1
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kindy MS. Plant-Based Nutritional Supplementation Attenuates LPS-Induced Low-Grade Systemic Activation. Int J Mol Sci 2021; 22:ijms22020573. [PMID: 33430045 PMCID: PMC7826722 DOI: 10.3390/ijms22020573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Plant-based nutritional supplementation has been shown to attenuate and reduce mortality in the processes of both acute and chronic disorders, including diabetes, obesity, cardiovascular disease, cancer, inflammatory diseases, and neurological and neurodegenerative disorders. Low-level systemic inflammation is an important contributor to these afflictions and diets enriched in phytochemicals can slow the progression. The goal of this study was to determine the impact of lipopolysaccharide (LPS)-induced inflammation on changes in glucose and insulin tolerance, performance enhancement, levels of urinary neopterin and concentrations of neurotransmitters in the striatum in mouse models. Both acute and chronic injections of LPS (2 mg/kg or 0.33 mg/kg/day, respectively) reduced glucose and insulin tolerance and elevated neopterin levels, which are indicative of systemic inflammatory responses. In addition, there were significant decreases in striatal neurotransmitter levels (dopamine and DOPAC), while serotonin (5-HT) levels were essentially unchanged. LPS resulted in impaired execution in the incremental loading test, which was reversed in mice on a supplemental plant-based diet, improving their immune function and maintaining skeletal muscle mitochondrial activity. In conclusion, plant-based nutritional supplementation attenuated the metabolic changes elicited by LPS injections, causing systemic inflammatory activity that contributed to both systemic and neurological alterations.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | | | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33620, USA
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
2
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kirstein C, Kindy MS. Effects of GrandFusion Diet on Cognitive Impairment in Transgenic Mouse Model of Alzheimer's Disease. Nutrients 2020; 13:nu13010117. [PMID: 33396967 PMCID: PMC7824640 DOI: 10.3390/nu13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the result of the deposition of amyloid β (Aβ) peptide into amyloid fibrils and tau into neurofibrillary tangles. At the present time, there are no possible treatments for the disease. We have recently shown that diets enriched in phytonutrients show protection or limit the extent of damage in a number of neurological disorders. GrandFusion (GF) diets have attenuated the outcomes in animal models of traumatic brain injury, cerebral ischemia, and chronic traumatic encephalopathy. In this study, we investigated the effect of GF diets in a mouse model of AD prior to the development of amyloid plaques to show how this treatment paradigm would alter the accumulation of Aβ peptide and related pathologic changes (i.e., inflammation, cathepsin B, and memory impairment). Administration of GF diets (2–4%) over a period of four months in APP/ΔPS1 double-transgenic mice resulted in attenuation in Aβ peptide levels, reduction of amyloid load, and inflammation, increased cathepsin B expression, and improved spatial orientation. Additionally, treatment with GF diets increased nerve growth factor (NGF) levels in the brain and tempered the memory impairment in the animal model. These data suggest that GF diets may alter the development and progression of the mechanisms associated with the disease process to effectively modify AD pathogenesis.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | | | - Cheryl Kirstein
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA;
- James A. Haley Veterans Administration Medical Center, Research, Tampa, FL 33612, USA
- Shriners Hospital for Children, Research, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-1468
| |
Collapse
|
3
|
GM6 Attenuates Alzheimer's Disease Pathology in APP Mice. Mol Neurobiol 2019; 56:6386-6396. [PMID: 30798443 DOI: 10.1007/s12035-019-1517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) results in the deposition of amyloid β (Aβ) peptide into amyloid fibrils and tau into neurofibrillary tangles. Regardless of whether or not these entities are a cause or consequence of the disease process, preventing their accumulation or accelerating their clearance may slow the rate of AD onset. Motoneuronotrophic factor (MNTF) is an endogenous neurotrophin that is specific for the human nervous system, and some of the observed effects of MNTF include motoneuron differentiation, maintenance, survival, and reinnervation of target muscles and organs. GM6 is a six-amino-acid component of MNTF that appears to replicate its activity spectrum. In this study, we investigated the effect of GM6 in a mouse model of AD before the development of amyloid plaques and determined how this treatment affected the accumulation of Aβ peptide and related pathologic changes (e.g., inflammation, nerve growth factor (NGF) expression, cathepsin B, and memory impairment). Application of GM6 over a 4-month period in young APP/ΔPS1 double-transgenic mice resulted in attenuation in Aβ peptide levels, reduction of inflammation and amyloid load, increased cathepsin B expression, and improved spatial orientation. In addition, treatment with GM6 increased brain NGF levels and tempered memory impairment by ∼ 50% at the highest dose. These data suggest that GM6 may modulate disease-determining pathways at an early stage to slow the histological and clinical progression of AD.
Collapse
|
4
|
Yu J, Zhu H, Taheri S, Monday WL, Perry S, Kindy MS. Reduced Neuroinflammation and Improved Functional Recovery after Traumatic Brain Injury by Prophylactic Diet Supplementation in Mice. Nutrients 2019; 11:nu11020299. [PMID: 30708954 PMCID: PMC6412510 DOI: 10.3390/nu11020299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Currently, there are no approved therapeutic drugs for the treatment of traumatic brain injury (TBI), and new targets and approaches are needed to provide relief from the long-term effects of TBI. Recent studies suggest that nutrition plays a critical role in improving the outcome from TBI in both civilians and military personnel. We have previously shown that GrandFusion® (GF) diets improved recovery from cerebral ischemia and enhanced physical activity and endurance in rodent models. We, therefore, sought to determine the impact of a prophylactic diet enriched in fruits and vegetables on recovery from TBI in the controlled cortical impact rodent model. Results demonstrated that mice fed the diets had improved neuromotor function, reduced lesion volume, increased neuronal density in the hippocampus and reduced inflammation. As previously shown, TBI increases cathepsin B as part of the inflammasome complex resulting in elevated inflammatory markers like interleukin-1β (IL-1β). Consumption of the GF diets attenuated the increase in cathepsin B levels and prevented the increase in the proapoptotic factor Bax following TBI. These data suggest that prior consumption of diets enriched in fruits and vegetables either naturally or through powdered form can provide protection from the detrimental effects of TBI.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
| | - William L Monday
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
| | | | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
- Departments of Molecular Medicine, Molecular Pharmacology, Physiology and Pathology and Cell Biology, and Neurology, College of Medicine, University of South Florida, Tampa, FL 33620, USA.
- James A. Haley VA Medical Center, Tampa, FL 33612, USA.
- Shriners Hospital for Children, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kindy MS. Impact of nutrition on inflammation, tauopathy, and behavioral outcomes from chronic traumatic encephalopathy. J Neuroinflammation 2018; 15:277. [PMID: 30249250 PMCID: PMC6154891 DOI: 10.1186/s12974-018-1312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Repetitive mild traumatic brain injuries (rmTBI) are associated with cognitive deficits, inflammation, and stress-related events. We tested the effect of nutrient intake on the impact of rmTBI in an animal model of chronic traumatic encephalopathy (CTE) to study the pathophysiological mechanisms underlying this model. We used a between group design rmTBI closed head injuries in mice, compared to a control and nutrient-treated groups. METHODS Our model allows for controlled, repetitive closed head impacts to mice. Briefly, 24-week-old mice were divided into five groups: control, rmTBI, and rmTBI with nutrients (2% of NF-216, NF-316 and NF-416). rmTBI mice received four concussive impacts over 7 days. Mice were treated with NutriFusion diets for 2 months prior to the rmTBI and until euthanasia (6 months). Mice were then subsequently euthanized for macro- and micro-histopathologic analysis for various times up to 6 months after the last TBI received. Animals were examined behaviorally, and brain sections were immunostained for glial fibrillary acidic protein (GFAP) for astrocytes, iba-1 for activated microglia, and AT8 for phosphorylated tau protein. RESULTS Animals on nutrient diets showed attenuated behavioral changes. The brains from all mice lacked macroscopic tissue damage at all time points. The rmTBI resulted in a marked neuroinflammatory response, with persistent and widespread astrogliosis and microglial activation, as well as significantly elevated phospho-tau immunoreactivity to 6 months. Mice treated with diets had significantly reduced inflammation and phospho-tau staining. CONCLUSIONS The neuropathological findings in the rmTBI mice showed histopathological hallmarks of CTE, including increased astrogliosis, microglial activation, and hyperphosphorylated tau protein accumulation, while mice treated with diets had attenuated disease process. These studies demonstrate that consumption of nutrient-rich diets reduced disease progression.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - Stephen Perry
- NutriFusion®, LLC, 10641 Airport Pulling Rd., Suite 31, Naples, FL, 34109, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA. .,Departments of Molecular Medicine, Molecular Pharmacology, Physiology and Pathology and Cell Biology, and Neurology, College of Medicine, University of South Florida, Tampa, FL, USA. .,James A. Haley VA Medical Center, Tampa, FL, USA. .,Shriners Hospital for Children, Tampa, FL, USA.
| |
Collapse
|
6
|
Yu J, Zhu H, Taheri S, Perry S, Kindy MS. The Effect of Diet on Improved Endurance in Male C57BL/6 Mice. Nutrients 2018; 10:nu10081101. [PMID: 30115854 PMCID: PMC6115890 DOI: 10.3390/nu10081101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
The consumption of fruits and vegetables appears to help with maintaining an adequate level of exercise and improves endurance. However, the mechanisms that are involved in this process are not well understood. In the current study, the impact of diets enriched in fruits and vegetables (GrandFusion®) on exercise endurance was examined in a mouse model. GrandFusion (GF) diets increased mitochondrial DNA and enzyme activity, while they also stimulated mitochondrial mRNA synthesis in vivo. GF diets increased both the mRNA expression of factors involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (Tfam), estrogen-related receptor alpha (ERRα), nuclear respiratory factor 1 (NRF-1), cytochrome c oxidase IV (COXIV) and ATP synthase (ATPsyn). Mice treated with GF diets showed an increase in running endurance, rotarod perseverance and grip strength when compared to controls who were on a regular diet. In addition, GF diets increased the protein expression of phosphorylated AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC-1α and peroxisome proliferator-activated receptor delta (PPAR-δ), which was greater than exercise-related changes. Finally, GF reduced the expression of phosphorylated ribosomal protein S6 kinase 1 (p-S6K1) and decreased autophagy. These results demonstrate that GF diets enhance exercise endurance, which is mediated via mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | | | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
- NutriFusion®, LLC, Naples, FL 34109, USA.
- James A. Haley VA Medical Center, Tampa, FL 33612, USA.
- Shriners Hospital for Children, Tampa, FL 33612, USA.
| |
Collapse
|