1
|
Kunizheva SS, Volobaev VP, Plotnikova MY, Kupriyanova DA, Kuznetsova IL, Tyazhelova TV, Rogaev EI. Current Trends and Approaches to the Search for Genetic Determinants of Aging and Longevity. RUSS J GENET+ 2022; 58:1427-1443. [PMID: 36590179 PMCID: PMC9794410 DOI: 10.1134/s1022795422120067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/29/2022]
Abstract
Aging is a natural process of extinction of the body and the main aspect that determines the life expectancy for individuals who have survived to the post-reproductive period. The process of aging is accompanied by certain physiological, immune, and metabolic changes in the body, as well as the development of age-related diseases. The contribution of genetic factors to human life expectancy is estimated at about 25-30%. Despite the success in identifying genes and metabolic pathways that may be involved in the life extension process in model organisms, the key question remains to what extent these data can be extrapolated to humans, for example, because of the complexity of its biological and sociocultural systems, as well as possible species differences in life expectancy and causes of mortality. New molecular genetic methods have significantly expanded the possibilities for searching for genetic factors of human life expectancy and identifying metabolic pathways of aging, the interaction of genes and transcription factors, the regulation of gene expression at the level of transcription, and epigenetic modifications. The review presents the latest research and current strategies for studying the genetic basis of human aging and longevity: the study of individual candidate genes in genetic population studies, variations identified by the GWAS method, immunogenetic differences in aging, and genomic studies to identify factors of "healthy aging." Understanding the mechanisms of the interaction between factors affecting the life expectancy and the possibility of their regulation can become the basis for developing comprehensive measures to achieve healthy longevity. Supplementary Information The online version contains supplementary material available at 10.1134/S1022795422120067.
Collapse
Affiliation(s)
- S. S. Kunizheva
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. P. Volobaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - M. Yu. Plotnikova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
| | - D. A. Kupriyanova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - I. L. Kuznetsova
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. V. Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. I. Rogaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- University of Massachusetts Chan Medical School, 01545 Shrewsbury, MA United States
| |
Collapse
|
2
|
Miranda FB, de Castro JBP, dos Santos AOB, da Silva GCPSM, Nogueira CJ, Guimarães AC, Lima VP, Vale RGDS, Dantas EHM. Effects of resistance training on the functional autonomy of middle-aged and older women: a systematic review and meta-analysis of randomized controlled trials. JOURNAL OF GERONTOLOGY AND GERIATRICS 2022. [DOI: 10.36150/2499-6564-n508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
BMI, Blood Pressure, and Plasma Lipids among Centenarians and Their Offspring. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3836247. [PMID: 35096109 PMCID: PMC8794670 DOI: 10.1155/2022/3836247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022]
Abstract
Background The burden of cardiovascular diseases (CVDs) is increasing substantially due to population growth and aging. Determining effective prevention and understanding the underlying mechanisms remain desirable pursuits for increasing the quality of life. As centenarians and their offspring may have genetic advantages, they may present with healthier cardiovascular-related profiles. Methods We launched a cross-sectional household-based survey of centenarian families, including 253 centenarians, 217 centenarian offspring, and 116 offspring spouses without centenarian parents from county-level Chinese longevity city Rugao. Among offspring and offspring spouses were the following arrangements: 101 paired offspring and offspring spouses who lived together, 116 unpaired offspring, and 16 unpaired spouses. We investigated their cardiovascular-related health status including waist circumference, body mass index (BMI), blood pressure, and plasma lipids and compared results among centenarians, centenarian offspring, and offspring spouses. Results Centenarians ranged from 99 to 109 years with a median age of 100 years. Centenarian offspring, with a median age of 70 years, and offspring spouses, with a median age of 69 years, shared similar age. Results of blood pressure, plasma lipid levels, and BMI displayed no significant difference between centenarian offspring and offspring spouses. However, centenarians appeared to have lower waist circumference, BMI, TC, LDL-C, TG, and diastolic blood pressure but higher levels of systolic blood pressure (p < 0.05). Multivariate analysis showed the prevalence of obesity, hypertension, and dyslipidemia was similar between centenarian offspring and offspring spouses, while centenarians appeared to have a lower prevalence of obesity and a higher prevalence of hypertension (p < 0.05). Conclusions Centenarians and centenarian offspring did not present healthier BMI, blood pressure, or plasma lipids than offspring spouses. Further research on longevity and cardiovascular diseases are desirable.
Collapse
|
4
|
McCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA, van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath S, Marioni RE. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 2021; 22:194. [PMID: 34187551 PMCID: PMC8243879 DOI: 10.1186/s13059-021-02398-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
Collapse
Affiliation(s)
- Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeesun Jung
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pei-Lun Kuo
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Matthijs D van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Xiaochuan Wang
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05446, USA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jacob K Kresovich
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN, 55404, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Polidoro
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Elina Sillanpää
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - David J Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Donna Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, UK
| | | | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Luigi Ferrucci
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Rd. South, Edinburgh, EH4 2XU, UK
| | - Marguerite Irvin
- Dept of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Falk W Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
5
|
Garagnani P, Marquis J, Delledonne M, Pirazzini C, Marasco E, Kwiatkowska KM, Iannuzzi V, Bacalini MG, Valsesia A, Carayol J, Raymond F, Ferrarini A, Xumerle L, Collino S, Mari D, Arosio B, Casati M, Ferri E, Monti D, Nacmias B, Sorbi S, Luiselli D, Pettener D, Castellani G, Sala C, Passarino G, De Rango F, D'Aquila P, Bertamini L, Martinelli N, Girelli D, Olivieri O, Giuliani C, Descombes P, Franceschi C. Whole-genome sequencing analysis of semi-supercentenarians. eLife 2021; 10:57849. [PMID: 33941312 PMCID: PMC8096429 DOI: 10.7554/elife.57849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.
Collapse
Affiliation(s)
- Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Julien Marquis
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | | | - Armand Valsesia
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jerome Carayol
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Frederic Raymond
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Alberto Ferrarini
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Luciano Xumerle
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Daniela Mari
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.,Geriatric Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Martina Casati
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Evelyn Ferri
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Firenze, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Firenze, Italy
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Luca Bertamini
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Patrick Descombes
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
6
|
Shinde P, Whitwell HJ, Verma RK, Ivanchenko M, Zaikin A, Jalan S. Impact of modular mitochondrial epistatic interactions on the evolution of human subpopulations. Mitochondrion 2021; 58:111-122. [PMID: 33618020 DOI: 10.1016/j.mito.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Investigation of human mitochondrial (mt) genome variation has been shown to provide insights to the human history and natural selection. By analyzing 24,167 human mt-genome samples, collected for five continents, we have developed a co-mutation network model to investigate characteristic human evolutionary patterns. The analysis highlighted richer co-mutating regions of the mt-genome, suggesting the presence of epistasis. Specifically, a large portion of COX genes was found to co-mutate in Asian and American populations, whereas, in African, European, and Oceanic populations, there was greater co-mutation bias in hypervariable regions. Interestingly, this study demonstrated hierarchical modularity as a crucial agent for these co-mutation networks. More profoundly, our ancestry-based co-mutation module analyses showed that mutations cluster preferentially in known mitochondrial haplogroups. Contemporary human mt-genome nucleotides most closely resembled the ancestral state, and very few of them were found to be ancestral-variants. Overall, these results demonstrated that subpopulation-based biases may favor mitochondrial gene specific epistasis.
Collapse
Affiliation(s)
- Pramod Shinde
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| | - Harry J Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rahul Kumar Verma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Mikhail Ivanchenko
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Zaikin
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia; Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Department of Mathematics and Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India; Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India; Center for Theoretical Physics of Complex Systems, Institute for Basic Science(IBS), Daejeon 34126, Korea.
| |
Collapse
|
7
|
Franceschi C, Garagnani P, Olivieri F, Salvioli S, Giuliani C. The Contextualized Genetics of Human Longevity: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:968-979. [PMID: 32130932 DOI: 10.1016/j.jacc.2019.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
The genetics of human longevity has long been studied, and in this regard, centenarians represent a very informative model. Centenarians are characterized by 2 main features: 1) the capability to avoid or postpone the major age-related diseases; and 2) a high level of heterogeneity of their phenotype. The first suggests that longevity and resistance to diseases are mediated by shared mechanisms, the latter that many strategies can be used to become long lived, likely as a result of variable genome-environment interactions. The authors suggest that the complexity of genome-environment interactions must be considered within an evolutionary and ecological perspective and that the concept of "risk allele" is highly context dependent, changing with age, time, and geography. Genes involved in both longevity and cardiovascular diseases, taken as a paradigmatic example of age-related diseases, as well as other emerging topics in genetics of longevity, such as micro-ribonucleic acid (miRNA) genetics, polygenic risk scores, environmental pollutants, and somatic mutations are discussed.
Collapse
Affiliation(s)
- Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod-National Research University, Nizhny Novgorod, Russia.
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Regenerative Therapy, IRCCS INRCA, Ancona, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Kogan's Attitude toward Old People scale revisited: Psychometric properties and recommendations. Arch Gerontol Geriatr 2020; 90:104159. [PMID: 32629373 DOI: 10.1016/j.archger.2020.104159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/21/2022]
Abstract
Population ageing is one of the present and future challenges in the European context. In addition to age-related changes, negative and judicious attitudes by society are also prevalent. Therefore, there is a need for reliable instruments to evaluate attitudes toward ageing. In this vein, the present research aims to provide a reliable version of the Kogan's Attitudes toward Older People scale adapted to the Spanish context. In a sample from the academic community (N = 163), we evaluated the reliability, the psychometric properties, and the internal consistency of a version of Kogan's scale translated into Spanish. The results showed a reliable short version of the scale with adequate psychometric properties and two factors: positive and negative. Moreover, the correlates with similar measures of attitude toward older people proved external validity measures by the short scale. The implications and contributions to the geriatric population are discussed.
Collapse
|
9
|
Sazzini M, Abondio P, Sarno S, Gnecchi-Ruscone GA, Ragno M, Giuliani C, De Fanti S, Ojeda-Granados C, Boattini A, Marquis J, Valsesia A, Carayol J, Raymond F, Pirazzini C, Marasco E, Ferrarini A, Xumerle L, Collino S, Mari D, Arosio B, Monti D, Passarino G, D'Aquila P, Pettener D, Luiselli D, Castellani G, Delledonne M, Descombes P, Franceschi C, Garagnani P. Genomic history of the Italian population recapitulates key evolutionary dynamics of both Continental and Southern Europeans. BMC Biol 2020; 18:51. [PMID: 32438927 PMCID: PMC7243322 DOI: 10.1186/s12915-020-00778-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.
Collapse
Affiliation(s)
- Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy.
| | - Paolo Abondio
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Matteo Ragno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alessio Boattini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Julien Marquis
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- Current Address: Lausanne Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Armand Valsesia
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Jerome Carayol
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Chiara Pirazzini
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Alberto Ferrarini
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
- Current Address: Menarini Silicon Biosystems SpA, Castel Maggiore, Bologna, Italy
| | - Luciano Xumerle
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Daniela Mari
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Gastone Castellani
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Claudio Franceschi
- Department of Applied Mathematics, Institute of Information Technology, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paolo Garagnani
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy.
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Gutman D, Rivkin E, Fadida A, Sharvit L, Hermush V, Rubin E, Kirshner D, Sabin I, Dwolatzky T, Atzmon G. Exceptionally Long-Lived Individuals (ELLI) Demonstrate Slower Aging Rate Calculated by DNA Methylation Clocks as Possible Modulators for Healthy Longevity. Int J Mol Sci 2020; 21:ijms21020615. [PMID: 31963520 PMCID: PMC7013521 DOI: 10.3390/ijms21020615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Exceptionally long-lived individuals (ELLI) who are the focus of many healthy longevity studies around the globe are now being studied in Israel. The Israeli Multi-Ethnic Centenarian Study (IMECS) cohort is utilized here for assessment of various DNA methylation clocks. Thorough phenotypic characterization and whole blood samples were obtained from ELLI, offspring of ELLI, and controls aged 53–87 with no familial exceptional longevity. DNA methylation was assessed using Illumina MethylationEPIC Beadchip and applied to DNAm age online tool for age and telomere length predictions. Relative telomere length was assessed using qPCR T/S (Telomere/Single copy gene) ratios. ELLI demonstrated juvenile performance in DNAm age clocks and overall methylation measurement, with preserved cognition and relative telomere length. Our findings suggest a favorable DNA methylation profile in ELLI enabling a slower rate of aging in those individuals in comparison to controls. It is possible that DNA methylation is a key modulator of the rate of aging and thus the ELLI DNAm profile promotes healthy longevity.
Collapse
Affiliation(s)
- Danielle Gutman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (D.G.); (L.S.)
| | - Elina Rivkin
- Faculty of Public Health, University of Haifa, Haifa 3498838, Israel; (E.R.); (A.F.)
| | - Almog Fadida
- Faculty of Public Health, University of Haifa, Haifa 3498838, Israel; (E.R.); (A.F.)
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (D.G.); (L.S.)
| | - Vered Hermush
- Department of Geriatrics and Skilled Nursing, Laniado Medical Center, Netanya 4244916, Israel;
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3200003, Israel; (D.K.); (I.S.); (T.D.)
| | - Elad Rubin
- Department of Geriatrics, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Dani Kirshner
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3200003, Israel; (D.K.); (I.S.); (T.D.)
- Department of Geriatrics, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Irina Sabin
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3200003, Israel; (D.K.); (I.S.); (T.D.)
- Department of Geriatrics, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Tzvi Dwolatzky
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3200003, Israel; (D.K.); (I.S.); (T.D.)
- Department of Geriatrics, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (D.G.); (L.S.)
- Departments of Genetics and Medicine, Division of endocrinology, Institute for Aging Research and the Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Correspondence: ; Tel.: +972-4664-7927
| |
Collapse
|
11
|
Crocco P, Montesanto A, Dato S, Geracitano S, Iannone F, Passarino G, Rose G. Inter-Individual Variability in Xenobiotic-Metabolizing Enzymes: Implications for Human Aging and Longevity. Genes (Basel) 2019; 10:genes10050403. [PMID: 31137904 PMCID: PMC6562959 DOI: 10.3390/genes10050403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
Xenobiotic-metabolizing enzymes (XME) mediate the body’s response to potentially harmful compounds of exogenous/endogenous origin to which individuals are exposed during their lifetime. Aging adversely affects such responses, making the elderly more susceptible to toxics. Of note, XME genetic variability was found to impact the ability to cope with xenobiotics and, consequently, disease predisposition. We hypothesized that the variability of these genes influencing the interaction with the exposome could affect the individual chance of becoming long-lived. We tested this hypothesis by screening a cohort of 1112 individuals aged 20–108 years for 35 variants in 23 XME genes. Four variants in different genes (CYP2B6/rs3745274-G/T, CYP3A5/rs776746-G/A, COMT/rs4680-G/A and ABCC2/rs2273697-G/A) differently impacted the longevity phenotype. In particular, the highest impact was observed in the age group 65–89 years, known to have the highest incidence of age-related diseases. In fact, genetic variability of these genes we found to account for 7.7% of the chance to survive beyond the age of 89 years. Results presented herein confirm that XME genes, by mediating the dynamic and the complex gene–environment interactions, can affect the possibility to reach advanced ages, pointing to them as novel genes for future studies on genetic determinants for age-related traits.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
12
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
13
|
Ferri E, Gussago C, Casati M, Mari D, Rossi PD, Ciccone S, Cesari M, Arosio B. Apolipoprotein E gene in physiological and pathological aging. Mech Ageing Dev 2019; 178:41-45. [PMID: 30658061 DOI: 10.1016/j.mad.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The genetic background plays a role on longevity. The distribution of the apolipoprotein E gene (APOE) variants (ε2, ε3, ε4) may differ across age groups, especially in the oldest old and despite geographical and ethnic specificities. Since the ε4 variant is associated with Alzheimer's disease (AD), it might represent an opportunity for exploring the relationship of APOE with physiological and pathological aging. AIM To explore the role played by APOE genotype/alleles on physiological and pathological brain aging. MATERIALS AND METHODS The study was conducted in a cohort of centenarians (n = 106), and two cohorts of octogenarians (without cognitive decline, n = 351 controls; and with AD, n = 294). RESULTS No significant differences in genotype/allele distributions were observed comparing controls to centenarians. The prevalence of ε2/ε3, ε3/ε3, ε3/ε4 and ε4/ε4 genotypes were significantly different in centenarians compared to AD. The prevalence of ε2 and ε3 alleles were significantly higher in centenarians, whereas the ε4 was less frequent. The ε4 allele was positively associated with AD, whereas a negative association was found for ε2 and ε3 alleles. CONCLUSIONS Our study indicates that ε4 allele is strongly associated with AD. APOE significantly affects AD risk, but apparently not longevity.
Collapse
Affiliation(s)
- E Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - C Gussago
- Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| | - M Casati
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - D Mari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| | - P D Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - S Ciccone
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - M Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| | - B Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| |
Collapse
|