1
|
Li T, Zhen H, Wu W, Yang F, Cao Z. tsRNAs: A Prospective, Effective Therapeutic Intervention for Neurodegenerative Diseases. CNS Neurosci Ther 2024; 30:e70177. [PMID: 39690867 DOI: 10.1111/cns.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Neurological disorders known as neurodegenerative diseases (NDDs) result in the slow loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS), as well as the collapse of neural networks in terms of structure and function. NDDs are expected to surpass cancer as the second biggest cause of mortality by 2040, according to World Health Organization (WHO) estimations. Neurons cannot effectively regenerate themselves because they are terminally differentiated. Accordingly, it is challenging to find medications that could stop or slow neurodegeneration. MAIN BODY The tsRNAs are a type of small non-coding RNAs derived from mature tRNAs or tRNA precursors. tsRNAs control gene expression and have a role in many physiological and pathological processes, including neurological illnesses. Antisense oligonucleotides are effective therapeutic agents for neurological diseases, and they may be the treatment of choice for neurodegenerative diseases in the future. Here, we review the biogenesis of tsRNA, its physiological and pathological functions in the central nervous system and neurological disorders, and its prospective use as a nucleic acid medication to treat NDDs, providing theoretical support and guidance for further exploration of tsRNAs in therapeutic intervention. CONCLUSION tsRNAs are emerging as important regulatory molecules in neurodegenerative diseases. Understanding the functions of tsRNAs in neurodegenerative diseases may provide new insights into disease mechanisms and lead to the development of novel treatment strategies.
Collapse
Affiliation(s)
- Tianqi Li
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Hui Zhen
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiwei Wu
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Fengtang Yang
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhonghong Cao
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
2
|
Wang P, Sun ZY, Zhang GY, Jin Y, Sun WL, Zhao BS, Chen X, Li QB. Regulation of the NF-κB/NLRP3 signalling pathway by Shenghui Yizhi decoction reduces neuroinflammation in mice with Alzheimer's disease. Ann Med 2024; 56:2411011. [PMID: 39391949 PMCID: PMC11486153 DOI: 10.1080/07853890.2024.2411011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Shenghui Yizhi Decoction (SHYZD) has exhibited the capacity to enhance cognitive function and learning abilities in individuals diagnosed with Alzheimer's disease (AD) while ameliorating pre-existing neuroinflammation. Nevertheless, the precise mechanism underlying its therapeutic effects on AD remains to be elucidated. METHODS Twenty-four male SAMP8 mice were randomly divided into three groups, and eight male SAMR1 mice were used as a blank control, to examine their learning and spatial memory abilities. The expression of amyloid β1-42 (Aβ1-42) was detected by immunohistochemical staining of hippocampal tissue. ELISA was used to detect the interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) expressions. Real time PCR was used to detect NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cysteine protease-1 (Caspase-1), and IL-1β mRNA expression. Western blot was used to detect nuclear factor kappa-B (NF-κB), inhibitor of NF-κB α (IκBα), IκB kinase α (IKKα), NLRP3, Caspase-1, and IL-1β protein expression. RESULTS In this study, SAMP8 mice, employed as an AD model, displayed markedly diminished abilities in terms of spatial localization, navigation, and spatial exploration when compared to the blank control group. Additionally, there was a substantial upregulation of Aβ1-42 expression in the hippocampus of these mice, along with a significant increase in the levels of inflammation-associated factors, including IL-1β, IL-6, TNF-α, NLRP3, Caspase-1, as well as the NF-κB pathway-related proteins, namely, NF-κB, IκBα, and IKKα. Moreover, after treatment with positive drugs (donepezil hydrochloride) and SHYZD, the learning abilities of the mice exhibited significant improvements. Furthermore, the hallmark AD protein Aβ1-42, inflammatory factors, and NF-κB/NLRP3 signalling pathway proteins were significantly reduced. These findings collectively suggest that SHYZD exerts a therapeutic effect on AD. CONCLUSION In summary, the specific molecular mechanisms through which SHYZD alleviates AD and the potential role for SHYZD in the NF-κB/NLRP3 signalling pathway are identified in this study.
Collapse
Affiliation(s)
- Peng Wang
- The Second Department of Healthcare, China-Japan Friendship Hospital, Beijing, China
| | - Zi-yi Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gao-yu Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jin
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Wei-liang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Bao-sheng Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- The Second Department of Healthcare, China-Japan Friendship Hospital, Beijing, China
| | - Qiu-bing Li
- The Second Department of Healthcare, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Davis DV, Choi EJ, Ismail D, Hernandez ML, Choi JM, Zhang K, Khatkar K, Jung SY, Wu W, Bao X. Role of Poly(A)-Binding Protein Cytoplasmic 1, a tRNA-Derived RNA Fragment-Bound Protein, in Respiratory Syncytial Virus Infection. Pathogens 2024; 13:791. [PMID: 39338982 PMCID: PMC11434780 DOI: 10.3390/pathogens13090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a significant cause of lower respiratory tract infections (LRTI) across all demographics, with increasing mortality and morbidity among high-risk groups such as infants under two years old, the elderly, and immunocompromised individuals. Although newly approved vaccines and treatments have substantially reduced RSV hospitalizations, accessibility remains limited, and response to treatment varies. This underscores the importance of comprehensive studies on host-RSV interactions. tRNA-derived RNA fragments (tRFs) are recently discovered non-coding RNAs, notable for their regulatory roles in diseases, including viral infections. Our prior work demonstrated that RSV infection induces tRFs, primarily derived from the 5'-end of a limited subset of tRNAs (tRF5), to promote RSV replication by partially targeting the mRNA of antiviral genes. This study found that tRFs could also use their bound proteins to regulate replication. Our proteomics data identified that PABPC1 (poly(A)-binding protein cytoplasmic 1) is associated with tRF5-GluCTC, an RSV-induced tRF. Western blot experimentally confirmed the presence of PABPC1 in the tRF5-GluCTC complex. In addition, tRF5-GluCTC is in the anti-PABPC1-precipitated immune complex. This study also discovered that suppressing PABPC1 with its specific siRNA increased RSV (-) genome copies without impacting viral gene transcription, but led to less infectious progeny viruses, suggesting the importance of PABPC1 in virus assembly, which was supported by its interaction with the RSV matrix protein. Additionally, PABPC1 knockdown decreased the production of the cytokines MIP-1α, MIP-1β, MCP-1, and TNF-α. This is the first observation suggesting that tRFs may regulate viral infection via their bound proteins.
Collapse
Affiliation(s)
- Devin V Davis
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Deena Ismail
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Miranda L Hernandez
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jong Min Choi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kashish Khatkar
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Qi S, Zhang Y, Kong L, Bi D, Kong H, Zhang S, Zhao C. SPI1-mediated macrophage polarization aggravates age-related macular degeneration. Front Immunol 2024; 15:1421012. [PMID: 38979414 PMCID: PMC11228255 DOI: 10.3389/fimmu.2024.1421012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Objective This study revealed a core regulator and common upstream mechanisms for the multifaceted pathological processes of age-related macular degeneration (AMD) and provided proof-of-concept for this new therapeutic target. Methods Comprehensive gene expression analysis was performed using RNA sequencing of eye cup from old mice as well as laser-induced choroidal neovascularization (CNV) mouse model. Through integrative analysis and protein-protein interaction (PPI) analysis, common pathways and key transcription factor was identified simultaneously engaged in age-related retinal degeneration and CNV, the two typical pathological process of AMD. Subsequently, the expression changes of Spi1, the key regulator, as well as the alternation of the downstream mechanisms were validated in both models through qRT-PCR, Elisa, flow cytometry and immunofluorescence. Further, we assessed the impact of Spi1 knockdown in vitro and in vivo using gene intervention vectors carried by adeno-associated virus or lentivirus to test its potential as a therapeutic target. Results Compared to corresponding controls, we found 1,939 and 1,319 genes differentially expressed in eye cups of old and CNV mice respectively. The integrative analysis identified a total of 275 overlapping DEGs, of which 150 genes were co-upregulated. PPI analysis verified a central transcription factor, SPI1. The significant upregulation of Spi1 expression was then validated in both models, accompanied by macrophage polarization towards the M1 phenotype. Finally, SPI1 suppression significantly inhibited M1 polarization of BMDMs and attenuated neovascularization in CNV mice. Conclusion This study demonstrates that SPI1 exerts a pivotal role in AMD by regulation of macrophage polarization and innate immune response, offering promise as an innovative target for treating AMD.
Collapse
Affiliation(s)
- Siyi Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Daode Bi
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
5
|
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis 2023; 14:748. [PMID: 37973899 PMCID: PMC10654580 DOI: 10.1038/s41419-023-06250-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs produced by specific endonucleases following the processing and splicing of precursor or mature tRNAs upon starvation, oxidative stress, hypoxia, and other adverse conditions. tRNAs are classified into two major categories, tRNA fragments (tRFs) and tRNA-derived stress-induced small RNAs (tiRNAs), based on differences in splice sites. With the development of high-throughput sequencing technologies in recent years, tsRNAs have been found to have important biological functions, including inhibition of apoptosis, epigenetic regulation, cell-cell communication, translation, and regulation of gene expression. Additionally, these molecules have been found to be aberrantly expressed in various diseases and to be involved in several pathological processes. In this article, the classification and nomenclature, biological functions, and potential use of tsRNAs as diagnostic biomarkers and therapeutic targets in non-neoplastic diseases are reviewed. Although tsRNA research is at its infancy, their potential in the treatment of non-tumor diseases warrants further investigation.
Collapse
Affiliation(s)
- Liou Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
6
|
Anastassiadis T, Köhrer C. Ushering in the era of tRNA medicines. J Biol Chem 2023; 299:105246. [PMID: 37703991 PMCID: PMC10583094 DOI: 10.1016/j.jbc.2023.105246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Long viewed as an intermediary in protein translation, there is a growing awareness that tRNAs are capable of myriad other biological functions linked to human health and disease. These emerging roles could be tapped to leverage tRNAs as diagnostic biomarkers, therapeutic targets, or even as novel medicines. Furthermore, the growing array of tRNA-derived fragments, which modulate an increasingly broad spectrum of cellular pathways, is expanding this opportunity. Together, these molecules offer drug developers the chance to modulate the impact of mutations and to alter cell homeostasis. Moreover, because a single therapeutic tRNA can facilitate readthrough of a genetic mutation shared across multiple genes, such medicines afford the opportunity to define patient populations not based on their clinical presentation or mutated gene but rather on the mutation itself. This approach could potentially transform the treatment of patients with rare and ultrarare diseases. In this review, we explore the diverse biology of tRNA and its fragments, examining the past and present challenges to provide a comprehensive understanding of the molecules and their therapeutic potential.
Collapse
|
7
|
Fujiwara M, Ferdousi F, Isoda H. Investigation into Molecular Brain Aging in Senescence-Accelerated Mouse (SAM) Model Employing Whole Transcriptomic Analysis in Search of Potential Molecular Targets for Therapeutic Interventions. Int J Mol Sci 2023; 24:13867. [PMID: 37762170 PMCID: PMC10530366 DOI: 10.3390/ijms241813867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
With the progression of an aging society, cognitive aging has emerged as a pressing concern necessitating attention. The senescence-accelerated mouse-prone 8 (SAMP8) model has proven instrumental in investigating the early stages of cognitive aging. Through an extensive examination of molecular changes in the brain cortex, utilizing integrated whole-genome transcriptomics, our principal aim was to uncover potential molecular targets with therapeutic applications and relevance to drug screening. Our investigation encompassed four distinct conditions, comparing the same strain at different time points (1 year vs. 16 weeks) and the same time point across different strains (SAMP8 vs. SAMR1), namely: physiological aging, accelerated aging, early events in accelerated aging, and late events in accelerated aging. Focusing on key functional alterations associated with aging in the brain, including neurogenesis, synapse dynamics, neurometabolism, and neuroinflammation, we identified candidate genes linked to these processes. Furthermore, employing protein-protein interaction (PPI) analysis, we identified pivotal hub genes involved in interactions within these functional domains. Additionally, gene-set perturbation analysis allowed us to uncover potential upstream genes or transcription factors that exhibited activation or inhibition across the four conditions. In summary, our comprehensive analysis of the SAMP8 mouse brain through whole-genome transcriptomics not only deepens our understanding of age-related changes but also lays the groundwork for a predictive model to facilitate drug screening for cognitive aging.
Collapse
Affiliation(s)
- Michitaka Fujiwara
- Graduate School of Environmental Science Program, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Farhana Ferdousi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| |
Collapse
|
8
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
9
|
Yang D, Xiao F, Yuan Y, Li J, Wang S, Fan X, Ni Q, Li Y, Zhang M, Gu X, Yan T, Yang M, He Z. The Expression Pattern of tRNA-Derived Small RNAs in Adult Drosophila and the Function of tRF-Trp-CCA-014- H3C4 Network Analysis. Int J Mol Sci 2023; 24:ijms24076169. [PMID: 37047149 PMCID: PMC10094720 DOI: 10.3390/ijms24076169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are derived from tRNA and include tRNA halves (tiRNAs) and tRNA fragments (tRFs). tsRNAs have been implicated in a variety of important biological functions, such as cell growth, transcriptional regulation, and apoptosis. Emerging evidence has shown that Ago1-guided and Ago2-guided tsRNAs are expressed at 3 and 30 days in Drosophila and that tRF biogenesis in fruit flies affects tRNA processing and tRNA methylation. However, a wide analysis of tsRNA patterns in different ages of Drosophila have not been reported via the small RNA sequencing method. In the present study, tsRNAs of young (7 days) and old (42 days) Drosophila were sequenced and their expression characteristics were analysed. Then, a specific tRF (named tRF-Trp-CCA-014) was determined and was found to be conserved in fruit flies, mice, and humans. The expression patterns of tRF-Trp-CCA-014 in different tissues and stages of fruit flies and mice, and mouse NIH/3T3 cells were detected. Furthermore, mouse embryonic fibroblast NIH/3T3 cells were used as a model to analyse the function and targets of tRF-Trp-CCA-014. The RNA-seq data of six groups (Mimics, Mimic NC, Inhibitors, Inhibitor NC, Aging (adriamycin), and Control (Normal)) in mouse NIH3T3 cells were analysed. The results showed that the number of tsRNAs at 42 days (417) was more than at 7 days (288); thus, it was enriched with age. tRFs-1 were the most enriched, followed by 5'-tRFs and 3'-tRFs. Twenty-one differentially expressed tsRNAs were identified between 7 days and 42 days. Then, the conserved tRF tRF-Trp-CCA-014 was identified and found to accumulate in aged fruit flies and aged mouse NIH3T3 cells. RNA-seq data showed that most differentially expressed genes were involved in the immune system, cancer: overview, and signal translation. Furthermore, tRF-Trp-CCA-014 was found to bind to the 3'UTR of H3C4 in a dual-luciferase reporter gene assay. tRF-Trp-CCA-014 and H3C4 were detected in the cytoplasm of aged NIH3T3 cells by RNA in situ hybridization. These results suggest that the H3C4 gene is the target of tRF-Trp-CCA-014. This study will advance the current understanding of tRF roles and their implication in Drosophila and mouse studies.
Collapse
Affiliation(s)
- Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Tyczewska A, Rzepczak A, Sobańska D, Grzywacz K. The emerging roles of tRNAs and tRNA-derived fragments during aging: Lessons from studies on model organisms. Ageing Res Rev 2023; 85:101863. [PMID: 36707034 DOI: 10.1016/j.arr.2023.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Aging is a gradual decline of various functions of organisms resulting in diminished abilities to protect against the environmental damage and reinforce the physiological harmony. Age-related functional declines have been thought to be passive and not regulated. However, studies on numerous model organisms, from yeast to mammals, exposed that the mechanisms of lifespan regulation are remarkably conserved throughout the evolution. Following the pioneering genetic studies in C. elegans, it has been shown that the genes related to the longevity are conserved in yeast, flies and mice. For a long time, tRNAs have been only considered as molecules transporting amino acids to the ribosome during translation. Nonetheless, it has become apparent from many biological studies that tRNAs are entangled in a variety of physiological and pathological processes. This review focuses on the emerging roles of tRNA-associated processes in aging and lifespan of model organisms. More specificaly, we present a summary on the importance of tRNA metabolism, epitranscriptome and possible roles of tRNA-derived fragments in aging and lifespan regulation. Better understanding of the basic mechanisms of aging could lead to the development of new diagnostics and treatments for aging-related diseases.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Alicja Rzepczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Daria Sobańska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
11
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
12
|
Xiao P, Shi Z, Liu C, Hagen DE. Characteristics of circulating small noncoding RNAs in plasma and serum during human aging. Aging Med (Milton) 2023; 6:35-48. [PMID: 36911092 PMCID: PMC10000275 DOI: 10.1002/agm2.12241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Objective Aging is a complicated process that triggers age-related disease susceptibility through intercellular communication in the microenvironment. While the classic secretome of senescence-associated secretory phenotype (SASP) including soluble factors, growth factors, and extracellular matrix remodeling enzymes are known to impact tissue homeostasis during the aging process, the effects of novel SASP components, extracellular small noncoding RNAs (sncRNAs), on human aging are not well established. Methods Here, by utilizing 446 small RNA-seq samples from plasma and serum of healthy donors found in the Extracellular RNA (exRNA) Atlas data repository, we correlated linear and nonlinear features between circulating sncRNAs expression and age by the maximal information coefficient (MIC) relationship determination. Age predictors were generated by ensemble machine learning methods (Adaptive Boosting, Gradient Boosting, and Random Forest) and core age-related sncRNAs were determined through weighted coefficients in machine learning models. Functional investigation was performed via target prediction of age-related miRNAs. Results We observed the number of highly expressed transfer RNAs (tRNAs) and microRNAs (miRNAs) showed positive and negative associations with age respectively. Two-variable (sncRNA expression and individual age) relationships were detected by MIC and sncRNAs-based age predictors were established, resulting in a forecast performance where all R 2 values were greater than 0.96 and root-mean-square errors (RMSE) were less than 3.7 years in three ensemble machine learning methods. Furthermore, important age-related sncRNAs were identified based on modeling and the biological pathways of age-related miRNAs were characterized by their predicted targets, including multiple pathways in intercellular communication, cancer and immune regulation. Conclusion In summary, this study provides valuable insights into circulating sncRNAs expression dynamics during human aging and may lead to advanced understanding of age-related sncRNAs functions with further elucidation.
Collapse
Affiliation(s)
- Ping Xiao
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Zhangyue Shi
- School of Industrial Engineering and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Chenang Liu
- School of Industrial Engineering and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Darren E. Hagen
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
13
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369 DOI: 10.5483/bmbrep.2022-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
14
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
15
|
Mathew BA, Katta M, Ludhiadch A, Singh P, Munshi A. Role of tRNA-Derived Fragments in Neurological Disorders: a Review. Mol Neurobiol 2023; 60:655-671. [PMID: 36348262 DOI: 10.1007/s12035-022-03078-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
tRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer's, epilepsy, Parkinson's, MELAS, autism, and Huntington's disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these disorders. Various animal studies are being carried out to decipher their exact role; however, more inputs are required to transform this research knowledge into clinical application. Future investigations also call for high-throughput technologies that could help to bring out the other hidden aspects of these entities. However, studies on tRFs require further research efforts to overcome the challenges posed in quantifying tRFs, their interactions with other molecules, and the exact mechanism of function. In this review, we are abridging the current understanding of tRFs, including their biogenesis, function, relevance in clinical therapies, and potential as diagnostic and prognostic biomarkers of these neurological disorders.
Collapse
Affiliation(s)
- Blessy Aksa Mathew
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Madhumitha Katta
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401.
| |
Collapse
|
16
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
17
|
Chu X, He C, Sang B, Yang C, Yin C, Ji M, Qian A, Tian Y. Transfer RNAs-derived small RNAs and their application potential in multiple diseases. Front Cell Dev Biol 2022; 10:954431. [PMID: 36072340 PMCID: PMC9441921 DOI: 10.3389/fcell.2022.954431] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The role of tRNAs is best known as adapter components of translational machinery. According to the central dogma of molecular biology, DNA is transcribed to RNA and in turn is translated into proteins, in which tRNA outstands by its role of the cellular courier. Recent studies have led to the revision of the canonical function of transfer RNAs (tRNAs), which indicates that tRNAs also serve as a source for short non-coding RNAs called tRNA-derived small RNAs (tsRNAs). tsRNAs play key roles in cellular processes by modulating complicated regulatory networks beyond translation and are widely involved in multiple diseases. Herein, the biogenesis and classification of tsRNAs were firstly clarified. tsRNAs are generated from pre-tRNAs or mature tRNAs and are classified into tRNA-derived fragments (tRFs) and tRNA halves (tiRNA). The tRFs include five types according to the incision loci: tRF-1, tRF-2, tRF-3, tRF-5 and i-tRF which contain 3′ tiRNA and 5′ tiRNA. The functions of tsRNAs and their regulation mechanisms involved in disease processes are systematically summarized as well. The mechanisms can elaborate on the specific regulation of tsRNAs. In conclusion, the current research suggests that tsRNAs are promising targets for modulating pathological processes, such as breast cancer, ischemic stroke, respiratory syncytial virus, osteoporosis and so on, and maintain vital clinical implications in diagnosis and therapeutics of various diseases.
Collapse
Affiliation(s)
- Xiaohua Chu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chenyang He
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Sang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mili Ji
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| |
Collapse
|
18
|
Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022; 27:3204-3213. [PMID: 35505091 PMCID: PMC9630165 DOI: 10.1038/s41380-022-01585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Transfer (t)RNAs are 70-90 nucleotide small RNAs highly regulated by 43 different types of epitranscriptomic modifications and requiring aminoacylation ('charging') for mRNA decoding and protein synthesis. Smaller cleavage products of mature tRNAs, or tRNA fragments, have been linked to a broad variety of noncanonical functions, including translational inhibition and modulation of the immune response. Traditionally, knowledge about tRNA regulation in brain is derived from phenotypic exploration of monogenic neurodevelopmental and neurodegenerative diseases associated with rare mutations in tRNA modification genes. More recent studies point to the previously unrecognized potential of the tRNA regulome to affect memory, synaptic plasticity, and affective states. For example, in mature cortical neurons, cytosine methylation sensitivity of the glycine tRNA family (tRNAGly) is coupled to glycine biosynthesis and codon-specific alterations in ribosomal translation together with robust changes in cognition and depression-related behaviors. In this Review, we will discuss the emerging knowledge of the neuronal tRNA landscape, with a focus on epitranscriptomic tRNA modifications and downstream molecular pathways affected by alterations in tRNA expression, charging levels, and cleavage while mechanistically linking these pathways to neuropsychiatric disease and provide insight into future areas of study for this field.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Han X, Hao L, Shi Z, Li Y, Wang L, Li Z, Zhang Q, Hu F, Cao Y, Pang K, Zhu Z. Seminal plasma extracellular vesicles tRF-Val-AAC-010 can serve as a predictive factor of successful microdissection testicular sperm extraction in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 2022; 20:106. [PMID: 35869479 PMCID: PMC9308200 DOI: 10.1186/s12958-022-00978-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is a lack of biomarkers for distinguishing non-obstructive azoospermia (NOA) patients with successful sperm retrieval (Sp+) from those with failed sperm retrieval (Sp-). This study aimed to determine the potential of extracellular vesicles tRNA-derived small RNA (tsRNA) as a novel non-invasive biomarker for successful sperm retrieval by microdissection testicular sperm extraction (mTESE). METHODS The study included 18 patients with NOA with successful sperm retrieval (Sp+) and 23 patients with NOA with failed sperm retrieval (Sp-), 15 obstructive azoospermia (OA) patients, 5 idiopathic oligospermia (IO) patients, and 12 healthy people. Seminal plasma extracellular vesicles tsRNA levels were used in a two-stage case-control study (screened by tsRNA sequencing on Illumina NextSeq instrument and validated by qRT-PCR). The bioinformatic analysis was performed to determine the role of tsRNA in the pathogenesis of non-obstructive azoospermia. RESULTS Two tsRNAs (tRF-Val-AAC-010: AUC = 0.96, specificity = 80%, sensitivity = 95%; tRF-Pro-AGG-003: AUC = 0.96, specificity = 87%, sensitivity = 95%) were found to have high predictive accuracy for distinguishing the origin of azoospermia. In addition, the extracellular vesicles tRF-Val-AAC-010 resulted in high predictive ability (AUC = 0.89, sensitivity = 72%, specificity = 91%, P < 0.0001) in predicting the presence of sperm in non-obstructive azoospermia undergoing mTESE. Finally, bioinformatic analysis revealed that tRF-Val-AAC-010 were involved in spermatogenesis. CONCLUSIONS This study identified that the extracellular vesicles tRF-Val-AAC-010 and tRF-Pro-AGG-003 are biomarkers for the diagnosis of non-obstructive azoospermia, and that tRF-Val-AAC-010 as a potential non-invasive biomarker for predicting the presence of sperm in non-obstructive azoospermia testicular tissue.
Collapse
Affiliation(s)
- Xiaoxiao Han
- School of Life Science, Tongji University, Shanghai, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Ying Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhenbei Li
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Qiang Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Fangfang Hu
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Yijuan Cao
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
20
|
Yang ZY, Tang T, Li PF, Li XX, Wu Y, Feng DD, Hu MR, Dai F, Zheng F, Zhang W, Wang Y. Systematic analysis of tRNA-derived small RNAs reveals therapeutic targets of Xuefu Zhuyu decoction in the cortexes of experimental traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154168. [PMID: 35623157 DOI: 10.1016/j.phymed.2022.154168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xuefu Zhuyu Decoction (XFZYD), a well-known traditional Chinese medicine prescription, has been widely used to treat traumatic brain injury (TBI). However, the underlying mechanisms involved in XFZYD therapy remain unclear. AIM OF THE STUDY We explored new therapeutic targets of XFZYD in TBI by the tsRNA-sequencing (tsRNA-seq) method. MATERIAL AND METHODS High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to assess the quality of XFZYD. Male Sprague-Dawley rats were randomly categorized into three groups: sham, TBI, and XFZYD. The protective effects of XFZYD were investigated in vivo by using the Morris water maze (MWM), modified neurological severity score (mNSS) tests, hematoxylin-eosin (H&E) staining, and Nissl staining. tsRNA-seq was applied to analyze the expression of tsRNAs in the rat cortex. Four tsRNAs were validated by qRT-PCR. The biological function of putative tsRNAs was investigated using bioinformatics techniques. The functions of tsRNAs targeting mRNAs were verified in vitro. RESULTS The mNSS and MWM indicated that XFZYD notably improved neurological deficits and cognitive function after TBI (p < 0.05). H&E staining and Nissl staining demonstrated that XFZYD suppressed damage and neuronal loss in the TBI rat cortex. We evaluated the dysregulated expression of 732 tsRNAs (128 tsRNAs were significantly altered in the TBI/sham group (fold change > 2 and p < 0.05), and 97 tsRNAs were dysregulated in the XFZYD/TBI group (fold change > 2 and p < 0.05)) in the TBI rat cortex. Interestingly, 41 tsRNAs were distinctly regulated by XFZYD. The qRT-PCR results of the four randomly chosen tsRNAs (tRF-54-75-Glu-TTC-2, tRF-55-75-Gln-CTG-2-M2, tRF-55-76-Val-TAC-1, tRF-64-85-Leu-AAG-1-M4) exhibited trends similar to those of the tsRNA-seq data. We certified the possible targets of tsRNAs and suggested the crosscurrent in the expression trend of the target genes. Bioinformatics analysis showed that XFZYD-related tsRNAs could contribute to regulating insulin resistance, the calcium signaling pathway, autophagy, and axon guidance. CONCLUSIONS The current research implies that tsRNAs are putative therapeutic targets of XFYZD for TBI treatment. This research provides new insight into the therapeutic targets of XFZYD in treating TBI.
Collapse
Affiliation(s)
- Zhao-Yu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xue-Xuan Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan-Dan Feng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming-Rui Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feng Dai
- Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
21
|
Tian H, Hu Z, Wang C. The Therapeutic Potential of tRNA-derived Small RNAs in Neurodegenerative Disorders. Aging Dis 2022; 13:389-401. [PMID: 35371602 PMCID: PMC8947841 DOI: 10.14336/ad.2021.0903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 11/01/2022] Open
Abstract
Gene expressions and functions at various levels, namely post-transcriptional, transcriptional, and epigenetic, can be regulated by transfer RNA (tRNA)-derived small RNAs (tsRNAs), which are as well-established as tRNA fragments or tRFs. This regulation occurs when tsRNAs are created through the special endonuclease-mediated cleavage of mature or precursor tRNAs. However, tsRNAs are newly discovered entities, and molecular functions associated with tsRNAs are still not clearly understood. There is increasingly robust evidence suggesting that specific tsRNAs perform fundamental tasks in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders. Indeed, the patterns of tsRNA expression are uncertain and could be altered in patients suffering from Parkinson's disease, pontocerebellar hypoplasia, amyotrophic lateral sclerosis, Alzheimer's disease, and other neurodegenerative disorders. In the present article, a review is conducted of recent domestic and international progress in research on the potential cellular and molecular mechanisms of tsRNA biogenesis. We also describe endogenous tsRNAs during neuronal development and neurodegenerative disorders, thereby providing theoretical support and guidance for further revealing the therapeutic potential of tsRNAs in neurodegenerative disorders.
Collapse
Affiliation(s)
- Haihua Tian
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,4Department of Laboratory Medicine, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- 5Department of Child Psychiatry, Ningbo Kanning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
22
|
Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury. Int Immunopharmacol 2022; 107:108690. [PMID: 35299002 DOI: 10.1016/j.intimp.2022.108690] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alveolar macrophages (AMs) play a demonstrative role in acute lung injury (ALI). Exosomes act as signaling molecules to regulate cell-to-cell communication by releasing RNAs. Transfer RNA-derived fragments (tRFs) possess potential functions in multiple diseases through ferroptosis. The present study aims to reveal the role of AM-derived exosomal tRFs in ALI and to identify the relationship to ferroptosis. METHODS ALI mice model was established by lipopolysaccharide (LPS) induction. RNA sequencing was performed to identify the tRFs profile in bronchoalveolar lavage fluid (BALF) exosomes of ALI mice. After interfering with the expression of candidate tRFs in AMs or alveolar epithelial cells (MLE-12), the effect of oxidative stress and expression of ferroptosis-related proteins were detected. RESULTS Exosomes isolated from BALF of ALI mice were dominated by a macrophage immunophenotype. RNA-sequencing identified 4 up- and 10 down-regulated differentially expressed tRFs (DEtRFs), among which tRF-22-8BWS7K092 expression was significantly increased in LPS-induced macrophage-derived exosomes (LPS-exo). Hippo signaling pathway was the most significantly enriched KEGG pathways for DEtRFs. LPS-exo inhibited cell viability and the expression of GPX4 and FTH1, and enhanced oxidative stress in MLE-12 cells. Ferroptosis inhibitor reversed the inhibition of LPS-exo on cell viability and tRF-22-8BWS7K092 inhibitor rescued above effect of LPS-exo on MLE-12 cells. Besides, tRF-22-8BWS7K092 could activate Hippo signaling pathway by binding Wnt5B, inducing ferroptosis in MLE-12 cells. CONCLUSION BALF exosomes of ALI mice were mainly derived from AMs. AM-derived exosomal tRF-22-8BWS7K092 activates the Hippo signaling pathway to induce ferroptosis, thus contributing to the pathogenesis of ALI.
Collapse
|
23
|
Zhao Y, Wang R, Qin Q, Yu J, Che H, Wang L. Differentially expressed tRNA-derived fragments and their roles in primary cardiomyocytes stimulated by high glucose. Front Endocrinol (Lausanne) 2022; 13:1049251. [PMID: 36714586 PMCID: PMC9880064 DOI: 10.3389/fendo.2022.1049251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus that can cause malignant arrhythmia and sudden death and is associated with cardiomyocyte dysfunction induced by hyperglycemia. Emerging evidence has revealed that transfer RNA-derived fragments (tRFs), a novel class of noncoding RNAs, play a crucial role in a variety of pathophysiologic processes, including cell death, cell growth and proliferation. However, it remains unknown whether and how tRFs are involved in cardiomyocyte dysfunction during the progression of DCM. In this study, we found that cardiomyocyte abnormalities were induced by high glucose (HG) treatment, as demonstrated by a decrease in cell viability and autophagy activation as well as an increase in cell death and proinflammatory cytokine release. Moreover, HG treatment resulted in differential expression of tRFs in cardiomyocytes, of which 4 upregulated and 1 downregulated tRFs were observed compared with the control group. The differential expression of 4 upregulated tRFs was primarily involved in cardiac dysfunction-related processes, such as autophagy, AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway, insulin signaling pathway, FoxO signaling pathway, insulin resistance and peroxisome pathways based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Furthermore, we found that tRF-5014a, the most significantly upregulated tRF among all tested tRFs, negatively regulated the expression of the autophagy-related protein ATG5. Importantly, inhibition of tRF-5014a not only abolished autophagy inactivation but also attenuated the decrease in cell viability and increase in cell death as well as proinflammatory cytokine release under HG conditions. These findings suggest that tRFs may contribute to HG-induced cardiomyocyte injury during DCM progression.
Collapse
Affiliation(s)
- Yongting Zhao
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Yu
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Che
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lihong Wang, ; Hui Che,
| | - Lihong Wang
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lihong Wang, ; Hui Che,
| |
Collapse
|
24
|
Xu XJ, Yang MS, Zhang B, Ge QQ, Niu F, Dong JQ, Zhuang Y, Liu BY. Genome-wide interrogation of transfer RNA-derived small RNAs in a mouse model of traumatic brain injury. Neural Regen Res 2022; 17:386-394. [PMID: 34269214 PMCID: PMC8463968 DOI: 10.4103/1673-5374.314315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a recently established family of regulatory small non-coding RNAs that modulate diverse biological processes. Growing evidence indicates that tsRNAs are involved in neurological disorders and play a role in the pathogenesis of neurodegenerative disease. However, whether tsRNAs are involved in traumatic brain injury-induced secondary injury remains poorly understood. In this study, a mouse controlled cortical impact model of traumatic brain injury was established, and integrated tsRNA and messenger RNA (mRNA) transcriptome sequencing were used. The results revealed that 103 tsRNAs were differentially expressed in the mouse model of traumatic brain injury at 72 hours, of which 56 tsRNAs were upregulated and 47 tsRNAs were downregulated. Based on microRNA-like seed matching and Pearson correlation analysis, 57 differentially expressed tsRNA-mRNA interaction pairs were identified, including 29 tsRNAs and 26 mRNAs. Moreover, Gene Ontology annotation of target genes revealed that the significantly enriched terms were primarily associated with inflammation and synaptic function. Collectively, our findings suggest that tsRNAs may be associated with traumatic brain injury-induced secondary brain injury, and are thus a potential therapeutic target for traumatic brain injury. The study was approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 20190411) on April 11, 2019.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian-Qian Ge
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jin-Qian Dong
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders; China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
25
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
26
|
Kuo MC, Liu SCH, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson's disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021; 28:78. [PMID: 34794432 PMCID: PMC8603508 DOI: 10.1186/s12929-021-00775-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
The discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biology. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially Parkinson's disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analytical tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Parkinson's disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids are particularly emphasized.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Medicine, Section of Neurology, Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sam Chi-Hao Liu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Lu H, Liu L, Han S, Wang B, Qin J, Bu K, Zhang Y, Li Z, Ma L, Tian J, Zhang K, Li T, Cui H, Liu X. Expression of tiRNA and tRF in APP/PS1 transgenic mice and the change of related proteins expression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1457. [PMID: 34734009 PMCID: PMC8506760 DOI: 10.21037/atm-21-4318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Background Transcriptomics, such as that of non-coding RNA (ncRNA), which include microRNA (miRNA), circular RNA, and the transfer RNA (tRNA)-derived fragments (tiRNA and tRF) in Alzheimer's disease (AD) have attracted much attention recently. The tiRNA and tRFs are produced when the tRNA splits at specific sites. The expression change and related function of tiRNA and tRFs in AD has not been fully investigated. Methods In our study, APP/PS1 transgenic mice (AD mice model) and healthy control mice were used to discover the differentially expressed tiRNA and tRFs with high-throughput sequencing. Among the differentially expressed tiRNA and tRFs, we chose two tRFs (tRF-Thr-CGT-003 and tRF-Leu-CAA-004) and predicted the target messenger RNAs (mRNAs) with miRanda and Target Scan. The target mRNAs of tRF-related function and pathways were analyzed, then we performed quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot to validate the related target mRNAs and pathways. Results A total of 27 significantly different tiRNA and tRFs were detected between wild type (WT) and APP/PS1 groups, including 14 up-regulated and 13 down-regulated. Through analyzing the target mRNAs of all differentially expressed tiRNA and tRFs with GO enrichment, we found the target mRNAs could take part in the learning and memory biological process, synapse organization, cognition biological process, synaptic transmission, amyloid-β (Aβ) metabolic process, and so on. We then chose three differentially expressed tRFs for further qPCR validation and passed two tRFs: tRF-Thr-CGT-003 and tRF-Leu-CAA-004, that were found to regulate the calcium regulation-related proteins (the voltage-gated calcium channel γ2 subunit and the RYR1 endoplasmic reticulum calcium released protein) and the retinol metabolism-related proteins (retinoic acid metabolic enzymes CYP2S1, CYP2C68, CYP2S1). Conclusions The APP expression and presenilin mutation in APP/PS1 mice could cause tiRNA and tRFs expression change. Among the differentially expressed tiRNA and tRFs, we found some tRFs took part in the voltage-gated calcium channel γ2 subunit expression and regulation, influencing the neuron calcium homeostasis. Moreover, we also found the tRFs may participate in the regulation of retinol metabolism. Our findings suggest that the dysregulated tiRNA and tRFs may be beneficially exploited as potential diagnostic biomarkers and/or therapeutic targets of AD.
Collapse
Affiliation(s)
- Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu Han
- Department of Electrocardiogram, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
29
|
Zhou Y, Hu J, Liu L, Yan M, Zhang Q, Song X, Lin Y, Zhu D, Wei Y, Fu Z, Hu L, Chen Y, Li X. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2. Cancer Cell Int 2021; 21:502. [PMID: 34537070 PMCID: PMC8449465 DOI: 10.1186/s12935-021-02102-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Accumulating evidence demonstrates that tRFs (tRNA-derived small RNA fragments) and tiRNAs (tRNA-derived stress-induced RNA), an emerging category of regulatory RNA molecules derived from transfer RNAs (tRNAs), are dysregulated in in various human cancer types and play crucial roles. However, their roles and mechanisms in hepatocellular carcinoma (HCC) and liver cancer stem cells (LCSCs) are still unknown. Methods The expression of glycine tRNA-derived fragment (Gly-tRF) was measured by qRT-PCR. Flow cytometric analysis and sphere formation assays were used to determine the properties of LCSCs. Transwell assays and scratch wound assays were performed to detect HCC cell migration. Western blotting was conducted to evaluate the abundance change of Epithelial-mesenchymal transition (EMT)-related proteins. Dual luciferase reporter assays and signalling pathway analysis were performed to explore the underlying mechanism of Gly-tRF functions. Results Gly-tRF was highly expressed in HCC cell lines and tumour tissues. Gly-tRF mimic increased the LCSC subpopulation proportion and LCSC-like cell properties. Gly-tRF mimic promoted HCC cell migration and EMT. Loss of Gly-tRF inhibited HCC cell migration and EMT. Mechanistically, Gly-tRF decreased the level of NDFIP2 mRNA by binding to the NDFIP2 mRNA 3′ UTR. Importantly, overexpression of NDFIP2 weakened the promotive effects of Gly-tRF on LCSC-like cell sphere formation and HCC cell migration. Signalling pathway analysis showed that Gly-tRF increased the abundance of phosphorylated AKT. Conclusions Gly-tRF enhances LCSC-like cell properties and promotes EMT by targeting NDFIP2 and activating the AKT signalling pathway. Gly-tRF plays tumor-promoting role in HCC and may lead to a potential therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02102-8.
Collapse
Affiliation(s)
- Yongqiang Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Jinjing Hu
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.,School of Life Science of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Lu Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Mengchao Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Qiyu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaojing Song
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yan Lin
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Dan Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Yongjian Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zongli Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Liming Hu
- School of Life Science of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Yue Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M, Yang D. tRNA-derived fragments as New Hallmarks of Aging and Age-related Diseases. Aging Dis 2021; 12:1304-1322. [PMID: 34341710 PMCID: PMC8279533 DOI: 10.14336/ad.2021.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
tRNA-derived fragments (tRFs), which are non-coding RNAs produced via tRNA cleavage with lengths of 14 to 50 nucleotides, originate from precursor tRNAs or mature tRNAs and exist in a wide range of organisms. tRFs are produced not by random fracture of tRNAs but by specific mechanisms. Considerable evidence shows that tRFs are detectable in model organisms of different ages and are associated with age-related diseases in humans, such as cancer and neurodegenerative diseases. In this literature review, the origin and classification of tRFs and the regulatory mechanisms of tRFs in aging and age-related diseases are summarized. We also describe the available tRF databases and research techniques and lay a foundation for the exploration of tRFs as biomarkers for the diagnosis and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Ya Yuan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhi He
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaolan Fan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Mao
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
31
|
Roles of tRNA metabolism in aging and lifespan. Cell Death Dis 2021; 12:548. [PMID: 34039958 PMCID: PMC8154886 DOI: 10.1038/s41419-021-03838-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Transfer RNAs (tRNAs) mainly function as adapter molecules that decode messenger RNAs (mRNAs) during protein translation by delivering amino acids to the ribosome. Traditionally, tRNAs are considered as housekeepers without additional functions. Nevertheless, it has become apparent from biological research that tRNAs are involved in various physiological and pathological processes. Aging is a form of gradual decline in physiological function that ultimately leads to increased vulnerability to multiple chronic diseases and death. Interestingly, tRNA metabolism is closely associated with aging and lifespan. In this review, we summarize the emerging roles of tRNA-associated metabolism, such as tRNA transcription, tRNA molecules, tRNA modifications, tRNA aminoacylation, and tRNA derivatives, in aging and lifespan, aiming to provide new ideas for developing therapeutics and ultimately extending lifespan in humans.
Collapse
|
32
|
Abstract
tRNA-derived small RNA (tsRNA) is a novel class of non-coding RNA that is usually produced from tRNA following endonuclease cleavage which occurs under stress conditions. There are two types of tsRNAs: tRNA-derived fragments (tRFs) and stress-induced tRNA halves (tiRNAs), which differ in their cleavage position. Many studies have demonstrated that tsRNAs are involved in various physiological and pathological processes apart from cancer and gene expression. In this review, we briefly described the biogenesis, classification, and characteristics of tsRNAs and summarized the current research progress of tsRNAs in metabolic diseases, senescence, reproduction, stress, and organ injury, and finally put forward some problems to be solved.
Collapse
Affiliation(s)
- Qiyu Pan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| | - Tingting Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
33
|
Zhang ZY, Zhang CH, Yang JJ, Xu PP, Yi PJ, Hu ML, Peng WJ. Genome-wide analysis of hippocampal transfer RNA-derived small RNAs identifies new potential therapeutic targets of Bushen Tiansui formula against Alzheimer's disease. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:135-143. [PMID: 33334712 DOI: 10.1016/j.joim.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Bushen Tiansui formula (BSTSF), a traditional Chinese medicine prescription, has been widely used to treat Alzheimer's disease (AD). However, the mechanisms underlying its effects remain largely unknown. In this study, a rat AD model was used to study the effects of BSTSF on cognitive performance and expression of transfer RNA-derived small RNAs (tsRNAs) in the hippocampus, to determine whether treatment of AD with BSTSF could regulate the expression of tsRNAs, a novel small non-coding RNA. METHODS To generate a validated AD model, oligomeric amyloid-β1-42 (Aβ1-42) was injected intracerebroventricularly into rats. The Morris water maze (MWM) test was used to evaluate rat cognitive performance, and tsRNA-sequencing was conducted to examine tsRNA expression in the rat hippocampus. Potential targets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic analyses were conducted to investigate the biological function of candidate tsRNAs. RESULTS The learning and memory deficits of Aβ1-42-induced AD rats, assessed by MWM tests, were clearly ameliorated by BSTSF treatment. A total of 387 tsRNAs were detected in the rat hippocampus. Among them, 13 were significantly dysregulated in AD rats compared with sham control rats, while 57 were markedly altered by BSTSF treatment, relative to untreated AD rats (fold change ≥ 2 and P < 0.05). Moreover, six BSTSF treatment-related tsRNAs were identified and validated by qRT-PCR. Bioinformatic analyses indicated that the six treatment-related tsRNAs had potential therapeutic roles, via multiple signaling pathways and Gene Ontology biological functions, including cyclic adenosine monophosphate and retrograde endocannabinoid signaling. CONCLUSION This study identified a previously uncharacterized mechanism underlying the effects of BSTSF in alleviating the learning and memory deficits in Aβ1-42-induced AD rats, demonstrating that tsRNAs are potential therapeutic targets of BSTSF in the treatment of AD.
Collapse
Affiliation(s)
- Zhe-Yu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Chun-Hu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jing-Jing Yang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pan-Pan Xu
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Peng-Ji Yi
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Mu-Li Hu
- Department of Scientific Research, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei-Jun Peng
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
34
|
Gámez-Valero A, Guisado-Corcoll A, Herrero-Lorenzo M, Solaguren-Beascoa M, Martí E. Non-Coding RNAs as Sensors of Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1095. [PMID: 33171576 PMCID: PMC7695195 DOI: 10.3390/antiox9111095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) results from an imbalance between the production of reactive oxygen species and the cellular antioxidant capacity. OS plays a central role in neurodegenerative diseases, where the progressive accumulation of reactive oxygen species induces mitochondrial dysfunction, protein aggregation and inflammation. Regulatory non-protein-coding RNAs (ncRNAs) are essential transcriptional and post-transcriptional gene expression controllers, showing a highly regulated expression in space (cell types), time (developmental and ageing processes) and response to specific stimuli. These dynamic changes shape signaling pathways that are critical for the developmental processes of the nervous system and brain cell homeostasis. Diverse classes of ncRNAs have been involved in the cell response to OS and have been targeted in therapeutic designs. The perturbed expression of ncRNAs has been shown in human neurodegenerative diseases, with these changes contributing to pathogenic mechanisms, including OS and associated toxicity. In the present review, we summarize existing literature linking OS, neurodegeneration and ncRNA function. We provide evidences for the central role of OS in age-related neurodegenerative conditions, recapitulating the main types of regulatory ncRNAs with roles in the normal function of the nervous system and summarizing up-to-date information on ncRNA deregulation with a direct impact on OS associated with major neurodegenerative conditions.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Anna Guisado-Corcoll
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28046 Madrid, Spain
| |
Collapse
|
35
|
Zhang X, Trebak F, Souza LAC, Shi J, Zhou T, Kehoe PG, Chen Q, Feng Earley Y. Small RNA modifications in Alzheimer's disease. Neurobiol Dis 2020; 145:105058. [PMID: 32835860 PMCID: PMC7572745 DOI: 10.1016/j.nbd.2020.105058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background While significant advances have been made in uncovering the aetiology of Alzheimer's disease and related dementias at the genetic level, molecular events at the epigenetic level remain largely undefined. Emerging evidence indicates that small non-coding RNAs (sncRNAs) and their associated RNA modifications are important regulators of complex physiological and pathological processes, including aging, stress responses, and epigenetic inheritance. However, whether small RNAs and their modifications are altered in dementia is not known. Methods We performed LC-MS/MS-based, high-throughput assays of small RNA modifications in post-mortem samples of the prefrontal lobe cortices of Alzheimer's disease (AD) and control individuals. We noted that some of the AD patients has co-occurring vascular cognitive impairment-related pathology (VaD). Findings We report altered small RNA modifications in AD samples compared with normal controls. The 15-25-nucleotide (nt) RNA fraction of these samples was enriched for microRNAs, whereas the 30-40-nt RNA fraction was enriched for tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNAs (rsRNAs), and YRNA-derived small RNAs (ysRNAs). Interestingly, most of these altered RNA modifications were detected both in the AD and AD with co-occurring vascular dementia subjects. In addition, sequencing of small RNA in the 30-40-nt fraction from AD cortices revealed reductions in rsRNA-5S, tsRNA-Tyr, and tsRNA-Arg. Interpretation These data suggest that sncRNAs and their associated modifications are novel signals that may be linked to the pathogenesis and development of Alzheimer's disease. Fund NIH grants (R01HL122770, R01HL091905, 1P20GM130459, R01HD092431, P50HD098593, GM103440), AHA grant (17IRG33370128), Sigmund Gestetner Foundation Fellowship to P Kehoe.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Fatima Trebak
- Departments of Pharmacology, Physiology & Cell Biology, Center for Molecular & Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Lucas A C Souza
- Departments of Pharmacology, Physiology & Cell Biology, Center for Molecular & Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Tong Zhou
- Departments of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Patrick G Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| | - Yumei Feng Earley
- Departments of Pharmacology, Physiology & Cell Biology, Center for Molecular & Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| |
Collapse
|
36
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
37
|
Jia Y, Tan W, Zhou Y. Transfer RNA-derived small RNAs: potential applications as novel biomarkers for disease diagnosis and prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1092. [PMID: 33145311 PMCID: PMC7575943 DOI: 10.21037/atm-20-2797] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transfer RNA-derived small RNA (tsRNA)s are novel non-coding RNAs, expressed in a variety of tissues and organs. Two subtypes of tsRNAs have been reported: tRNA-derived stress-induced RNA (tiRNA)s and tRNA-derived fragment (tRF)s. tsRNAs have been reported to play essential roles and possess different biological functions in a variety of physiological activities. Recently, tsRNAs have been implicated in a large number of diseases, such as cancers (including breast cancer, ovarian cancer, lung cancer, prostate cancer, colorectal cancer, etc.), neurological disorders, viral infections, metabolic diseases and angiogenesis-related diseases. Although the biological functions of tsRNAs are still poorly understood, correlations between dysregulated tsRNA expression and disease development have been recently reported. Additionally, their capabilities as potential biomarkers for disease diagnosis and prognosis have been revealed in clinical studies. In this review, we summarize the current knowledge of tsRNAs, and discuss their potential clinical applications as biomarkers in different diseases. Although the regulation of tsRNAs is similar to miRNAs in regards to the related physiological and pathological processes, the higher stability and expression levels of tsRNAs place them as ideal biomarkers for the diagnosis and prognosis in cancer and other diseases. Therefore, it is worth to verify the possibility and reliability of these reported tsRNAs as potential biomarkers for clinical applications in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|