1
|
Fésűs L, Kiss N, Farkas K, Plázár D, Pálla S, Navasiolava N, Róbert L, Wikonkál NM, Martin L, Medvecz M. Correlation of systemic involvement and presence of pathological skin calcification assessed by ex vivo nonlinear microscopy in Pseudoxanthoma elasticum. Arch Dermatol Res 2023; 315:1897-1908. [PMID: 36847829 PMCID: PMC10366029 DOI: 10.1007/s00403-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 03/01/2023]
Abstract
Pseudoxanthoma elasticum (PXE (OMIM 264800)) is an autosomal recessive connective tissue disorder mainly caused by mutations in the ABCC6 gene. PXE results in ectopic calcification primarily in the skin, eye and blood vessels that can lead to blindness, peripheral arterial disease and stroke. Previous studies found correlation between macroscopic skin involvement and severe ophthalmological and cardiovascular complications. This study aimed to investigate correlation between skin calcification and systemic involvement in PXE. Ex vivo nonlinear microscopy (NLM) imaging was performed on formalin fixed, deparaffinized, unstained skin sections to assess the extent of skin calcification. The area affected by calcification (CA) in the dermis and density of calcification (CD) was calculated. From CA and CD, calcification score (CS) was determined. The number of affected typical and nontypical skin sites were counted. Phenodex + scores were determined. The relationship between the ophthalmological, cerebro- and cardiovascular and other systemic complications and CA, CD and CS, respectively, and skin involvement were analyzed. Regression models were built for adjustment to age and sex. We found significant correlation of CA with the number of affected typical skin sites (r = 0.48), the Phenodex + score (r = 0.435), extent of vessel involvement (V-score) (r = 0.434) and disease duration (r = 0.48). CD correlated significantly with V-score (r = 0.539). CA was significantly higher in patients with more severe eye (p = 0.04) and vascular (p = 0.005) complications. We found significantly higher CD in patients with higher V-score (p = 0.018), and with internal carotid artery hypoplasia (p = 0.045). Significant correlation was found between higher CA and the presence of macula atrophy (β = - 0.44, p = 0.032) and acneiform skin changes (β = 0.40, p = 0.047). Based on our results, the assessment of skin calcification pattern with nonlinear microscopy in PXE may be useful for clinicians to identify PXE patients who develop severe systemic complications.
Collapse
Affiliation(s)
- Luca Fésűs
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Klára Farkas
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Dóra Plázár
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Sára Pálla
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Nastassia Navasiolava
- PXE National Reference Centre, Angers University Hospital, 4 Rue Larrey, 49100, Angers, France
| | - Lili Róbert
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Norbert M Wikonkál
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Ludovic Martin
- PXE National Reference Centre, Angers University Hospital, 4 Rue Larrey, 49100, Angers, France
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary.
| |
Collapse
|
2
|
Inorganic Pyrophosphate Plasma Levels Are Decreased in Pseudoxanthoma Elasticum Patients and Heterozygous Carriers but Do Not Correlate with the Genotype or Phenotype. J Clin Med 2023; 12:jcm12051893. [PMID: 36902680 PMCID: PMC10003929 DOI: 10.3390/jcm12051893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
Collapse
|
3
|
Leftheriotis G, Navasiolava N, Clotaire L, Duranton C, Le Saux O, Bendahhou S, Laurain A, Rubera I, Martin L. Relationships between Plasma Pyrophosphate, Vascular Calcification and Clinical Severity in Patients Affected by Pseudoxanthoma Elasticum. J Clin Med 2022; 11:jcm11092588. [PMID: 35566717 PMCID: PMC9100273 DOI: 10.3390/jcm11092588] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE; OMIM 264800) is an autosomal recessive metabolic disorder characterized by progressive calcification in the skin, the Bruch’s membrane, and the vasculature. Calcification in PXE results from a low level of circulating pyrophosphate (PPi) caused by ABCC6 deficiency. In this study, we used a cohort of 107 PXE patients to determine the pathophysiological relationship between plasma PPi, coronary calcification (CAC), lower limbs arterial calcification (LLAC), and disease severity. Overall, our data showed a deficit in plasma PPi in PXE patients compared to controls. Remarkably, affected females showed higher PPi levels than males, but a lower LLAC. There was a strong correlation between age and PPi in PXE patients (r = 0.423, p < 0.0001) but not in controls (r = 0.059, p = 0.828). A weak correlation was found between PPi and CAC (r = 0.266, p < 0.02); however, there was no statistically significant connection with LLAC (r = 0.068, p = 0.518) or a severity score (r = 0.077, p = 0.429). Surprisingly, we found no significant correlation between plasma alkaline phosphatase activity and PPi (r = 0.113, p = 0.252) or between a 10-year cardiovascular risk score and all other variables. Multivariate analysis confirmed that LLAC and CAC were strongly dependent on age, but not on PPi. Our data showed that arterial calcification is only weakly linked to circulating PPi levels and that time (i.e., age) appears to be the major determinant of disease severity and calcification in PXE. These data are important to better understand the natural history of this disease but also for the follow-up and management of patients, and the design of future clinical trials. Our results also show that PPi is not a good biomarker for the evaluation of disease severity and progression.
Collapse
Affiliation(s)
- Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000 Nice, France
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
- Correspondence: or
| | - Nastassia Navasiolava
- PXE Reference Center, MAGEC Nord, University Hospital of Angers, 49000 Angers, France; (N.N.); (L.M.)
| | - Laetitia Clotaire
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Christophe Duranton
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA;
| | - Saïd Bendahhou
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Audrey Laurain
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Isabelle Rubera
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Ludovic Martin
- PXE Reference Center, MAGEC Nord, University Hospital of Angers, 49000 Angers, France; (N.N.); (L.M.)
| |
Collapse
|
4
|
Kozák E, Fülöp K, Tőkési N, Rao N, Li Q, Terry SF, Uitto J, Zhang X, Becker C, Váradi A, Pomozi V. Oral supplementation of inorganic pyrophosphate in pseudoxanthoma elasticum. Exp Dermatol 2021; 31:548-555. [PMID: 34758173 DOI: 10.1111/exd.14498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Pseudoxanthoma elasticum (PXE; OMIM 264800) is a rare heritable multisystem disorder, characterized by ectopic mineralization affecting elastic fibres in the skin, eyes and the cardiovascular system. Skin findings often lead to early diagnosis of PXE, but currently, no specific treatment exists to counteract the progression of symptoms. PXE belongs to a group of Mendelian calcification disorders linked to pyrophosphate metabolism, which also includes generalized arterial calcification of infancy (GACI) and arterial calcification due to CD73 deficiency (ACDC). Inactivating mutations in ABCC6, ENPP1 and NT5E are the genetic cause of these diseases, respectively, and all of them result in reduced inorganic pyrophosphate (PPi ) concentration in the circulation. Although PPi is a strong inhibitor of ectopic calcification, oral supplementation therapy was initially not considered because of its low bioavailability. Our earlier work however demonstrated that orally administered pyrophosphate inhibits ectopic calcification in the animal models of PXE and GACI, and that orally given Na4 P2 O7 is absorbed in humans. Here, we report that gelatin-encapsulated Na2 H2 P2 O7 has similar absorption properties in healthy volunteers and people affected by PXE. The sodium-free K2 H2 P2 O7 form resulted in similar uptake in healthy volunteers and inhibited calcification in Abcc6-/- mice as effectively as its sodium counterpart. Novel pyrophosphate compounds showing higher bioavailability in mice were also identified. Our results provide an important step towards testing oral PPi in clinical trials in PXE, or potentially any condition accompanied by ectopic calcification including diabetes, chronic kidney disease or ageing.
Collapse
Affiliation(s)
- Eszter Kozák
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Krisztina Fülöp
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Natália Tőkési
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Nidhi Rao
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medicine College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sharon F Terry
- PXE International, Washington, District of Columbia, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medicine College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xiaoming Zhang
- Theratrophix, Sunnyvale, California, USA.,Pyrogenyx, Sunnyvale, California, USA
| | - Cyrus Becker
- Theratrophix, Sunnyvale, California, USA.,Pyrogenyx, Sunnyvale, California, USA
| | - András Váradi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Viola Pomozi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| |
Collapse
|
5
|
Nollet L, Van Gils M, Willaert A, Coucke PJ, Vanakker OM. Minocycline attenuates excessive DNA damage response and reduces ectopic calcification in pseudoxanthoma elasticum. J Invest Dermatol 2021; 142:1629-1638.e6. [PMID: 34742705 DOI: 10.1016/j.jid.2021.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a hereditary ectopic calcification disorder affecting the skin, eyes and blood vessels. Recently, the DNA damage response (DDR), in particular poly(ADP-ribose) polymerase 1 (PARP1), was shown to be involved in aberrant mineralization raising the hypothesis that excessive DDR/PARP1 signaling also contributes to PXE pathogenesis. Using PXE patient and control fibroblasts, (lesional) skin tissue and abcc6a-/- zebrafish, we performed expression analysis of DDR/PARP1 targets with QRT-PCR, western blot, immunohistochemistry and enzyme activity assays; before and after treatment with the PARP1 inhibitor minocycline. PARP1 and the ATM-p21-p53 axis was found to be significantly increased in PXE. Additionally, PARP1 downstream targets IL-6, STAT1/3, TET1 and RUNX2 were upregulated while the RUNX2-antagonist microRNA-204 was decreased. In PXE fibroblasts, DDR/PARP1 signaling increased with advancing ectopic calcification. Minocycline treatment attenuated DDR/PARP1 overexpression and reduced aberrant mineralization in PXE fibroblasts and abcc6a-/- zebrafish. In summary, we demonstrated the involvement of excessive DDR/PARP1 signaling in PXE pathophysiology, identifying a STAT-driven cascade resulting in increased expression of the epigenetic modifier TET1 and pro-calcifying transcription factor RUNX2. Minocycline attenuated this deleterious molecular mechanism and reduced ectopic calcification both in vitro and in vivo, fueling the exciting prospect of a novel therapeutic compound for PXE.
Collapse
Affiliation(s)
- Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Ectopic Mineralization Research Group Ghent, Ghent, Belgium.
| |
Collapse
|
6
|
den Harder AM, Wolterink JM, Bartstra JW, Spiering W, Zwakenberg SR, Beulens JW, Slart RHJA, Luurtsema G, Mali WP, de Jong PA. Vascular uptake on 18F-sodium fluoride positron emission tomography: precursor of vascular calcification? J Nucl Cardiol 2021; 28:2244-2254. [PMID: 31975332 PMCID: PMC8648691 DOI: 10.1007/s12350-020-02031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Microcalcifications cannot be identified with the present resolution of CT; however, 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) imaging has been proposed for non-invasive identification of microcalcification. The primary objective of this study was to assess whether 18F-NaF activity can assess the presence and predict the progression of CT detectable vascular calcification. METHODS AND RESULTS The data of two longitudinal studies in which patients received a 18F-NaF PET-CT at baseline and after 6 months or 1-year follow-up were used. The target to background ratio (TBR) was measured on PET at baseline and CT calcification was quantified in the femoral arteries at baseline and follow-up. 128 patients were included. A higher TBR at baseline was associated with higher calcification mass at baseline and calcification progression (β = 1.006 [1.005-1.007] and β = 1.002 [1.002-1.003] in the studies with 6 months and 1-year follow-up, respectively). In areas without calcification at baseline and where calcification developed at follow-up, the TBR was .11-.13 (P < .001) higher compared to areas where no calcification developed. CONCLUSION The activity of 18F-NaF is related to the amount of calcification and calcification progression. In areas where calcification formation occurred, the TBR was slightly but significantly higher.
Collapse
Affiliation(s)
- Annemarie M den Harder
- Department of Radiology, Utrecht University Medical Center, P.O. Box 85500, E01.132, 3508 GA, Utrecht, The Netherlands.
| | - Jelmer M Wolterink
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jonas W Bartstra
- Department of Radiology, Utrecht University Medical Center, P.O. Box 85500, E01.132, 3508 GA, Utrecht, The Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine R Zwakenberg
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joline W Beulens
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Willem P Mali
- Department of Radiology, Utrecht University Medical Center, P.O. Box 85500, E01.132, 3508 GA, Utrecht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, Utrecht University Medical Center, P.O. Box 85500, E01.132, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
7
|
Nollet L, Campens L, De Zaeytijd J, Leroy B, Hemelsoet D, Coucke PJ, Vanakker OM. Clinical and subclinical findings in heterozygous ABCC6 carriers: results from a Belgian cohort and clinical practice guidelines. J Med Genet 2021; 59:496-504. [PMID: 33820832 DOI: 10.1136/jmedgenet-2020-107565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Biallelic pathogenic variants in the ATP-binding cassette subfamily C member 6 (ABCC6) gene cause pseudoxanthoma elasticum, a multisystemic ectopic calcification disorder, while heterozygous ABCC6 variants are associated with an increased risk of cardiovascular and cerebrovascular disease. As the prevalence of pathogenic ABCC6 variants in the general population is estimated at ~1%, identifying additional ABCC6-related (sub)clinical manifestations in heterozygous carriers is of the utmost importance to reduce this burden of disease. Here, we present a large Belgian cohort of heterozygous ABCC6 carriers with comprehensive clinical, biochemical and imaging data. Based on these results, we formulate clinical practice guidelines regarding screening, preventive measures and follow-up of ABCC6 carriers. METHODS The phenotype of 56 individuals carrying heterozygous pathogenic ABCC6 variants was assessed using clinical (eg, detailed ophthalmological examinations), biochemical, imaging (eg, cardiovascular and abdominal ultrasound) and genetic data. Clinical practice guidelines were then drawn up. RESULTS We found that ABCC6 heterozygosity is associated with distinct retinal alterations ('comet-like') (24%), high prevalence of hypercholesterolaemia (>75%) and diastolic dysfunction (33%), accelerated lower limb atherosclerosis and medial vascular disease, abdominal organ calcification (26%) and testicular microlithiasis (28%), though with highly variable expression. CONCLUSION In this study, we delineated the multisystemic ABCC6 heterozygosity phenotype characterised by retinal alterations, aberrant lipid metabolism, diastolic dysfunction and increased vascular, abdominal and testicular calcifications. Our clinical practice guidelines aimed to improve early diagnosis, treatment and follow-up of ABCC6-related health problems.
Collapse
Affiliation(s)
- Lukas Nollet
- Center for Medical Genetics, University Hospital Ghent, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurence Campens
- Department of Cardiology, University Hospital Ghent, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, University Hospital Ghent, Ghent, Belgium
| | - Bart Leroy
- Department of Ophthalmology, University Hospital Ghent, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Paul J Coucke
- Center for Medical Genetics, University Hospital Ghent, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, University Hospital Ghent, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Omarjee L, Mention PJ, Janin A, Kauffenstein G, Le Pabic E, Meilhac O, Blanchard S, Navasiolava N, Leftheriotis G, Couturier O, Jeannin P, Lacoeuille F, Martin L. Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial. J Clin Med 2020; 9:jcm9113448. [PMID: 33120982 PMCID: PMC7692997 DOI: 10.3390/jcm9113448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE) is an inherited metabolic disease characterized by elastic fiber fragmentation and ectopic calcification. There is growing evidence that vascular calcification is associated with inflammatory status and is enhanced by inflammatory cytokines. Since PXE has never been considered as an inflammatory condition, no incidence of chronic inflammation leading to calcification in PXE has been reported and should be investigated. In atherosclerosis and aortic stenosis, positron emission tomography combined with computed tomographic (PET-CT) imaging has demonstrated a correlation between inflammation and calcification. The purpose of this study was to assess skin/artery inflammation and calcification in PXE patients. Methods: 18F-FluroDeoxyGlucose (18F-FDG) and 18F-Sodium Fluoride (18F-NaF) PET-CT, CT-imaging and Pulse wave velocity (PWV) were used to determine skin/vascular inflammation, tissue calcification, arterial calcium score (CS) and stiffness, respectively. In addition, inorganic pyrophosphate, high-sensitive C-reactive protein and cytokines plasma levels were monitored. Results: In 23 PXE patients, assessment of inflammation revealed significant 18F-FDG uptake in diseased skin areas contrary to normal regions, and exclusively in the proximal aorta contrary to the popliteal arteries. There was no correlation between 18F-FDG uptake and PWV in the aortic wall. Assessment of calcification demonstrated significant 18F-NaF uptake in diseased skin regions and in the proximal aorta and femoral arteries. 18F-NaF wall uptake correlated with CS in the femoral arteries, and aortic wall PWV. Multivariate analysis indicated that aortic wall 18F-NaF uptake is associated with diastolic blood pressure. There was no significant correlation between 18F-FDG and 18F-NaF uptake in any of the artery walls. Conclusion: In the present cross-sectional study, inflammation and calcification were not correlated. PXE would appear to more closely resemble a chronic disease model of ectopic calcification than an inflammatory condition. To assess early ectopic calcification in PXE patients, 18F-NaF-PET-CT may be more relevant than CT imaging. It potentially constitutes a biomarker for disease-modifying anti-calcifying drug assessment in PXE.
Collapse
Affiliation(s)
- Loukman Omarjee
- Vascular Medicine Department, French National Health and Medical Research (Inserm), Clinical Investigation Center (CIC) 1414, University of Rennes 1, 35033 Rennes, France
- Pseudoxanthoma Elasticum (PXE) Clinical and Research Vascular Center, CHU Rennes, 35033 Rennes, France
- NuMeCan Institute, Exogenous and Endogenous Stress and Pathological Responses in Hepato-Gastrointestinal Diseases (EXPRES) team, French national health and medical research (Inserm) U1241, University of Rennes 1, 35033 Rennes, France
- Correspondence: or ; Tel.: +33-(0)-62-749-7051
| | - Pierre-Jean Mention
- Department of Nuclear Medicine, Angers University Hospital, 49100 Angers, France; (P.-J.M.); (O.C.); (F.L.)
| | - Anne Janin
- Sorbonne University Paris Nord, INSERM, U942, Cardiovascular Markers in Stressed Conditions, MASCOT, F- 93000 Bobigny, France;
| | - Gilles Kauffenstein
- MitoVasc Institute Mixed Research Unit: National Centre for Scientific Research, CNRS 6015, French National Health and Medical Research, Inserm U1083, Angers University, 49100 Angers, France; (G.K.); (N.N.); (L.M.)
| | - Estelle Le Pabic
- CHU Rennes, French National Health and Medical Research (Inserm), Clinical Investigation Center (CIC) 1414, 35000 Rennes, France;
| | - Olivier Meilhac
- University of Reunion Island, INSERM, UMR 1188 Reunion, Indian Ocean diabetic atherothrombosis therapies (DéTROI), CHU de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Simon Blanchard
- Regional Center for Research in Cancerology and Immunology Nantes/Angers, CRCINA, Angers University, 49100 Angers, France; (S.B.); (P.J.)
- Immunology and Allergology Department, CHU Angers, Angers University, 49100 Angers, France
| | - Nastassia Navasiolava
- MitoVasc Institute Mixed Research Unit: National Centre for Scientific Research, CNRS 6015, French National Health and Medical Research, Inserm U1083, Angers University, 49100 Angers, France; (G.K.); (N.N.); (L.M.)
- PXE Reference Center (MAGEC Nord), University Hospital of Angers, 49100 Angers, France
| | | | - Olivier Couturier
- Department of Nuclear Medicine, Angers University Hospital, 49100 Angers, France; (P.-J.M.); (O.C.); (F.L.)
- GLIAD Team (Design and Application of Innovative Local Treatments in Glioblastoma), INSERM UMR 1232, CRCINA, CEDEX 9, 49933 Angers, France
| | - Pascale Jeannin
- Regional Center for Research in Cancerology and Immunology Nantes/Angers, CRCINA, Angers University, 49100 Angers, France; (S.B.); (P.J.)
- Immunology and Allergology Department, CHU Angers, Angers University, 49100 Angers, France
| | - Franck Lacoeuille
- Department of Nuclear Medicine, Angers University Hospital, 49100 Angers, France; (P.-J.M.); (O.C.); (F.L.)
- GLIAD Team (Design and Application of Innovative Local Treatments in Glioblastoma), INSERM UMR 1232, CRCINA, CEDEX 9, 49933 Angers, France
| | - Ludovic Martin
- MitoVasc Institute Mixed Research Unit: National Centre for Scientific Research, CNRS 6015, French National Health and Medical Research, Inserm U1083, Angers University, 49100 Angers, France; (G.K.); (N.N.); (L.M.)
- PXE Reference Center (MAGEC Nord), University Hospital of Angers, 49100 Angers, France
| |
Collapse
|
9
|
Schantl AE, Verhulst A, Neven E, Behets GJ, D'Haese PC, Maillard M, Mordasini D, Phan O, Burnier M, Spaggiari D, Decosterd LA, MacAskill MG, Alcaide-Corral CJ, Tavares AAS, Newby DE, Beindl VC, Maj R, Labarre A, Hegde C, Castagner B, Ivarsson ME, Leroux JC. Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat Commun 2020; 11:721. [PMID: 32024848 PMCID: PMC7002685 DOI: 10.1038/s41467-019-14091-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.
Collapse
Affiliation(s)
- Antonia E Schantl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Anja Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Geert J Behets
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Marc Maillard
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - David Mordasini
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Phan
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Dany Spaggiari
- Division of Clinical Pharmacology, Lausanne University Hospital, Lausanne, Switzerland
| | - Laurent A Decosterd
- Division of Clinical Pharmacology, Lausanne University Hospital, Lausanne, Switzerland
| | - Mark G MacAskill
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Carlos J Alcaide-Corral
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Victoria C Beindl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Anne Labarre
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Chrismita Hegde
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
D'Marco L, Lima-Martínez M, Karohl C, Chacín M, Bermúdez V. Pseudoxanthoma Elasticum: An Interesting Model to Evaluate Chronic Kidney Disease-Like Vascular Damage without Renal Disease. KIDNEY DISEASES 2020; 6:92-97. [PMID: 32309291 DOI: 10.1159/000505026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Background Pseudoxanthoma elasticum (PXE; OMIM 264800) is an inherited multisystem disorder associated with accumulation of mineralized and fragmented elastic fibers in the skin, vascular walls, and brush membrane in the eye. Carriers exhibit characteristic lesions in the cardiovascular system, and peripheral and coronary arterial disease as well as mitral valvulopathy often present as a cardiovascular feature of this disease. PXE and chronic kidney disease (CKD) share some common patterns in the vascular damage and in therapeutic approaches as well. Summary To date, treating PXE has focused more on careful follow-up examinations with retinal specialists and cardiologist, avoiding long-term anticoagulation. Like CKD, maintaining a low-calcium diet, increasing dietary magnesium, and administering phosphate binders such as aluminum hydroxide or sevelamer may yield a modest benefit. Recently, 4-phenylbutyrate acid (4-PBA) has demonstrated a maturation of ABCC6 mutant effects into the plasma membrane. Moreover, in a humanized mouse model of PXE, 4-PBA administration restored the physiological function of ABCC6 mutants, resulting in enhanced calcification inhibition and thus a promising strategy for allele-specific therapy of ABCC6-associated calcification disorders. Key Message Vascular compromise in PXE patients share some components similar to CKD.
Collapse
Affiliation(s)
- Luis D'Marco
- Nephrology Department, Hospital Clinico Universitario, INCLIVA, Valencia, Spain
| | - Marcos Lima-Martínez
- Department of Physiological Sciences, Universidad de Oriente, Bolívar, Venezuela
| | - Cristina Karohl
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre, Brazil
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
11
|
Evidence of Cardiovascular Calcification and Fibrosis in Pseudoxanthoma Elasticum Mouse Models Subjected to DOCA-Salt Hypertension. Sci Rep 2019; 9:16327. [PMID: 31704980 PMCID: PMC6841718 DOI: 10.1038/s41598-019-52808-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudoxanthoma Elasticum (PXE) is a rare disorder characterized by fragmentation and progressive calcification of elastic fibres in connective tissues. Although arterial hypertension (AHT) has been reported in PXE patients, its impact on pathological manifestations has as yet been unexplored. We investigated the consequences of experimental AHT on Abcc6−/− PXE mouse models. Experimental AHT was induced by deoxycorticosterone acetate (DOCA-salt) in uni-nephrectomised mice. Blood pressure (BP) and vascular reactivity were monitored using tail-cuff plethysmography and myography respectively. Calcium content and fibrosis were assessed using colorimetry, Von Kossa and Sirius red staining respectively. The gene expression implicated in vascular biology was measured using quantitative polymerase chain reaction. DOCA-salt induced a matching rise in BP in Abcc6−/− and WT mice. Aortic ring contraction and relaxation in vitro were comparable. Calcium accumulated in the hearts of hypertensive Abcc6−/− mice along with significant fibrosis in the myocardium and aorta by contrast with the WT mice. In hypertensive Abcc6−/− mouse aortas, these results were corroborated by gene expression patterns favouring calcification, fibrosis and extracellular matrix remodelling. Abcc6 loss-of-function is associated with greater cardiovascular calcification and fibrosis in mice subjected to DOCA-Salt hypertension. These results suggest likely cardiovascular deterioration in PXE patients with AHT, necessitating diligent BP monitoring.
Collapse
|