1
|
Chen X, Huang X, Zhang X, Chen Z. Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential. Bone 2024; 192:117382. [PMID: 39730093 DOI: 10.1016/j.bone.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aims to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiatong Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Kang S, Park J, Cheng Z, Ye S, Jun SH, Kang NG. Novel Approach to Skin Anti-Aging: Boosting Pharmacological Effects of Exogenous Nicotinamide Adenine Dinucleotide (NAD +) by Synergistic Inhibition of CD38 Expression. Cells 2024; 13:1799. [PMID: 39513906 PMCID: PMC11544843 DOI: 10.3390/cells13211799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for the regulation of biological metabolism. Previous studies have revealed its role in aging and degenerative diseases, while crucially showing that supplementation with NAD+ or its precursors could ameliorate or reverse the progression of aging. Despite extensive evidence for the role and action of NAD+ in aging, its pharmacological activity on the skin, or even its mechanism, has not been elucidated. In this study, we established a novel approach to effectively utilize NAD+ for skin anti-aging by enhancing the pharmacological efficacy of exogenous NAD+ using a phytochemical complex consisting of quercetin, and enoxolone through inhibition of CD38. Through the comprehensive in vitro experiments based on human fibroblasts, we observed that exogenous NAD+ could exert protective effects against both extrinsic aging induced by ultraviolet light exposure and intrinsic aging. Additionally, we found that its effects were significantly boosted by quercetin and enoxolone. In this in-depth study, we demonstrated that these beneficial effects are mediated by improved sirtuin activation, autophagy, and mitochondrial functionality. Our approach is expected to verify the applicability of the topical application of NAD+ and offer more effective solutions for the unmet needs of patients and consumers who demand more effective anti-aging effects.
Collapse
Affiliation(s)
- Seongsu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Jiwon Park
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Sanghyun Ye
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| |
Collapse
|
3
|
Sun Y, Zhang C, Ma Q, Yu X, Gao X, Zhang H, Shi Y, Li Y, He X. MiR-34a-HK1 signal axis retards bone marrow mesenchymal stem cell senescence via ameliorating glycolytic metabolism. Stem Cell Res Ther 2024; 15:238. [PMID: 39080798 PMCID: PMC11290008 DOI: 10.1186/s13287-024-03857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are one of the most widely studied adult stem cells, while MSC replicative senescence occurs with serial expansion in vitro. We determined whether miR-34a can regulate MSC senescence by directly targeting glycolytic key enzymes to influence glycolysis. METHODS Detected the effects of miR-34a on MSC senescence and glycolytic metabolism through gene manipulation. Bioinformatics prediction and luciferase reporter assay were applied to confirm that HK1 is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting HK1 in MSC senescence was further explored by a cellular function recovery experiment. RESULTS In the current study, we revealed that miR-34a over-expression exacerbated senescence-associated characteristics and impaired glycolytic metabolism. Then we identified hexokinase1 (HK1) as a direct target gene of miR-34a. And HK1 replenishment reversed MSC senescence and reinforced glycolysis. In addition, miR-34a-mediated MSC senescence and lower glycolytic levels were evidently rescued following the co-treatment with HK1 over-expression. CONCLUSION The miR-34a-HK1 signal axis can alleviate MSC senescence via enhancing glycolytic metabolism, which possibly provides a novel mechanism for MSC senescence and opens up new possibilities for delaying and suppressing the occurrence and development of aging and age-related diseases.
Collapse
Affiliation(s)
- Yanan Sun
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Qianhui Ma
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Xu He
- The Key Laboratory of Pathobiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
5
|
Ouyang Y, Hong Y, Mai C, Yang H, Wu Z, Gao X, Zeng W, Deng X, Liu B, Zhang Y, Fu Q, Huang X, Liu J, Li X. Transcriptome analysis reveals therapeutic potential of NAMPT in protecting against abdominal aortic aneurysm in human and mouse. Bioact Mater 2024; 34:17-36. [PMID: 38173843 PMCID: PMC10761368 DOI: 10.1016/j.bioactmat.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a life-threatening vascular disease characterized by the weakening and ballooning of the abdominal aorta, which has no effective therapeutic approaches due to unclear molecular mechanisms. Using single-cell RNA sequencing, we analyzed the molecular profile of individual cells within control and AAA abdominal aortas. We found cellular heterogeneity, with increased plasmacytoid dendritic cells and reduced endothelial cells and vascular smooth muscle cells (VSMCs) in AAA. Up-regulated genes in AAA were associated with muscle tissue development and apoptosis. Genes controlling VSMCs aberrant switch from contractile to synthetic phenotype were significantly enriched in AAA. Additionally, VSMCs in AAA exhibited cell senescence and impaired oxidative phosphorylation. Similar observations were made in a mouse model of AAA induced by Angiotensin II, further affirming the relevance of our findings to human AAA. The concurrence of gene expression changes between human and mouse highlighted the impairment of oxidative phosphorylation as a potential target for intervention. Nicotinamide phosphoribosyltransferase (NAMPT, also named VISFATIN) signaling emerged as a signature event in AAA. NAMPT was significantly downregulated in AAA. NAMPT-extracellular vesicles (EVs) derived from mesenchymal stem cells restored NAMPT levels, and offered protection against AAA. Furthermore, NAMPT-EVs not only repressed injuries, such as cell senescence and DNA damage, but also rescued impairments of oxidative phosphorylation in both mouse and human AAA models, suggesting NAMPT supplementation as a potential therapeutic approach for AAA treatment. These findings shed light on the cellular heterogeneity and injuries in AAA, and offered promising therapeutic intervention for AAA treatment.
Collapse
Affiliation(s)
- Yu Ouyang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- Department of Emergency Medicine, The Key Laboratory of Advanced Interdisciplinary Studies , The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Hangzhen Yang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- Global Health Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zicong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510006, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, 510006, China
| | - Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Weiyue Zeng
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Xiaohui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510006, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, 510006, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510006, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, 510006, China
| | - Xiaojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| |
Collapse
|
6
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med 2023; 208:657-671. [PMID: 37739140 DOI: 10.1016/j.freeradbiomed.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
8
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
9
|
Chen Y, Yan H, Yan L, Wang X, Che X, Hou K, Yang Y, Li X, Li Y, Zhang Y, Hu X. Hypoxia-induced ALDH3A1 promotes the proliferation of non-small-cell lung cancer by regulating energy metabolism reprogramming. Cell Death Dis 2023; 14:617. [PMID: 37730658 PMCID: PMC10511739 DOI: 10.1038/s41419-023-06142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) is an NAD+-dependent enzyme that is closely related to tumor development. However, its role in non-small-cell lung cancer (NSCLC) has not been elucidated. This study aimed to clarify the mechanism of ALDH3A1 and identify potential therapeutic targets for NSCLC. Here, for the first time, we found that ALDH3A1 expression could be induced by a hypoxic environment in NSCLC. ALDH3A1 was highly expressed in NSCLC tissue, especially in some late-stage patients, and was associated with a poor prognosis. In mechanistic terms, ALDH3A1 enhances glycolysis and suppresses oxidative phosphorylation (OXPHOS) to promote cell proliferation by activating the HIF-1α/LDHA pathway in NSCLC. In addition, the results showed that ALDH3A1 was a target of β-elemene. ALDH3A1 can be downregulated by β-elemene to inhibit glycolysis and enhance OXPHOS, thus suppressing NSCLC proliferation in vitro and in vivo. In conclusion, hypoxia-induced ALDH3A1 is related to the energy metabolic status of tumors and the efficacy of β-elemene, providing a new theoretical basis for better clinical applications in NSCLC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, 110001, Shenyang, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongfei Yan
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
- Key laboratory of anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, 110001, Shenyang, China
| | - Ximing Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
- Key laboratory of anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, 110001, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, 110001, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
- Key laboratory of anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, 110001, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, 110001, Shenyang, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, 110001, Shenyang, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, 110001, Shenyang, China.
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, 110001, Shenyang, China.
| |
Collapse
|
10
|
Huang X, Liu B, Liang Y, Mai C, Shen Y, Huang X, Chen J, Liang X, Hu B, Li W, Li X, Zhang Y. TRAF3IP2 drives mesenchymal stem cell senescence via regulation of NAMPT-mediated NAD biosynthesis. Heliyon 2023; 9:e19505. [PMID: 37809895 PMCID: PMC10558736 DOI: 10.1016/j.heliyon.2023.e19505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
The cellular senescence of mesenchymal stem cells (MSCs) limits their application in regenerative medicine. This study aimed to clarify the role of TNF receptor-associated factor 3 interacting protein 2 (TRAF3IP2), a pro-inflammatory cytoplasmic adaptor protein, in regulating MSC senescence and to explore the potential mechanisms. Methods: MSC senescence was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The expression of TRAF3IP2 and senescence-related proteins was detected by Western blotting. The nicotinamide adenine dinucleotide (NAD+) level and nicotinamide phosphoribosyl transferase (NAMPT) expression in MSCs was measured. Results: Compared with that in MSCs isolated from young donors (YMSCs), the expression of TRAF3IP2 was greatly increased in MSCs derived from aged donors (AMSCs). Overexpression of TRAF3IP2 accelerated YMSC senescence whereas downregulation significantly rescued cellular senescence. The protein level of NAMPT and the level of NAD+ were significantly decreased in AMSCs compared with YMSCs. Mechanistically, TRAF3IP2 induced MSC senescence via downregulation of NAMPT expression and NAD + level by inhibiting the AMPK signaling pathway. These effects were partially reversed by treatment with an AMPK or NAMPT activator. Conclusion: We revealed that TRAF3IP2 accelerated MSC senescence via downregulation of NAMPT-mediated NAD biosynthesis by mediation of the AMPK pathway, highlighting a novel means to rejuvenate senescent MSCs.
Collapse
Affiliation(s)
- Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Liang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Liang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, Pugazhendhi AS, Khaled AR, Ghosh R, Coathup M. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res 2023; 11:34. [PMID: 37385982 DOI: 10.1038/s41413-023-00273-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023] Open
Abstract
Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/β-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mahmoud Omer
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Annette R Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
12
|
Cheng M, Yuan W, Moshaverinia A, Yu B. Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging. Cells 2023; 12:998. [PMID: 37048071 PMCID: PMC10093211 DOI: 10.3390/cells12070998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.
Collapse
Affiliation(s)
- Mingjia Cheng
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Section of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
NAD +-Consuming Enzymes in Stem Cell Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4985726. [PMID: 36819783 PMCID: PMC9931471 DOI: 10.1155/2023/4985726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme used in redox reactions, energy metabolism, and mitochondrial biogenesis. NAD+ is also required as a cofactor by nonredox NAD+-dependent enzymes. Hundreds of enzymes that consume NAD+ have been identified. The NAD+-consuming enzymes are involved in a variety of cellular processes such as signal transduction, DNA repair, cellular senescence, and stem cell (SC) homeostasis. In this review, we discussed how different types of NAD+-consuming enzymes regulate SC functions and summarized current research on the roles of the NAD+ consumers in SC homeostasis. We hope to provide a more global and integrative insight to the mechanism and intervention of SC homeostasis via the regulation of the NAD+-consuming enzymes.
Collapse
|
14
|
Sun Y, Yu X, Gao X, Zhang C, Sun H, Xu K, Wei D, Wang Q, Zhang H, Shi Y, Li L, He X. RNA sequencing profiles reveal dynamic signaling and glucose metabolic features during bone marrow mesenchymal stem cell senescence. Cell Biosci 2022; 12:62. [PMID: 35568915 PMCID: PMC9107734 DOI: 10.1186/s13578-022-00796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Stem cell senescence is considered as a significant driver of organismal aging. As individuals age, the number of stem cells is declined, and the ability to proliferate and survive is also weakened. It has been reported that metabolism plays an important role in stem cell self-renewal, multilineage differentiation, senescence and fate determination, which has aroused widespread concerns. However, whether metabolism-related genes or signalling pathways are involved in physiological aging remain largely undetermined. Results In the current study, we showed 868 up-regulated and 2006 down-regulated differentially expressed genes (DEGs) in bone marrow mesenchymal stem cells (MSCs) from old rats in comparison with that from young rats by performing RNA sequence. And DEGs functions and pathways were further selected by function enrichment analysis. The results indicated that the high expression of DEGs might participate in cell differentiation, growth factor binding and etc., while the down-regulated DEGs were majorly enriched in metabolism process, such as the cellular metabolic process and mitochondria. Then, we screened and verified DEGs related to glucose metabolism and investigated the glycolysis levels. We identified that glucose uptake, lactate secretion, ATP production and relative extracellular acidification rates (ECAR) were all diminished in MSCs from old rats. More importantly, we conducted microRNA prediction on the key DEGs of glycolysis to elucidate the potential molecular mechanisms of glucose metabolism affecting MSC senescence. Conclusions Our study unravelled the profiles of DEGs in age-associated MSC senescence and their functions and pathways. We also clarified DEGs related to glucose metabolism and down-regulated glycolysis level in age-associated MSC senescence. This study will uncover the metabolic effects on regulating stem cell senescence, and provide novel therapeutic targets for ameliorating age-associated phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00796-5.
Collapse
|
15
|
Wang H, Sun Y, Pi C, Yu X, Gao X, Zhang C, Sun H, Zhang H, Shi Y, He X. Nicotinamide Mononucleotide Supplementation Improves Mitochondrial Dysfunction and Rescues Cellular Senescence by NAD +/Sirt3 Pathway in Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314739. [PMID: 36499074 PMCID: PMC9738479 DOI: 10.3390/ijms232314739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In vitro expansion-mediated replicative senescence has severely limited the clinical applications of mesenchymal stem cells (MSCs). Accumulating studies manifested that nicotinamide adenine dinucleotide (NAD+) depletion is closely related to stem cell senescence and mitochondrial metabolism disorder. Promoting NAD+ level is considered as an effective way to delay aging. Previously, we have confirmed that nicotinamide mononucleotide (NMN), a precursor of NAD+, can alleviate NAD+ deficiency-induced MSC senescence. However, whether NMN can attenuate MSC senescence and its underlying mechanisms are still incompletely clear. The present study herein showed that late passage (LP) MSCs displayed lower NAD+ content, reduced Sirt3 expression and mitochondrial dysfunction. NMN supplementation leads to significant increase in intracellular NAD+ level, NAD+/ NADH ratio, Sirt3 expression, as well as ameliorated mitochondrial function and rescued senescent MSCs. Additionally, Sirt3 over-expression relieved mitochondrial dysfunction, and retrieved senescence-associated phenotypic features in LP MSCs. Conversely, inhibition of Sirt3 activity via a selective Sirt3 inhibitor 3-TYP in early passage (EP) MSCs resulted in aggravated cellular senescence and abnormal mitochondrial function. Furthermore, NMN administration also improves 3-TYP-induced disordered mitochondrial function and cellular senescence in EP MSCs. Collectively, NMN replenishment alleviates mitochondrial dysfunction and rescues MSC senescence through mediating NAD+/Sirt3 pathway, possibly providing a novel mechanism for MSC senescence and a promising strategy for anti-aging pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xu He
- Correspondence: ; Tel.: +86-135-0430-7430
| |
Collapse
|
16
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Zhang W, Li J, Duan Y, Li Y, Sun Y, Sun H, Yu X, Gao X, Zhang C, Zhang H, Shi Y, He X. Metabolic Regulation: A Potential Strategy for Rescuing Stem Cell Senescence. Stem Cell Rev Rep 2022; 18:1728-1742. [PMID: 35258787 DOI: 10.1007/s12015-022-10348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Stem cell senescence and exhaustion are closely related to organ failure and individual aging, which not only induces age-related diseases, but also hinders stem cell applications in regenerative medicine. Thus, it's imminent to find effective ways to delay and retrieve stem cell senescence. Metabolic abnormalities are one of the main characteristics of age-associated declines in stem cell function. Understanding the underlying mechanisms may reveal potential strategies for ameliorating age-associated phenotypes and treating age-related diseases. This review focuses on recent advances in the association between metabolism including glucose, lipid, glutamine and NAD+ metabolism and stem cell senescence, as well as the other properties like proliferation and differentiation. Layers of studies are summarized to demonstrate how metabolism varies in senescent stem cells and how metabolic reprogramming regulates stem cell senescence. Additionally, we mentioned some recent progress in therapeutic strategies to rejuvenate dysfunctional aged stem cells. Finally, a brief conclusion about the prospect of metabolic regulation as a potential strategy for rescuing stem cell senescence is displayed. Stem cell senescence is induced by the metabolic reprogramming. The metabolic alterations of glucose, lipid, glutamine and NAD+ can conversely facilitate or inhibit stem cell senescence. Glycolysis, OXPHOS and PPP are all attenuated. But gluconeogenesis alterations still remain unclear. In lipid metabolisms, both FAO and DNL are suppressed. As for the glutamine metabolism, stem cells' dependence on glutamine is enhanced. Last, NAD+ metabolism undergoes a down-regulated synthesis and up-regulated consumption. All these alterations can be potential targets for reversing stem cell senescence.
Collapse
Affiliation(s)
- Wenxin Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiayu Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuchi Duan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yanlin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Ye J, Xiao J, Wang J, Ma Y, Zhang Y, Zhang Q, Zhang Z, Yin H. The Interaction Between Intracellular Energy Metabolism and Signaling Pathways During Osteogenesis. Front Mol Biosci 2022; 8:807487. [PMID: 35155568 PMCID: PMC8832142 DOI: 10.3389/fmolb.2021.807487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoblasts primarily mediate bone formation, maintain bone structure, and regulate bone mineralization, which plays an important role in bone remodeling. In the past decades, the roles of cytokines, signaling proteins, and transcription factors in osteoblasts have been widely studied. However, whether the energy metabolism of cells can be regulated by these factors to affect the differentiation and functioning of osteoblasts has not been explored in depth. In addition, the signaling and energy metabolism pathways are not independent but closely connected. Although energy metabolism is mediated by signaling pathways, some intermediates of energy metabolism can participate in protein post-translational modification. The content of intermediates, such as acetyl coenzyme A (acetyl CoA) and uridine diphosphate N-acetylglucosamine (UDP-N-acetylglucosamine), determines the degree of acetylation and glycosylation in terms of the availability of energy-producing substrates. The utilization of intracellular metabolic resources and cell survival, proliferation, and differentiation are all related to the integration of metabolic and signaling pathways. In this paper, the interaction between the energy metabolism pathway and osteogenic signaling pathway in osteoblasts and bone marrow mesenchymal stem cells (BMSCs) will be discussed.
Collapse
Affiliation(s)
- Jiapeng Ye
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jirimutu Xiao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| | - Yong Ma
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zongrui Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Heng Yin
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| |
Collapse
|
19
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
20
|
Melatonin Improves the Resistance of Oxidative Stress-Induced Cellular Senescence in Osteoporotic Bone Marrow Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7420726. [PMID: 35087617 PMCID: PMC8789417 DOI: 10.1155/2022/7420726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
Accumulation of senescent bone marrow-derived mesenchymal stem cells (BMMSCs) has led to an age-related bone loss. However, the role of stem cell senescence in estrogen deficiency-induced osteoporosis remains elusive. Though melatonin plays a vital role in bone metabolism regulation, the underlying mechanisms of melatonin-mediated antiosteoporosis are partially elucidated. Therefore, this study purposed to explore (1) whether estrogen deficiency causes cellular senescence of BMMSCs, and if so, (2) the potential of melatonin in preventing bone loss via senescence signaling inhibition. BMMSCs derived from ovariectomized (OVX) rats (OVX BMMSCs) showed an impaired osteogenic capacity, albeit having comparable levels of senescence biomarkers than the sham cells. When exposed to low levels of hydrogen peroxide (H2O2), OVX BMMSCs rapidly exhibited senescence-associated phenotypes such as the increased activity of senescence-associated β-galactosidase (SA-β-gal) and upregulation of cell cycle inhibitors. Notably, the in vitro treatment with melatonin hindered H2O2-induced senescence in OVX BMMSCs and restored their osteogenic capacity. Treatment with either SIRT1 inhibitor (sirtinol) or melatonin receptor antagonists (luzindole and 4-P-PDOT) eliminated melatonin protective effects, thus indicating its potential in preventing stem cell senescence via SIRT1 activation through the melatonin membrane receptors. Following in vivo intravenous administration with melatonin, it successfully protected the bone microstructure and preserved the antisenescence property of BMMSCs in OVX rats. Collectively, our findings demonstrated that melatonin protected against estrogen deficiency-related bone loss by improving the resistance of BMMSCs to cellular senescence. Therefore, melatonin-mediated antisenescence effect on stem cells provides vital information to facilitate the development of a novel and effective strategy for treating postmenopausal OP.
Collapse
|
21
|
Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, Zhao Z, Li L, Li B. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:356-371. [PMID: 35485439 PMCID: PMC9052415 DOI: 10.1093/stcltm/szac004] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Bo Li
- Corresponding author: Bo Li, DDS, PhD, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, People’s Republic of China.
| |
Collapse
|
22
|
Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-Dependent Decline of NAD +-Universal Truth or Confounded Consensus? Nutrients 2021; 14:nu14010101. [PMID: 35010977 PMCID: PMC8747183 DOI: 10.3390/nu14010101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential molecule involved in various metabolic reactions, acting as an electron donor in the electron transport chain and as a co-factor for NAD+-dependent enzymes. In the early 2000s, reports that NAD+ declines with aging introduced the notion that NAD+ metabolism is globally and progressively impaired with age. Since then, NAD+ became an attractive target for potential pharmacological therapies aiming to increase NAD+ levels to promote vitality and protect against age-related diseases. This review summarizes and discusses a collection of studies that report the levels of NAD+ with aging in different species (i.e., yeast, C. elegans, rat, mouse, monkey, and human), to determine whether the notion that overall NAD+ levels decrease with aging stands true. We find that, despite systematic claims of overall changes in NAD+ levels with aging, the evidence to support such claims is very limited and often restricted to a single tissue or cell type. This is particularly true in humans, where the development of NAD+ levels during aging is still poorly characterized. There is a need for much larger, preferably longitudinal, studies to assess how NAD+ levels develop with aging in various tissues. This will strengthen our conclusions on NAD metabolism during aging and should provide a foundation for better pharmacological targeting of relevant tissues.
Collapse
Affiliation(s)
- Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark; (A.P.); (M.V.D.)
| | - Mads V. Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark; (A.P.); (M.V.D.)
| | - Marcelo A. S. Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil;
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo 13083-862, Brazil
- Experimental Medicine Research Cluster, University of Campinas, São Paulo 13083-862, Brazil
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark; (A.P.); (M.V.D.)
- Correspondence: ; Tel.: +45-24805398
| |
Collapse
|
23
|
Huang P, Zhou Y, Tang W, Ren C, Jiang A, Wang X, Qian X, Zhou Z, Gong A. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J Nutr Biochem 2021; 101:108911. [PMID: 34801690 DOI: 10.1016/j.jnutbio.2021.108911] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Ovarian aging affects the reproductive health of elderly women due to decline in oocyte quality, which is closely related to mitochondrial dysfunction. Nicotinamide mononucleotide (NMN), as a precursor of NAD+, effectively regulate mitochondria metabolism in mice. However, roles of NMN in improving age-related diminished ovary reserve remain to be determined. In present study, 4, 8, 12, 24, 40-week old female ICR mice were collected and a 20-week-long administration of NMN was conducted to 40-week-old mice (60WN), meanwhile the control group is given water (60WC). First, we found that 20-week-long administration of NMN to 40-week-old mice exhibited anti-aging and anti-inflammatory effects on organ structures, along with the improvement of estrus cycle condition and endocrine function. The number of primordial, primary, secondary, antral follicles and corpora luteum of ovaries in 60WN group was significantly increased compared with those in 60WC group. Additionally, the protein and gene expressions of P16 of ovaries were significantly reduced in 60WN group than in 60WC group. the mitochondria biogenesis, autophagy level, and proteases activity enhanced in granulosa cells after 20-week-administration of NMN. Present results indicate that NMN has the potential to save diminished ovary reserve by long-term treatment, providing a basis for exploring the role of NMN in anti-ovarian aging by enhancing the mitophagy level of granulosa cells.
Collapse
Affiliation(s)
- Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yan Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Weihong Tang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Anqi Jiang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xuxin Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
24
|
Ishiuchi N, Nakashima A, Doi S, Kanai R, Maeda S, Takahashi S, Nagao M, Masaki T. Serum-free medium and hypoxic preconditioning synergistically enhance the therapeutic effects of mesenchymal stem cells on experimental renal fibrosis. Stem Cell Res Ther 2021; 12:472. [PMID: 34425892 PMCID: PMC8381539 DOI: 10.1186/s13287-021-02548-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/08/2021] [Indexed: 01/27/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) repair injured tissue in a paracrine manner. To enhance their therapeutic properties, preconditioning with various factors has been researched. We have previously showed that MSCs cultured in serum-free medium (SF-MSCs) promote their immunosuppressive ability, thereby enhancing their anti-fibrotic effect. Here, we examined whether serum-free medium and hypoxic preconditioning synergistically enhance the therapeutic effects of MSCs on renal fibrosis in rats with ischemia–reperfusion injury (IRI). Methods SF-MSCs were incubated under 1% O2 conditions (hypo-SF-MSCs) or 21% O2 conditions (normo-SF-MSCs) for 24 h before collection. After IRI procedure, hypo-SF-MSCs or normo-SF-MSCs were injected through the abdominal aorta. At 7 or 21 days post-injection, the rats were killed and their kidneys were collected to evaluate inflammation and fibrosis. In in vitro experiments, we investigated whether hypo-SF-MSCs enhanced secretion of anti-fibrotic humoral factors using transforming growth factor (TGF)-β1-stimulated HK-2 cells incubated with conditioned medium from hypo-SF-MSCs or normo-SF-MSCs. Results Normo-SF-MSCs showed attenuation of senescence, which increased their proliferative capacity. Although no significant difference in cellular senescence was found between normo-SF-MSCs and hypo-SF-MSCs, hypo-SF-MSCs further increased their proliferative capacity compared with normo-SF-MSCs. Additionally, administration of hypo-SF-MSCs more strongly ameliorated renal fibrosis than that of normo-SF-MSCs. Moreover, although hypo-SF-MSCs strongly attenuated infiltration of inflammatory cells compared with the control rats, which were treated with PBS, this attenuation was almost equal between normo-SF-MSCs and hypo-SF-MSCs. In vitro experiments revealed that hypo-SF-MSCs more significantly inhibited transforming growth factor (TGF)-β/Smad signaling compared with normo-SF-MSCs. Moreover, hypoxic preconditioning increased hepatocyte growth factor (HGF) secretion even under serum-free conditions, whereas knockdown of HGF in hypo-SF-MSCs attenuated inhibition of TGF-β/Smad signaling. Conclusions These results indicate that administration of ex vivo-expanded, hypoxia-preconditioned SF-MSCs may be a useful cell therapy to prevent renal fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02548-7.
Collapse
Affiliation(s)
- Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.,Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.,Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan. .,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Ryo Kanai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Shinya Takahashi
- Department of Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Masataka Nagao
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
| |
Collapse
|
25
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Cheng K, Zhu S, Hou Y, Fu X. Nampt affects mitochondrial function in aged oocytes by mediating the downstream effector FoxO3a. J Cell Physiol 2021; 237:647-659. [PMID: 34318928 DOI: 10.1002/jcp.30532] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
Maternal aging can impair the quality and decrease the developmental competence of ovulated oocytes. In this study, compromised germinal vesicle breakdown (GVBD) was found in aged mice oocytes. Furthermore, we observed increased reactive oxygen species (ROS) and mitochondrial Ca2+ levels, along with reduced mitochondrial temperature in aged oocytes. Maternal aging also changed the crotonylation level in oocytes. Forkhead box O3 (FoxO3a), a member of the forkhead protein family involved in the regulation of cell survival and life span reached a peak level in the metaphase II stage. Compared with a younger group, FoxO3a expression increased in aged oocytes. Intracellular localization of FoxO3a changed from the cytoplasm to chromatin in response to aging. The expression of the upstream regulator nicotinamide-phosphoribosyltransferase (Nampt) peaked in the GVBD stage. Moreover, Nampt expression was increased in aged oocytes, and more intense staining of Nampt was found in aged mice ovary. To further study the role of Nampt in mitochondrial function, specific agonist P7C3 and inhibitor FK866 were applied to aged oocytes, and FK866 significantly decreased adenosine triphosphate and mitochondrial membrane potential. In conclusion, mitochondrial dysfunction in aged oocytes was associated with elevated FoxO3a, and suppression of Nampt could further impair mitochondrial function.
Collapse
Affiliation(s)
- Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproducitve Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xingzhu Du
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Keren Cheng
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Shien Zhu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| |
Collapse
|
26
|
Histone Acetylation in the Epigenetic Regulation of Bone Metabolism and Related Diseases. Stem Cells Int 2021; 2021:8043346. [PMID: 34326880 PMCID: PMC8310436 DOI: 10.1155/2021/8043346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
As the earliest studied epigenetic modification, acetylation has been explored a lot through the years. While bone tissue acts as an indispensable part of body, researches aimed at the relationship between the bone and acetylation became necessary. Some environmental factors like diet may affect the metabolism status that some metabolites especially nicotinamide adenine dinucleotide (NAD) were found able to regulate intracellular histone acetylation in bone metabolism. This review focuses on representing the interaction among acetylation, metabolism, and the bone. The results showed that acetylation connects a lot with bone metabolism, while the explorations about related metabolites like acetyl-CoA or different environmental exposures are still limited. Some acetylation-related therapy methods of bone diseases based on metabolic regulation or epigenetic enzymes were also reviewed.
Collapse
|
27
|
Pi C, Ma C, Wang H, Sun H, Yu X, Gao X, Yang Y, Sun Y, Zhang H, Shi Y, Li Y, Li Y, He X. MiR-34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD +-Sirt1 pathway. Stem Cell Res Ther 2021; 12:271. [PMID: 33957971 PMCID: PMC8101138 DOI: 10.1186/s13287-021-02339-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Expansion-mediated replicative senescence and age-related natural senescence have adverse effects on mesenchymal stem cell (MSC) regenerative capability and functionality, thus severely impairing the extensive applications of MSC-based therapies. Emerging evidences suggest that microRNA-34a (miR-34a) has been implicated in the process of MSC senescence; however, the molecular mechanisms with regard to how miR-34a influencing MSC senescence remain largely undetermined. METHODS MiR-34a expression in MSCs was evaluated utilizing RT-qPCR. The functional effects of miR-34a exerting on MSC senescence were investigated via gene manipulation. Relevant gene and protein expression levels were analyzed by RT-qPCR and western blot. Luciferase reporter assays were applied to confirm that Nampt is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting Nampt in MSC senescence was further explored by measuring intracellular NAD+ content, NAD+/NADH ratio and Sirt1 activity. RESULTS In contrast to Nampt expression, miR-34a expression incremented in senescent MSCs. MiR-34a overexpression in young MSCs resulted in senescence-associated characteristics as displayed by senescence-like morphology, prolonged cell proliferation, declined osteogenic differentiation potency, heightened senescence-associated-β-galactosidase activity, and upregulated expression levels of the senescence-associated factors. Conversely, miR-34a suppression in replicative senescent and natural senescent MSCs contributed to diminished senescence-related phenotypic features. We identified Nampt as a direct target gene of miR-34a. In addition, miR-34a repletion resulted in prominent reductions in Nampt expression levels, NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas anti-miR-34a treatment exerted the opposite effects. Furthermore, miR-34a-mediated MSC senescence was evidently rescued following the co-treatment with Nampt overexpression. CONCLUSION This study identifies a significant role of miR-34a playing in MSC replicative senescence and natural senescence via targeting Nampt and further mediating by NAD+-Sirt1 pathway, carrying great implications for optimal strategies for MSC therapeutic applications.
Collapse
Affiliation(s)
- Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China.,The First Hospital, and Institute of Immunology, Jilin University, Changchun, 130021, China
| | - Cao Ma
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Huan Wang
- Department of Pathology, The First Affiliated Hospital, Henan University of Chinese Medicine, Henan, 450000, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yue Yang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
28
|
Khaidizar FD, Bessho Y, Nakahata Y. Nicotinamide Phosphoribosyltransferase as a Key Molecule of the Aging/Senescence Process. Int J Mol Sci 2021; 22:3709. [PMID: 33918226 PMCID: PMC8037941 DOI: 10.3390/ijms22073709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is a phenomenon underlined by complex molecular and biochemical changes that occur over time. One of the metabolites that is gaining strong research interest is nicotinamide adenine dinucleotide, NAD+, whose cellular level has been shown to decrease with age in various tissues of model animals and humans. Administration of NAD+ precursors, nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), to supplement NAD+ production through the NAD+ salvage pathway has been demonstrated to slow down aging processes in mice. Therefore, NAD+ is a critical metabolite now understood to mitigate age-related tissue function decline and prevent age-related diseases in aging animals. In human clinical trials, administration of NAD+ precursors to the elderly is being used to address systemic age-associated physiological decline. Among NAD+ biosynthesis pathways in mammals, the NAD+ salvage pathway is the dominant pathway in most of tissues, and NAMPT is the rate limiting enzyme of this pathway. However, only a few activators of NAMPT, which are supposed to increase NAD+, have been developed so far. In this review, we will focus on the importance of NAD+ and the possible application of an activator of NAMPT to promote successive aging.
Collapse
Affiliation(s)
- Fiqri D. Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0101, Japan;
| | - Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
29
|
Kim HN, Ponte F, Warren A, Ring R, Iyer S, Han L, Almeida M. A decrease in NAD + contributes to the loss of osteoprogenitors and bone mass with aging. NPJ Aging Mech Dis 2021; 7:8. [PMID: 33795658 PMCID: PMC8016898 DOI: 10.1038/s41514-021-00058-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Age-related osteoporosis is caused by a deficit in osteoblasts, the cells that secrete bone matrix. The number of osteoblast progenitors also declines with age associated with increased markers of cell senescence. The forkhead box O (FoxO) transcription factors attenuate Wnt/β-catenin signaling and the proliferation of osteoprogenitors, thereby decreasing bone formation. The NAD+-dependent Sirtuin1 (Sirt1) deacetylates FoxOs and β-catenin in osteoblast progenitors and, thereby, increases bone mass. However, it remains unknown whether the Sirt1/FoxO/β-catenin pathway is dysregulated with age in osteoblast progenitors. We found decreased levels of NAD+ in osteoblast progenitor cultures from old mice, associated with increased acetylation of FoxO1 and markers of cell senescence. The NAD+ precursor nicotinamide riboside (NR) abrogated FoxO1 and β-catenin acetylation and several marker of cellular senescence, and increased the osteoblastogenic capacity of cells from old mice. Consistent with these effects, NR administration to C57BL/6 mice counteracted the loss of bone mass with aging. Attenuation of NAD+ levels in osteoprogenitor cultures from young mice inhibited osteoblastogenesis in a FoxO-dependent manner. In addition, mice with decreased NAD+ in cells of the osteoblast lineage lost bone mass at a young age. Together, these findings suggest that the decrease in bone formation with old age is due, at least in part, to a decrease in NAD+ and dysregulated Sirt1/FoxO/β-catenin pathway in osteoblast progenitors. NAD+ repletion, therefore, represents a rational therapeutic approach to skeletal involution.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Filipa Ponte
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Warren
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rebecca Ring
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Srividhya Iyer
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Li Han
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
30
|
Lou T, Huang Q, Su H, Zhao D, Li X. Targeting Sirtuin 1 signaling pathway by ginsenosides. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113657. [PMID: 33276056 DOI: 10.1016/j.jep.2020.113657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a kind of traditional Chinese herbal medicine, known as "king of herbs" and widely used in China, South Korea, and other Asian countries. Ginsenosides are one of active components of Panax ginseng Meyer, which have many pharmacological effects, such as enhancing memory, improving immunity and cardiovascular system, delaying aging, and preventing cancer. AIMS OF THE REVIEW This review aims to summarize the recent findings for ginsenosides targeting Sirtuin 1 (SIRT1) signaling pathway for the prevention and treatment of a series of diseases. MATERIALS AND METHODS An up-to-August 2020 search was carried out in databases such as PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure, and classic books of traditional Chinese medicine using the keywords: "SIRT1", and/or paired with "ginseng", and "ginsenosides". RESULTS SIRT1 is a class-III histone deacetylase (HDAC), a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, which is deeply involved in a series of pathological processes. Based on specific intracellular localization, SIRT1 has various cytoplasmic and nuclear targets and plays a potential role in energy metabolism, oxidative stress, inflammation, tumorigenesis, and aging. Ginsenosides are generally classified into three groups and microbially transformed to final metabolites. Among of them, most ginsenosides have been reported as SIRT1 activators, especially those ginsenosides with two glucopyranosyl groups on the C-3 position. Importantly, many ginsenosides can be used to prevent and treat oxidative stress, inflammation, aging, tumorigenesis, depression, and others by targeting SIRT1 signaling pathway. CONCLUSIONS This paper reviews recent evidences of ginsenosides targeting SIRT1 for the first time, which could provide new insights on the preclinical and clinical researches for ginsenosides against multiple disorders.
Collapse
Affiliation(s)
- Tingting Lou
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
31
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
32
|
FK866 Protects Human Dental Pulp Cells against Oxidative Stress-Induced Cellular Senescence. Antioxidants (Basel) 2021; 10:antiox10020271. [PMID: 33578781 PMCID: PMC7916510 DOI: 10.3390/antiox10020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023] Open
Abstract
FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated β-galactosidase (SA-β-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1β, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.
Collapse
|
33
|
Exogenous NAD + Postpones the D-Gal-Induced Senescence of Bone Marrow-Derived Mesenchymal Stem Cells via Sirt1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020254. [PMID: 33562281 PMCID: PMC7915830 DOI: 10.3390/antiox10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Cell senescence is accompanied by decreased nicotinamide adenine dinucleotide (NAD+) levels; however, whether exogenous NAD+ affects bone marrow-derived mesenchymal stem cells (BMSCs) senescence and the involved mechanisms is still unclear. Here, we find that exogenous NAD+ replenishment significantly postpones BMSC senescence induced by D-galactose (D-gal). It is also shown that exogenous NAD+ leads to increased intracellular NAD+ levels and reduced intracellular reactive oxygen species in senescent BMSCs here. Further investigation showed that exogenous NAD+ weakened BMSC senescence by increasing Sirtuin 1 (Sirt1) expression. Moreover, exogenous NAD+ reduced senescence-associated-β-galactosidase activity, and downregulated poly (ADP-ribose) polymerase 1 expression. In addition, the reduced expression of Sirt1 by small interfering RNA abolished the beneficial effects of exogenous NAD+ in terms of postponing BMSCs senescence induced by D-gal. Taken together, our results indicate that exogenous NAD+ could postpone D-gal-induced BMSC senescence through Sirt1 signaling, providing a potential method for obtaining high quality BMSCs to support their research and clinical application.
Collapse
|
34
|
Fei D, Wang Y, Zhai Q, Zhang X, Zhang Y, Wang Y, Li B, Wang Q. KAT6A regulates stemness of aging bone marrow-derived mesenchymal stem cells through Nrf2/ARE signaling pathway. Stem Cell Res Ther 2021; 12:104. [PMID: 33541408 PMCID: PMC7860225 DOI: 10.1186/s13287-021-02164-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to explore the effect of KAT6A on the decreased stemness of aging bone marrow-derived mesenchymal stem cells (BMSCs) and its potential mechanism. Methods The acetylation level and KAT6A expression of BMSCs from the young (YBMSCs) and the old (OBMSCs) were examined. Gain- and loss-of-function experiments were performed to determine the effect of KAT6A on BMSC proliferation, colony formation, and osteogenic differentiation. The effect of KAT6A on Nrf2/ARE signaling pathway was investigated after KAT6A inhibition in YBMSCs or overexpression in OBMSCs, and the role of Nrf2/ARE signaling pathway on stemness was examined by investigating proliferation, colony formation, and osteogenic differentiation. Further in vivo study was performed to explore osteogenesis ability of OBMSCs after modulation of KAT6A and Nrf2/ARE pathway through cell sheet technology. Results The acetylation level and KAT6A expression of OBMSCs were decreased, and KAT6A downregulation resulted in decreased proliferation, colony formation, and osteogenic differentiation of OBMSCs. Mechanically, KAT6A was found to regulate Nrf2/ARE signaling pathway and inhibit ROS accumulation in OBMSCs, thus promoting proliferation, colony formation, and osteogenic differentiation of OBMSCs. Further study demonstrated that KAT6A could promote osteogenesis of OBMSCs by regulating Nrf2/ARE signaling pathway. Conclusions Downregulation of KAT6A resulted in the decreased stemness of OBMSCs by inhibiting the Nrf2/ARE signaling pathway. Graphical abstract KAT6A was downregulated in aging bone marrow-derived mesenchymal stem cells (BMSCs), and downregulation of KAT6A resulted in Nrf2/ARE signaling pathway inhibition and ROS accumulation, thus leading to decreased stemness of aging BMSCs.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02164-5.
Collapse
Affiliation(s)
- Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yazheng Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xige Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
35
|
Ma C, Sun Y, Pi C, Wang H, Sun H, Yu X, Shi Y, He X. Sirt3 Attenuates Oxidative Stress Damage and Rescues Cellular Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Superoxide Dismutase 2. Front Cell Dev Biol 2020; 8:599376. [PMID: 33330487 PMCID: PMC7718008 DOI: 10.3389/fcell.2020.599376] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is one of the main causes of aging. The process of physiological aging is always accompanied by increased levels of endogenous oxidative stress. Exogenous oxidants have contributed to premature cellular senescence. As a deacetylase located in mitochondrial matrix, Sirt3 plays critical roles in mitochondrial energy metabolism, oxidative stress regulation, and cellular senescence. However, it remains unknown whether Sirt3 exerts the analogous role in cellular senescence caused by two different oxidation pathways. In this study, the function of Sirt3 was investigated in age-related natural senescence and H2O2-induced premature senescence of rat bone marrow mesenchymal stem cells (MSCs). Our results showed that Sirt3 expression was significantly decreased in both senescent MSCs, which was concerned with reduced cellular reactive oxygen species (ROS) and aggravated DNA injury. Sirt3 repletion could partly reverse the senescence-associated phenotypic features in natural and premature senescent MSCs. Moreover, Sirt3 replenishment led to the reduction in the levels of cellular ROS by enhancing the expression and activity of superoxide dismutase 2 (SOD2), thus maintaining the balance of intracellular oxidation and antioxidation and ameliorating oxidative stress damage. Altogether, Sirt3 inhibits MSC natural senescence and H2O2-induced premature senescence through alleviating ROS-induced injury and upregulating SOD2 expression and activity. Our research indicates that Sirt3 might contribute to uncovering the novel mechanisms underlying MSC senescence and provide new insights to aging and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Cao Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.,The First Hospital, Institute of Immunology, Jilin University, Changchun, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
36
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
37
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
38
|
Ok CY, Park S, Jang HO, Takata T, Bae MK, Kim YD, Ryu MH, Bae SK. Visfatin Induces Senescence of Human Dental Pulp Cells. Cells 2020; 9:cells9010193. [PMID: 31940881 PMCID: PMC7017355 DOI: 10.3390/cells9010193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dental pulp plays an important role in the health of teeth. The aging of teeth is strongly related to the senescence of dental pulp cells. A novel adipokine, visfatin, is closely associated with cellular senescence. However, little is known about the effect of visfatin on the senescence of human dental pulp cells (hDPCs). Here, it was found that in vivo visfatin levels in human dental pulp tissues increase with age and are upregulated in vitro in hDPCs during premature senescence activated by H2O2, suggesting a correlation between visfatin and senescence. In addition, visfatin knockdown by small interfering RNA led to the reduction in hDPC senescence; however, treatment with exogenous visfatin protein induced the senescence of hDPCs along with increased NADPH consumption, which was reversed by FK866, a chemical inhibitor of visfatin. Furthermore, visfatin-induced senescence was associated with both the induction of telomere damage and the upregulation of senescence-associated secretory phenotype (SASP) factors as well as NF-κB activation, which were all inhibited by FK866. Taken together, these results demonstrate, for the first time, that visfatin plays a pivotal role in hDPC senescence in association with telomere dysfunction and the induction of SASP factors.
Collapse
Affiliation(s)
- Chang Youp Ok
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
| | - Sera Park
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
| | - Hye-Ock Jang
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
| | | | - Moon-Kyoung Bae
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Yong-Deok Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Mi Heon Ryu
- Department of Oral Pathology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-51-510-8253
| |
Collapse
|