups of mice. When mice were stratified by FI score, frailty predicted mortality, at least in females. Therefore, the mouse clinical FI provides a valuable tool for evaluating healthspan in mouse models of AD with different lifespans.
Collapse
Affiliation(s)
- Alice E. Kane
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Sooyoun Shin
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Aimee A. Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Natalia S. Faustova
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|