1
|
Cobo-Vuilleumier N, Rodríguez-Fernandez S, López-Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López-Férnandez-Sobrino R, Fernández-Santos B, Serrano CE, Salas-Lloret D, van Overbeek N, Ramos-Rodriguez M, Mateo-Rodríguez C, Hidalgo L, Marin-Canas S, Nano R, Arroba AI, Caro AC, Vertegaal AC, Montalvo AM, Martín F, Aguilar-Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez-Brocca MA, Vives-Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Silvia Rodríguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jaime M Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Christian C Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raquel Araujo Legido
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Akaitz Dorronsoro
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Raul López-Férnandez-Sobrino
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Beatriz Fernández-Santos
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Carmen Espejo Serrano
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Daniel Salas-Lloret
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nila van Overbeek
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Carmen Mateo-Rodríguez
- Department of Endocrinology and Nutrition, University Hospital Virgen Macarena, Sevilla, Spain
| | - Lucia Hidalgo
- Department of Endocrinology and Nutrition, University Hospital Virgen Macarena, Sevilla, Spain
| | - Sandra Marin-Canas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ana I Arroba
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Antonio Campos Caro
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Alfred Co Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alejandro Martin Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Manuel Aguilar-Diosdado
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Roman González Prieto
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, Sevilla, Spain
| | | | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Asuncion Martínez-Brocca
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
2
|
Giacco A, Iervolino S, Cioffi F, Peluso T, Mercurio G, Roberto L, de Rosa V, Cammarota M, Varricchio S, Staibano S, Boscia F, Canzoniero LMT, De Felice M, Ambrosino C, Moreno M, Silvestri E. Brain Abnormalities in Young Single- and Double-Heterozygote Mice for Both Nkx2-1- and Pax8-Null Mutations. Mol Neurobiol 2024:10.1007/s12035-024-04524-7. [PMID: 39375286 DOI: 10.1007/s12035-024-04524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
In humans and mice, Nkx2-1 and Pax8 are crucial morphogenic transcription factors defining the early development of the thyroid and specific extrathyroidal tissues. By using 3-month-old single or double heterozygotes for Nkx2-1- and Pax8-null mutations (DHTP) mice, we studied brain abnormalities under different human-like dysthyroidisms, focusing on putative alterations of specific neurotransmitter systems, expression of markers of pre- and post-synaptic function and, given the physio-pathological role mitochondria have in controlling the bioenergetic status of neurons, of mitochondrial dynamics and oxidative balance. Compared to Wt controls, DHTP mice, bearing both systemic and brain hypothyroidism, showed altered expression of synaptic markers, generic and cholinergic (corroborated by immunohistochemistry in caudate, putamen, hippocampus, and basal forebrain) and glutamatergic ones, and reduced expression of key proteins of synaptic plasticity potency and several isoforms of glutamate receptors. The brain of DHTP mice was characterized by lower levels of H2O2 and imbalanced mitochondrial dynamics. Nkx2-1 + / - mice showed dopaminergic neuron-specific alterations, morphologically, more evident in the substantia nigra of DHTP mice. Nkx2-1 + / - mice also showed enhanced mitochondrial biogenesis and oxidative capacity likely as a global response of the brain to Nkx2-1 haploinsufficiency and/or to their elevated T3 circulating levels. Reduced transcription of both tyrosine hydroxylase and dopamine transporter was observed in Pax8 + / - euthyroid mice, suggesting a dopaminergic dysfunction, albeit likely at an early stage, but consistent with the deregulated glucose homeostasis observed in such animals. Overall, new information was obtained on the impact of haploinsufficiency of Pax8 and NKx2-1 on several brain neuroanatomical, molecular, and neurochemical aspects, thus opening the way for future targeting brain dysfunctions in the management of both overt and subclinical thyroid dysfunctions.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Stefania Iervolino
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Federica Cioffi
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Teresa Peluso
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Luca Roberto
- Biogem, Biology and Molecular Genetics Institute, Via Camporeale, 83031, Ariano Irpino, Av, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples Federico II, 80131, Naples, Italy
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples Federico II, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Mario De Felice
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 6, 80131, Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
- Biogem, Biology and Molecular Genetics Institute, Via Camporeale, 83031, Ariano Irpino, Av, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131, Naples, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy.
| |
Collapse
|
3
|
Ohadi H, Khalili P, Abasnezhad Kasrineh F, Esmaeili OS, Esmaeili Ranjbar F, Manshoori A, Hajizadeh MR, Jalali Z. Umbilical cord blood thyroid hormones are inversely related to telomere length and mitochondrial DNA copy number. Sci Rep 2024; 14:3164. [PMID: 38326475 PMCID: PMC10850477 DOI: 10.1038/s41598-024-53628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Hypothyroidism has been linked to reduced mortality rate and increased lifespan and health span. Telomere shortening, enhanced oxidative stress, and reduced cellular mitochondrial content are important hallmarks of aging shown to be related to age-associated diseases. It was proposed that the status of these markers in early life can be predictive of lifespan and the predisposition to certain age-associated disease in adulthood. Animal studies indicated that prenatal injection of thyroid hormones affects postnatal telomere length. Here, we sought to determine whether thyroid hormones TSH and fT4 are related to the telomere length, mitochondrial DNA copy number (mtDNAcn), and oxidative stress resistance marker GPX in the cord blood of newborns. In this study, we analyzed 70 mothers (18-42 years) and neonate dyads born in 2022 at the Nik Nafs maternity Hospital in Rafsanjan. The relative telomere length (RTL) and mtDNAcn were measured in the genomic DNA of cord blood leukocytes using real-time PCR. GPX enzyme activity was measured in the serum using colorimetric assays. In this study the correlation between these markers and the cord blood TSH and fT4 hormones were assessed using regression models. We found a reverse relationship between TSH levels and RTL in the cord blood of neonates. Additionally, our results displayed increased TSH levels associated with enhanced GPX activity. Regarding the mitochondrial DNA copy number, we found an indirect relationship between fT4 level and mtDNAcn only in male newborns. Future analyses of various oxidative stress markers, mitochondrial biogenesis status, telomerase activity, and the level of DNA damage are warranted to demonstrate the underlying mechanism of our observations.
Collapse
Affiliation(s)
- Homa Ohadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abasnezhad Kasrineh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ozra Sadat Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Faeze Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azita Manshoori
- Department of Gynecology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Xing Y, Xuan F, Wang K, Zhang H. Aging under endocrine hormone regulation. Front Endocrinol (Lausanne) 2023; 14:1223529. [PMID: 37600699 PMCID: PMC10433899 DOI: 10.3389/fendo.2023.1223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Aging is a biological process in which the environment interacts with the body to cause a progressive decline in effective physiological function. Aging in the human body can lead to a dysfunction of the vital organ systems, resulting in the onset of age-related diseases, such as neurodegenerative and cardiovascular diseases, which can seriously affect an individual's quality of life. The endocrine system acts on specific targets through hormones and related major functional factors in its pathways, which play biological roles in coordinating cellular interactions, metabolism, growth, and aging. Aging is the result of a combination of many pathological, physiological, and psychological processes, among which the endocrine system can achieve a bidirectional effect on the aging process by regulating the hormone levels in the body. In this paper, we explored the mechanisms of growth hormone, thyroid hormone, and estrogen in the aging process to provide a reference for the exploration of endocrine mechanisms related to aging.
Collapse
Affiliation(s)
| | | | | | - Huifeng Zhang
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Sola-García A, Cáliz-Molina MÁ, Espadas I, Petr M, Panadero-Morón C, González-Morán D, Martín-Vázquez ME, Narbona-Pérez ÁJ, López-Noriega L, Martínez-Corrales G, López-Fernández-Sobrino R, Carmona-Marin LM, Martínez-Force E, Yanes O, Vinaixa M, López-López D, Reyes JC, Dopazo J, Martín F, Gauthier BR, Scheibye-Knudsen M, Capilla-González V, Martín-Montalvo A. Metabolic reprogramming by Acly inhibition using SB-204990 alters glucoregulation and modulates molecular mechanisms associated with aging. Commun Biol 2023; 6:250. [PMID: 36890357 PMCID: PMC9995519 DOI: 10.1038/s42003-023-04625-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
ATP-citrate lyase is a central integrator of cellular metabolism in the interface of protein, carbohydrate, and lipid metabolism. The physiological consequences as well as the molecular mechanisms orchestrating the response to long-term pharmacologically induced Acly inhibition are unknown. We report here that the Acly inhibitor SB-204990 improves metabolic health and physical strength in wild-type mice when fed with a high-fat diet, while in mice fed with healthy diet results in metabolic imbalance and moderated insulin resistance. By applying a multiomic approach using untargeted metabolomics, transcriptomics, and proteomics, we determined that, in vivo, SB-204990 plays a role in the regulation of molecular mechanisms associated with aging, such as energy metabolism, mitochondrial function, mTOR signaling, and folate cycle, while global alterations on histone acetylation are absent. Our findings indicate a mechanism for regulating molecular pathways of aging that prevents the development of metabolic abnormalities associated with unhealthy dieting. This strategy might be explored for devising therapeutic approaches to prevent metabolic diseases.
Collapse
Affiliation(s)
- Alejandro Sola-García
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - María Ángeles Cáliz-Molina
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Isabel Espadas
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Michael Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Concepción Panadero-Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Daniel González-Morán
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - María Eugenia Martín-Vázquez
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Álvaro Jesús Narbona-Pérez
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Livia López-Noriega
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Guillermo Martínez-Corrales
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Raúl López-Fernández-Sobrino
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Lina M Carmona-Marin
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Yanes
- Universitat Rovira i Virgili, Department of electronic Engineering & IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Vinaixa
- Universitat Rovira i Virgili, Department of electronic Engineering & IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel López-López
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, c/Manuel Siurot s/n, 41013, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, 41013, Spain
| | - José Carlos Reyes
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, c/Manuel Siurot s/n, 41013, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, 41013, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| | - Franz Martín
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Benoit R Gauthier
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Vivian Capilla-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Alejandro Martín-Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Díez JJ, Iglesias P. Malignant neoplasms in people with hypothyroidism in Spain: A population-based analysis. PLoS One 2022; 17:e0275568. [PMID: 36197930 PMCID: PMC9534429 DOI: 10.1371/journal.pone.0275568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The objective of this study was to determine the association between hypothyroidism and overall and site-specific cancer in Spanish population. METHODS A cross-sectional study was performed using the population-based database BDCAP (Base de Datos Clínicos de Atención Primaria, primary care clinical database) to analyze the relative risk of cancer in Spanish population with hypothyroidism. RESULTS In a total of 2,414,165 patients diagnosed with hypothyroidism in BDCAP in 2019, the relative risk (OR) of cancer, compared to the non-hypothyroid population, was 1.73 (1.72-1.74) (P<0.0001). The higher risk was observed in both men (OR 2.15 [2.13-2.17]; P<0.0001) and women (OR 1.67 [1.636-1.68]; P<0.0001). However, hypothyroid persons aged 65 years or older had a reduced risk of cancer (OR 0.98 [0.97-0.98]; P<0.0001). In addition, hypothyroid patients aged 65 or over showed a decreased risk of cancers of the bladder, colorectal, gastric, pancreatic and prostate. Socioeconomic characteristics such as income level, municipality size, country of birth and employment situation had limited influence on the association between hypothyroidism and cancer. However, hypothyroid patients receiving replacement therapy exhibited higher cancer risk compared with patients without treatment (OR 1.30 [1.28-1.31]; P<0.0001). CONCLUSION Spanish hypothyroid patients of both genders have a risk of overall cancer higher than that found in non-hypothyroid population. However, people over 65 years have a reduced risk of various malignancies. This peculiarity of hypothyroidism should be considered by the health authorities.
Collapse
Affiliation(s)
- Juan J. Díez
- Department of Endocrinology, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro Iglesias
- Department of Endocrinology, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Martin Vázquez E, Cobo-Vuilleumier N, Araujo Legido R, Marín-Cañas S, Nola E, Dorronsoro A, López Bermudo L, Crespo A, Romero-Zerbo SY, García-Fernández M, Martin Montalvo A, Rojas A, Comaills V, Bérmudez-Silva FJ, Gannon M, Martin F, Eizirik D, Lorenzo PI, Gauthier BR. NR5A2/LRH-1 regulates the PTGS2-PGE 2-PTGER1 pathway contributing to pancreatic islet survival and function. iScience 2022; 25:104345. [PMID: 35602948 PMCID: PMC9117883 DOI: 10.1016/j.isci.2022.104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE2 levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist-ONO-8130-negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE2/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.
Collapse
Affiliation(s)
- Eugenia Martin Vázquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Raquel Araujo Legido
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emanuele Nola
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Akaitz Dorronsoro
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucia López Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alejandra Crespo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, Málaga, Spain
| | - Maria García-Fernández
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, Málaga, Spain
| | - Alejandro Martin Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Anabel Rojas
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville USA
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
8
|
Lorenzo PI, Martin Vazquez E, López-Noriega L, Fuente-Martín E, Mellado-Gil JM, Franco JM, Cobo-Vuilleumier N, Guerrero Martínez JA, Romero-Zerbo SY, Perez-Cabello JA, Rivero Canalejo S, Campos-Caro A, Lachaud CC, Crespo Barreda A, Aguilar-Diosdado M, García Fuentes E, Martin-Montalvo A, Álvarez Dolado M, Martin F, Rojo-Martinez G, Pozo D, Bérmudez-Silva FJ, Comaills V, Reyes JC, Gauthier BR. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics 2021; 11:6983-7004. [PMID: 34093866 PMCID: PMC8171100 DOI: 10.7150/thno.57237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José M. Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jaime M. Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José A. Guerrero Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
| | - Jesús A. Perez-Cabello
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sabrina Rivero Canalejo
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville, Spain
| | - Antonio Campos-Caro
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Christian Claude Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Alejandra Crespo Barreda
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Aguilar-Diosdado
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Endocrinology and Metabolism Department, University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Eduardo García Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Álvarez Dolado
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Rojo-Martinez
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José C. Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
9
|
Gauthier BR, Sola‐García A, Cáliz‐Molina MÁ, Lorenzo PI, Cobo‐Vuilleumier N, Capilla‐González V, Martin‐Montalvo A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell 2020; 19:e13260. [PMID: 33048427 PMCID: PMC7681062 DOI: 10.1111/acel.13260] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age‐related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death. Moreover, both hyperthyroidism and hypothyroidism have been associated with the development of certain types of diabetes and cancers, indicating a great complexity of the molecular mechanisms controlled by thyroid hormones. In this review, we describe the latest findings in thyroid hormone research in the field of aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While aging studies indicate that the direct modulation of thyroid hormones is not a viable strategy to promote healthy aging or longevity and the development of thyromimetics is challenging due to inefficacy and potential toxicity, we argue that interventions based on the use of modulators of thyroid hormone function might provide therapeutic benefit in certain types of diabetes and cancers.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEM Instituto de Salud Carlos III Madrid Spain
| | - Alejandro Sola‐García
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - María Ángeles Cáliz‐Molina
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Petra Isabel Lorenzo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Nadia Cobo‐Vuilleumier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Vivian Capilla‐González
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Alejandro Martin‐Montalvo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| |
Collapse
|
10
|
Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20246171. [PMID: 31817798 PMCID: PMC6941051 DOI: 10.3390/ijms20246171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.
Collapse
|