1
|
Chen LZ, Zheng PF, Shi XJ. Multiomics identification of ALDH9A1 as a crucial immunoregulatory molecule involved in calcific aortic valve disease. Sci Rep 2024; 14:23577. [PMID: 39384885 PMCID: PMC11464510 DOI: 10.1038/s41598-024-75115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Mitochondrial dysfunction and immune cell infiltration play crucial yet incompletely understood roles in the pathogenesis of calcific aortic valve disease (CAVD). This study aimed to identify immune-related mitochondrial genes critical to the pathological process of CAVD using multiomics approaches. The CIBERSORT algorithm was employed to evaluate immune cell infiltration characteristics in CAVD patients. An integrative analysis combining weighted gene coexpression network analysis (WGCNA), machine learning, and summary data-based Mendelian randomization (SMR) was performed to identify key mitochondrial genes implicated in CAVD. Spearman's rank correlation analysis was also performed to assess the relationships between key mitochondrial genes and infiltrating immune cells. Compared with those in normal aortic valve tissue, an increased proportion of M0 macrophages and resting memory CD4 T cells, along with a decreased proportion of plasma cells and activated dendritic cells, were observed in CAVD patients. Additionally, eight key mitochondrial genes associated with CAVD, including PDK4, LDHB, SLC25A36, ALDH9A1, ECHDC2, AUH, ALDH2, and BNIP3, were identified through the integration of WGCNA and machine learning methods. Subsequent SMR analysis, incorporating multiomics data, such as expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (mQTLs), revealed a significant causal relationship between ALDH9A1 expression and a reduced risk of CAVD. Moreover, ALDH9A1 expression was inversely correlated with M0 macrophages and positively correlated with M2 macrophages. These findings suggest that increased ALDH9A1 expression is significantly associated with a reduced risk of CAVD and that it may exert its protective effects by modulating mitochondrial function and immune cell infiltration. Specifically, ALDH9A1 may contribute to the shift from M0 macrophages to anti-inflammatory M2 macrophages, potentially mitigating the pathological progression of CAVD. In conclusion, ALDH9A1 represents a promising molecular target for the diagnosis and treatment of CAVD. However, further validation through in vivo and n vitro studies is necessary to confirm its role in CAVD pathogenesis and therapeutic potential.
Collapse
Affiliation(s)
- Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, No. 36 QianYuan Lane, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
- Institute of cardiovascular epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
| | - Xiang-Jiang Shi
- Department of Cardiology, The Central Hospital of ShaoYang, No. 36 QianYuan Lane, Daxiang District, Shaoyang, 422000, Hunan, China.
| |
Collapse
|
2
|
Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C, Pinton P, Patergnani S. The Complex Relationship between Hypoxia Signaling, Mitochondrial Dysfunction and Inflammation in Calcific Aortic Valve Disease: Insights from the Molecular Mechanisms to Therapeutic Approaches. Int J Mol Sci 2023; 24:11105. [PMID: 37446282 DOI: 10.3390/ijms241311105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and multifactorial process that researchers are still making progress to understand its physiopathology as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve replacement represents the only option available for treating CAVS. Insufficient oxygen availability (hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis of CAVS. However, it is deeply intertwined with other major contributors, including sustained inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses and interconnections on the complexity of these impacts in a perspective of better understanding the pathophysiology. These interplays will be examined considering recent studies that shall help us better dissect the molecular mechanism to enable the design and development of potential future therapeutic approaches that can prevent or slow down CAVS processes.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Jiapaer Z, Li C, Yang X, Sun L, Chatterjee E, Zhang L, Lei J, Li G. Extracellular Non-Coding RNAs in Cardiovascular Diseases. Pharmaceutics 2023; 15:pharmaceutics15010155. [PMID: 36678784 PMCID: PMC9865796 DOI: 10.3390/pharmaceutics15010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death despite the best available healthcare and therapy. Emerging as a key mediator of intercellular and inter-organ communication in CVD pathogenesis, extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed nano-sized vesicles released by virtually all cells, of which their RNA cargo, especially non-coding RNAs (ncRNA), has been increasingly recognized as a promising diagnostic and therapeutic target. Recent evidence shows that ncRNAs, such as small ncRNAs, circular RNAs, and long ncRNAs, can be selectively sorted into EVs or other non-vesicular carriers and modulate various biological processes in recipient cells. In this review, we summarize recent advances in the literature regarding the origin, extracellular carrier, and functional mechanisms of extracellular ncRNAs with a focus on small ncRNAs, circular RNAs, and long ncRNAs. The pathophysiological roles of extracellular ncRNAs in various CVDs, including atherosclerosis, ischemic heart diseases, hypertension, cardiac hypertrophy, and heart failure, are extensively discussed. We also provide an update on recent developments and challenges in using extracellular ncRNAs as biomarkers or therapeutical targets in these CVDs.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Chengyu Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing 102400, China
| | - Lingfei Sun
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| |
Collapse
|
4
|
Liu C, Liu R, Cao Z, Guo Q, Huang H, Liu L, Xiao Y, Duan C, Ma R. Identification of MMP9 as a Novel Biomarker to Mitochondrial Metabolism Disorder and Oxidative Stress in Calcific Aortic Valve Stenosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858871. [PMID: 36199424 PMCID: PMC9527114 DOI: 10.1155/2022/3858871] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Calcific aortic valve stenosis (CAVS) is the most common heart valve disorder among humans. To date, no effective method has been identified to prevent this disease. Herein, we aimed to identify novel diagnostic and mitochondria-related biomarkers of CAVS, based on two machine learning algorithms. We further explored their association with infiltrating immune cells and studied their potential function in CAVS. The GSE12644, GSE51472, and GSE83453 expression profiles were downloaded from the Gene Expression Omnibus (GEO) repository. The GSE12644 and GSE51472 datasets were integrated to identify differentially expressed genes (DEGs). GSE12644 contains 10 normal and 10 CAVS samples, whereas GSE51472 contains 5 normal and 10 CAVS samples. GO and KEGG assays of DEGs were conducted, and the correlation between matrix metalloproteinase 9 (MMP9) expression and immune cell infiltration was explored, using CIBERSORT. The LASSO regression model and SVM-RFE analysis were used to identify diagnostic genes. The expression of MMP9 in CAVS and non-CAVS samples was measured using RT-PCR, western blotting and immunohistochemistry. A series of functional experiments were performed to explore the potential role of MMP9 in mitochondrial metabolism and oxidative stress during CAVS progression. Twenty-two DEGs were identified, of which six genes (SCG2, PPBP, TREM1, CCL19, WIF1, and MMP9) were ultimately distinguished as diagnostic genes in CAVS. Of these, MMP9 was indicated as a mitochondria-related gene, the expression and diagnostic value of which were further confirmed in the GSE83453 dataset. Correlation analysis revealed a positive correlation between MMP9 and infiltrating immune cells. In our cohort, MMP9 expression was distinctly increased in CAVS samples, and its inhibition attenuated the calcification of valve interstitial cells (VICs) by suppressing mitochondrial damage and oxidative stress. Taken together, our findings suggest MMP9 as a novel mitochondrial dysfunction biomarker and therapeutic target for CAVS.
Collapse
Affiliation(s)
- Cong Liu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhezhe Cao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qiao Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
5
|
Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators in the Diagnosis and Subtype Classification of Acute Myocardial Infarction. J Immunol Res 2022; 2022:5173761. [PMID: 36061306 PMCID: PMC9433256 DOI: 10.1155/2022/5173761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myocardial infarction (AMI) is still a huge danger to human health. Sensitive markers are necessary for the prediction of the risk of AMI and would be beneficial for managing the incidence rate. N6-methyladenosine (m6A) RNA methylation regulators have been confirmed to be involved in the development of various diseases. However, their function in AMI has not been fully elucidated. The purpose of this study was to determine the expression of m6A RNA methylation regulators in AMI as well as their possible functions and prognostic values. The GEO database was used to get the gene expression profiles of patients with and without AMI, and bioinformatics assays of genes with differently expressed expression were performed. We establish two separate m6A subtypes, and relationships between subtypes and immunity were studied. In this study, we identified IGF2BP1, FTO, RBM15, METTL3, YTHDC2, FMR1, and HNRNPA2B1 as the seven major m6A regulators. A nomogram model was developed and confirmed. The consensus clustering algorithm was conducted to categorize AMI patients into two m6A subtypes from the identified m6A regulators. Patients who have activated T-cell activities were found to be in clusterA; they may have a better prognosis as a result. Importantly, we found that patients with high METTL3 expressions had an increased level of Activated.CD4.T.cell and Type.2.T.helper.cell, while having a decreased level of CD56bright.natural.killer.cell, Macrophage, Monocyte, Natural.killer.cell, and Type.17.T.helper.cell. Overall, a diagnostic model of AMI was established based on the genes of IGF2BP1, FTO, RBM15, METTL3, YTHDC2, FMR1, and HNRNPA2B1. Our investigation of m6A subtypes may prove useful in the developments of therapy approaches for AMI.
Collapse
|
6
|
Zeng X, Zhang YD, Ma RY, Chen YJ, Xiang XM, Hou DY, Li XH, Huang H, Li T, Duan CY. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res 2022; 9:25. [PMID: 35624495 PMCID: PMC9137164 DOI: 10.1186/s40779-022-00383-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury remains elusive. METHODS The 150 male C57 mice underwent middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h, Among them, 50 MCAO mice were further treated with Mitochondrial division inhibitor 1 (Mdivi-1) and 50 MCAO mice were further treated with N-acetylcysteine (NAC). SH-SY5Y cells were cultured in a low-glucose culture medium for 4 h under hypoxic conditions and then transferred to normal conditions for 12 h. Then, cerebral blood flow, mitochondrial structure, mitochondrial DNA (mtDNA) copy number, intracellular and mitochondrial reactive oxygen species (ROS), autophagic flux, aggresome and exosome expression profiles, cardiac tissue structure, mitochondrial length and cristae density, mtDNA and ROS content, as well as the expression of Drp1-Ser616/Drp1, RIP1/RIP3, LC3 II/LC3 I, TNF-α, IL-1β, etc., were detected under normal or Drp1 interference conditions. RESULTS The mtDNA content, ROS levels, and Drp1-Ser616/Drp1 were elevated by 2.2, 1.7 and 2.7 times after CIRI (P < 0.05). However, the high cytoplasmic LC3 II/I ratio and increased aggregation of p62 could be reversed by 44% and 88% by Drp1 short hairpin RNA (shRNA) (P < 0.05). The low fluorescence intensity of autophagic flux and the increased phosphorylation of RIP3 induced by CIRI could be attenuated by ROS scavenger, NAC (P < 0.05). RIP1/RIP3 inhibitor Necrostatin-1 (Nec-1) restored 75% to a low LC3 II/LC3 I ratio and enhanced 2 times to a high RFP-LC3 after Drp1 activation (P < 0.05). In addition, although CIRI-induced ROS production caused no considerable accumulation of autophagosomes (P > 0.05), it increased the packaging and extracellular secretion of exosomes containing p62 by 4 - 5 times, which could be decreased by Mdivi-1, Drp1 shRNA, and Nec-1 (P < 0.05). Furthermore, TNF-α and IL-1β increased in CIRI-derived exosomes could increase RIP3 phosphorylation in normal or oxygen-glucose deprivation/reoxygenation (OGD/R) conditions (P < 0.05). CONCLUSIONS CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation, triggering a vicious cycle.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.,Department of Neurology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yun-Dong Zhang
- Department of Neurology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Rui-Yan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Jing Chen
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xin-Ming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dong-Yao Hou
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xue-Han Li
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - He Huang
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Chen-Yang Duan
- Department of Anaesthesiology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.
| |
Collapse
|
7
|
Duan C, Kuang L, Hong C, Xiang X, Liu J, Li Q, Peng X, Zhou Y, Wang H, Liu L, Li T. Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2. Cell Death Dis 2021; 12:1050. [PMID: 34741026 PMCID: PMC8571301 DOI: 10.1038/s41419-021-04343-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial mass imbalance is one of the key causes of cardiovascular dysfunction after hypoxia. The activation of dynamin-related protein 1 (Drp1), as well as its mitochondrial translocation, play important roles in the changes of both mitochondrial morphology and mitochondrial functions after hypoxia. However, in addition to mediating mitochondrial fission, whether Drp1 has other regulatory roles in mitochondrial homeostasis after mitochondrial translocation is unknown. In this study, we performed a series of interaction and colocalization assays and found that, after mitochondrial translocation, Drp1 may promote the excessive opening of the mitochondrial permeability transition pore (mPTP) after hypoxia. Firstly, mitochondrial Drp1 maximumly recognizes mPTP channels by binding Bcl-2-associated X protein (BAX) and a phosphate carrier protein (PiC) in the mPTP. Then, leucine-rich repeat serine/threonine-protein kinase 2 (LRRK2) is recruited, whose kinase activity is inhibited by direct binding with mitochondrial Drp1 after hypoxia. Subsequently, the mPTP-related protein hexokinase 2 (HK2) is inactivated at Thr-473 and dissociates from the mitochondrial membrane, ultimately causing structural disruption and overopening of mPTP, which aggravates mitochondrial and cellular dysfunction after hypoxia. Thus, our study interprets the dual direct regulation of mitochondrial Drp1 on mitochondrial morphology and functions after hypoxia and proposes a new mitochondrial fission-independent mechanism for the role of Drp1 after its translocation in hypoxic injury.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, P.R. China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Chen Hong
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Jiancang Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Hongchen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P.R. China.
| |
Collapse
|
8
|
Tan JK, Ma XF, Wang GN, Jiang CR, Gong HQ, Liu H. LncRNA MIAT knockdown alleviates oxygen-glucose deprivation‑induced cardiomyocyte injury by regulating JAK2/STAT3 pathway via miR-181a-5p. J Cardiol 2021; 78:586-597. [PMID: 34489160 DOI: 10.1016/j.jjcc.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is a common heart disease with high incidence and mortality. Myocardial ischemia is the main type of CAD, which negatively affects health worldwide. The aim of the present study was to investigate the function and mechanism of myocardial infarction-associated transcript (MIAT) in myocardial ischemia. METHODS Human cardiomyocytes (HCM) were treated with oxygen-glucose deprivation (OGD) to set the in vitro model and mouse myocardial ischemia/reperfusion (I/R) was set for in vivo model. Cell viability and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, and immunofluorescence analysis. Inflammatory cytokines levels were detected by enzyme-linked immunosorbent assay. Gene and protein expressions were identified by quantitative real time-polymerase chain reaction or Western blotting. The interaction of MIAT, miR-181a-5p, and janus kinase 2 (JAK2) was identified by dual-luciferase report assay. Mouse heart tissues histopathological condition were observed by hematoxylin and eosin assays. RESULTS Expression of MIAT and JAK2 were increased in OGD-treated HCM and mice of I/R model group, and miR-181a-5p was decreased. MIAT silencing could reverse the OGD treatment induced cell proliferation inhibition, cleaved caspase-3 and Bcl2-associated X (Bax) levels increased, while those of B-cell lymphoma-2 (Bcl-2) and mitochondria's cyt-C decreased. Besides, MIAT knockdown attenuated the OGD-induced increase of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels. Moreover, MIAT targeted miR-181a-5p to enhance the expression of JAK2 and signal Transducer and Activator of Transcription 3 (STAT3), and miR-181a-5p overexpression promoted proliferation, whereas it inhibited apoptosis in OGD-induced cardiomyocytes. Furthermore, the regulatory effects of MIAT knockdown in cell proliferation, apoptosis, and inflammatory injury was reversed by inhibition of miR-181a-5p or overexpression of JAK2 in OGD-treated HCM. Knockdown of MIAT reduced myocardial injury caused by I/R treatment in vivo. CONCLUSION MIAT knockdown inhibited apoptosis and inflammation by regulating JAK2/STAT3 signaling pathway via targeting miR-181a-5p in myocardial ischemia model. MIAT can be a possible therapeutic target for controlling the progression of myocardial ischemia.
Collapse
Affiliation(s)
- Jian-Kai Tan
- The Affiliated Nanhua Hospital, Department of cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Feng Ma
- The Affiliated Nanhua Hospital, Department of cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guang-Neng Wang
- The Affiliated Nanhua Hospital, Department of cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chang-Rong Jiang
- The Affiliated Nanhua Hospital, Department of cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hui-Qin Gong
- The Affiliated Nanhua Hospital, Department of cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Liu
- The Affiliated Nanhua Hospital, Department of cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Abstract
Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.
Collapse
Affiliation(s)
- Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
- Heart Division, Royal Brompton & Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
MicroRNA-520d-3p alleviates hypoxia/reoxygenation-induced damage in human cardiomyocytes by targeting ATG-12. J Thromb Thrombolysis 2021; 52:429-439. [PMID: 33389611 DOI: 10.1007/s11239-020-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Hypoxia/reoxygenation (H/R) induced injury results in extensive damages to myocardial tissue in patients with coronary heart disease, which leads to heart failure. MicroRNA (miRNA) is thought to be associated with myocardial H/R injury. The purpose of this study was to investigate the in vitro role of microRNA-520d-3p in human myocardial cell (HCM) myocardial H/R injury. MTT method and Annexin V-FITC flow cytometry were employed to measure the viability and apoptosis of H/R treated HCM. RT-qPCR was employed to determine miRNA and mRNA expression. MicroRNA-520d-3p mimic and microRNA-520d-3p inhibitor were used to overexpression and inhibit the expression of microRNA-520d-3p. In addition, pcDNA3.1-ATG12 was used to upregulate ATG12 expression. The protein levels of ATG12, Bcl-2 and autophagy related-genes were determined by western blotting. Hypoxia/reoxygenation (H/R) injury could inhibit cell viability, apoptosis and inhibited microRNA-520d-3p expression in HCM. The down-regulation of microRNA-520d-3p inhibited cell viability and induced apoptosis in HCM. The overexpression of microRNA-520d-3p attenuated the effects of H/R treatment on the viability and apoptosis of HCM cells. In addition, microRNA-520d-3p inhibited the expression of autophagy-associated 12 (ATG12). More importantly, H/R treatment could promote autophagy in HCM, and microRNA-520d-3p mimic transfection could significantly reverse this effect. Our result indicated that overexpression of microRNA-520d-3p attenuated the effect of H/R treatments on cell viability, apoptosis and autophagy, through partly regulating ATG12 expression in HCM.
Collapse
|
11
|
Duan C, Wang L, Zhang J, Xiang X, Wu Y, Zhang Z, Li Q, Tian K, Xue M, Liu L, Li T. Mdivi-1 attenuates oxidative stress and exerts vascular protection in ischemic/hypoxic injury by a mechanism independent of Drp1 GTPase activity. Redox Biol 2020; 37:101706. [PMID: 32911435 PMCID: PMC7490562 DOI: 10.1016/j.redox.2020.101706] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Vascular dysfunctions such as vascular hyporeactivity following ischemic/hypoxic injury are a major cause of death in injured patients. In this study, we showed that treatment with mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor of dynamin-related protein 1 (Drp1), significantly improved vascular reactivity in ischemic rats by attenuating oxidative stress. The antioxidative effects of Mdivi-1 were relatively Drp1-independent, and possibly due to an increase in the levels of the antioxidant enzymes, SOD1 and catalase, as well as to enhanced Nrf2 expression. In addition, we found that while Mdivi-1 had little effect on Drp1 GTPase activity in vascular smooth muscle cells, it inhibited hypoxia-induced Drp1 phosphorylation at Ser-616, reducing excessive mitochondrial fission and slightly enhancing mitochondrial fusion. These effects possibly contributed to vascular protection at an early stage of ischemic/hypoxic injury. Finally, Mdivi-1 stabilized hemodynamics, increased vital organ perfusion, and improved rat survival after ischemic/hypoxic injury, proving a promising therapeutic agent for ischemic/hypoxic injury. Mdivi-1 improved vascular contractility in ischemic rats. Mdivi-1 attenuated hypoxia-induced oxidative stress and mitochondrial changes. Drp1 recruitment to mitochondria, not GTPase activity, involved in Mdivi-1 effects. Mdivi-1 has therapeutic potential against ischemic injury.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Kunlun Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Mingying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China.
| |
Collapse
|
12
|
Wang XJ, Liu JW, Liu J. MiR-655-3p inhibits the progression of osteoporosis by targeting LSD1 and activating BMP-2/Smad signaling pathway. Hum Exp Toxicol 2020; 39:1390-1404. [PMID: 32431171 DOI: 10.1177/0960327120924080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is one of the most common chronic metabolic bone diseases in the seniors and postmenopausal women. Plenty of microRNAs (miRNAs) have been confirmed to be involved in OP progression. However, the role of miR-655-3p in osteogenic differentiation and bone formation was still unclear. In this study, we aimed to investigate the cellular function of miR-655-3p and its underlying mechanism in OP. We found that miR-655-3p expression was downregulated in both ovariectomized (OVX) mice bone tissues and MC3T3-E1 cells treated with simulated microgravity (MG). MiR-655-3p overexpression facilitated cell differentiation but suppressed cell apoptosis of MC3T3-E1 cells induced by simulated MG. Mechanistically, we confirmed that lysine-specific histone demethylase 1 (LSD1) is a downstream target gene of miR-655-3p. Furthermore, overexpression of miR-655-3p activated the bone morphogenetic protein 2 (BMP-2)/decapentaplegic homolog (Smad) signaling pathway by suppressing LSD1 expression. Moreover, LSD1 knockdown accelerated osteogenic differentiation and inhibited apoptosis in MC3T3-E1 cells under simulated MG. Additionally, the OVX mouse model was established to investigate the role of miR-655-3p/LSD1 axis in vivo. The results demonstrated that LSD1 could reverse the effects triggered by the injection of adeno-associated virus-miR-655-3p on OP development. Further investigations revealed that miR-655-3p boosted osteogenic differentiation through LSD1/BMP-2/Smad signaling pathway. In summary, these findings implied a potential value of miR-655-3p in OP therapy.
Collapse
Affiliation(s)
- X-J Wang
- Department of Orthopedics, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - J-W Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - J Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital Dianjiang Chongqing, Chongqing, China
| |
Collapse
|
13
|
Duan C, Kuang L, Xiang X, Zhang J, Zhu Y, Wu Y, Yan Q, Liu L, Li T. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways. Cell Death Dis 2020; 11:251. [PMID: 32312970 PMCID: PMC7170874 DOI: 10.1038/s41419-020-2461-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
The adaptation of mitochondrial homeostasis to ischemic injury is not fully understood. Here, we studied the role of dynamin-related protein 1 (Drp1) in this process. We found that mitochondrial morphology was altered in the early stage of ischemic injury while mitochondrial dysfunction occurred in the late stage of ischemia. Drp1 appeared to inhibit mitophagy by upregulating mito-Clec16a, which suppressed mito-Parkin recruitment and subsequently impaired the formation of autophagosomes in vascular tissues after ischemic injury. Moreover, ischemia-induced Drp1 activation enhanced apoptosis through inducing mitochondrial translocation of BAX and thereby increasing release of Cytochrome C to activate caspase-3/-9 signalling. Furthermore, Drp1 mediated metabolic disorders and inhibited the levels of mitochondrial glutathione to impair free radical scavenging, leading to further increases in ROS and the exacerbation of mitochondrial dysfunction after ischemic injury. Together, our data suggest a critical role for Drp1 in ischemic injury.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Qingguang Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China.
| |
Collapse
|
14
|
Petrkova J, Borucka J, Kalab M, Klevcova P, Michalek J, Taborsky M, Petrek M. Increased Expression of miR-146a in Valvular Tissue From Patients With Aortic Valve Stenosis. Front Cardiovasc Med 2019; 6:86. [PMID: 31294031 PMCID: PMC6606704 DOI: 10.3389/fcvm.2019.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
miR-146a has been implicated in the regulation of the immune response as well as in inflammatory process of atherosclerosis. In the present study, we have investigated the expression of miR-146a and its targets, TLR4 a IRAK1, in aortic valve stenosis. A total of 58 patients with aortic stenosis (non- and atherosclerotic; tissue obtained during standard aortic valve replacement) were enrolled. The relative expression of mir-146a was higher in valvular tissue from patients with atherosclerosis compared to those without atherosclerosis (p = 0.01). Number of the IRAK1 and TLR4 transcripts did not differ between the investigated groups. There was a trend toward elevation of miR-146a expression in context of inflammatory infiltrate observed in the valvular tissue from patients with atherosclerosis (p = 0.06). In conclusion, in line with the acknowledged role of miR-146a in atherosclerotic inflammation, our data suggest it may be extended to the specific location of aortic valves in aortic stenosis.
Collapse
Affiliation(s)
- Jana Petrkova
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Internal Medicine I - Cardiology, Palacky University and University Hospital, Olomouc, Czechia
| | - Jana Borucka
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia
| | - Martin Kalab
- Department of Cardiac Surgery, Palacky University and University Hospital, Olomouc, Czechia
| | - Petra Klevcova
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia
| | - Jaroslav Michalek
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Milos Taborsky
- Internal Medicine I - Cardiology, Palacky University and University Hospital, Olomouc, Czechia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine Dentistry, Palacky University, Olomouc, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia.,Laboratory of Cardiogenomics, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|