1
|
Kaufman B, Abu-Ahmad M, Radinsky O, Gharra E, Manko T, Bhattacharya B, Gologan D, Erlichman N, Meshel T, Nuta Y, Cooks T, Elkabets M, Ben-Baruch A, Porgador A. N-glycosylation of PD-L1 modulates the efficacy of immune checkpoint blockades targeting PD-L1 and PD-1. Mol Cancer 2025; 24:140. [PMID: 40346531 PMCID: PMC12065222 DOI: 10.1186/s12943-025-02330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The PD-L1/PD-1 pathway is crucial for immune regulation and has become a target in cancer immunotherapy. However, in order to improve patient selection for immune checkpoint blockade (ICB) therapies, better selection criteria are needed. This study explores how the N-glycosylation of PD-L1 affects its interaction with PD-1 and ICB efficacy, focusing on its four N-linked glycosylation sites: N35, N192, N200, and N219. METHODS Human PD-L1 glycosylation mutants-at each individual site or at all four sites together (Nx4)-were tested for their functional interaction with PD-1 using an artificial immune checkpoint reporter assay (IcAR-PD1). The blocking efficacy of anti-PD-L1 and anti-PD-1 antibodies was evaluated using human breast cancer cell lines (MDA-MB231 and MCF7), as well as A375 melanoma and A549 lung carcinoma cells expressing the glycosylation mutants. Results were validated through ex vivo activation and cytotoxicity assays using human CD8+ T cells. RESULTS The binding of the PD-L1N35A mutant to PD-1 was not effectively blocked by anti-PD-L1 and anti-PD-1 ICBs. In contrast, high blocking efficacy of PD-L1 binding to PD-1 was obtained at minimal ICB concentrations when PD-L1 did not express any glycosylation site (PD-L1Nx4 mutant). The PD-L1N35A mutant produced elevated levels of PD-L1 as a soluble (sPD-L1) and extracellular vesicles (EV)-bound molecule; in contrast, the PD-L1Nx4 mutant had lower sPD-L1 and EV levels. PD-L1 glycosylation status influenced the ability of PD-L1 interactions with PD-1 to down-regulate T-cell activation and cytotoxicity, with the PD-L1N35A mutant showing the lowest levels of T cell functions and the PD-L1Nx4 mutant the highest. CONCLUSIONS The N-glycosylation of PD-L1 at all four sites interferes with the ability of anti-PD-L1 and anti-PD-1 ICBs to block PD-L1 interactions with PD-1; in contrast, glycosylation at the N35 site enhances ICB blocking efficacy. These effects are connected to the ability of sPD-L1 to compete with ICB binding to PD-L1 or PD-1. Thus, assessing PD-L1 glycosylation, beyond expression levels, could improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Bar Kaufman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Muhammad Abu-Ahmad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eman Gharra
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Daniela Gologan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nofar Erlichman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoav Nuta
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
2
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
4
|
Granica M, Laskowski G, Link-Lenczowski P, Graczyk-Jarzynka A. Modulation of N-glycosylation in the PD-1: PD-L1 axis as a strategy to enhance cancer immunotherapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189274. [PMID: 39875060 DOI: 10.1016/j.bbcan.2025.189274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The modulation of the N-glycosylation status in immune checkpoints, particularly the PD-1/PD-L1 axis, has emerged as a promising approach to enhance cancer immunotherapies. While immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 have achieved significant clinical success, recent studies highlight the critical role of N-glycosylation in regulating their expression, stability, and function. Alterations in N-glycosylation might affect the efficacy of ICIs by modulating the interactions between immune checkpoints and antibodies used in therapy. This review focuses on the glycosylation of PD-1 and its ligands PD-L1 and PD-L2, examining how N-glycans influence immune responses and contribute to immune evasion by tumors. It explores innovative strategies to modulate glycosylation in tumor and immune cells, including the use of N-glycosylation inhibitors and novel genetic manipulation techniques. Understanding the interplay between N-glycosylation and immune checkpoint functions is essential for optimizing immunotherapy outcomes and overcoming therapeutic resistance in cancer patients.
Collapse
Affiliation(s)
- Monika Granica
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Gustaw Laskowski
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
6
|
Zhu Q, Zhang R, Zhao Z, Xie T, Sui X. Harnessing phytochemicals: Innovative strategies to enhance cancer immunotherapy. Drug Resist Updat 2025; 79:101206. [PMID: 39933438 DOI: 10.1016/j.drup.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment, but therapeutic ineffectiveness-driven by the tumor microenvironment and immune evasion mechanisms-continues to limit its clinical efficacy. This challenge underscores the need to explore innovative approaches, such as multimodal immunotherapy. Phytochemicals, bioactive compounds derived from plants, have emerged as promising candidates for overcoming these barriers due to their immunomodulatory and antitumor properties. This review explores the synergistic potential of phytochemicals in enhancing immunotherapy by modulating immune responses, reprogramming the tumor microenvironment, and reducing immunosuppressive factors. Integrating phytochemicals with conventional immunotherapy strategies represents a novel approach to mitigating resistance and enhancing therapeutic outcomes. For instance, nab-paclitaxel has shown the potential in overcoming resistance to immune checkpoint inhibitors, while QS-21 synergistically enhances the efficacy of tumor vaccines. Furthermore, we highlight recent advancements in leveraging nanotechnology to engineer phytochemicals for improved bioavailability and targeted delivery. These innovations hold great promise for optimizing the clinical application of phytochemicals. However, further large-scale clinical studies are crucial to fully integrate these compounds into immunotherapeutic regimens effectively.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
7
|
Chung H, Bak SH, Shin E, Park T, Kim J, Jeong H, Jung H, Yoon SR, Noh JY. Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity. Biomol Ther (Seoul) 2025; 33:355-364. [PMID: 39971707 PMCID: PMC11893499 DOI: 10.4062/biomolther.2024.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/21/2025] Open
Abstract
Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol's beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunmin Chung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jinwoo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hanseul Jeong
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Lee TA, Tsai EY, Liu SH, Chou WC, Hsu Hung SD, Chang CY, Chao CH, Yamaguchi H, Lai YJ, Chen HL, Li CW. Regulation of PD-L1 glycosylation and advances in cancer immunotherapy. Cancer Lett 2025; 612:217498. [PMID: 39855377 DOI: 10.1016/j.canlet.2025.217498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells. Glycosylation of PD-L1 at N35, N192, N200, and N219 stabilizes PD-L1 on the cancer cell surface, which contributes to immune evasion by inhibiting T cell activity. To date, at least six glycosyltransferases and four associate proteins are known to regulate PD-L1 glycosylation. Terminal modifications such as poly-N-acetyl-lactosamine (poly-LacNAC), sulfation, and sialylation are commonly found on PD-L1, acting as an immune recognition ligand and regulating certain immune responses. Studies have identified many mechanisms and potential therapeutic targets within the glycosylation pathways of PD-L1, revealing their involvement in cancer pathology, immune evasion, and resistance to immunotherapy. In this review, we covered the glycoforms, terminal moiety, binding lectin, glycosyltransferase, as well as sugar analogs focusing on glycosylated PD-L1. We present a mechanism that originates from the endoplasmic reticulum (ER)-Golgi apparatus (Golgi) and its subsequent translocation to the cell membrane. This pathway determines the immune suppression function of PD-L1 and therefore regulates the immune response such as T cells, monocytes, and macrophages. This collection of findings underscores the significance of glycosylation in the role of PD-L1 in cancer and highlights multiple potential targets and strategies for improving therapeutic intervention and diagnostic techniques.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Duo Hsu Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chen-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chao
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Graduate Institute of Cell Biology, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 113 Wilder Street, Lowell, MA, 01854, USA
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
9
|
Sun Q, Hong S. Glycoscience in Advancing PD-1/PD-L1-Axis-Targeted Tumor Immunotherapy. Int J Mol Sci 2025; 26:1238. [PMID: 39941004 PMCID: PMC11818636 DOI: 10.3390/ijms26031238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Immune checkpoint blockade therapy, represented by anti-PD-1/PD-L1 monoclonal antibodies, has significantly changed the immunotherapy landscape. However, the treatment is still limited by unsatisfactory response rates, immune-related adverse effects, and drug resistance. Current studies have established that glycosylation, a common post-translational modification, is crucial in promoting cancer progression and immune invasion. Targeting aberrant glycosylation in cancers presents precision medicine regimens for monitoring cancer progression and developing personalized medicine. Notably, the immune checkpoints PD-1 and PD-L1 are highly glycosylated, which affects PD-1/PD-L1 interaction and the binding of anti-PD-1/PD-L1 monoclonal antibodies. Recent achievements in glycoscience to enhance patient outcomes, referred to as glycotherapy, have underscored their high potency in advancing PD-1/PD-L1 blockade therapies, i.e., glycoengineered antibodies with improved binding toward PD-1/PD-L1, pharmaceutic inhibitors for core fucosylation and sialylation, and synergistic treatment with the antibody-sialidase conjugate. This review briefly introduces the PD-1/PD-L1 axis and glycosylation and highlights the fundamental and applied advances in glycoscience that improve PD-1/PD-L1 immunoblockade therapies.
Collapse
Affiliation(s)
| | - Senlian Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| |
Collapse
|
10
|
Cordova-Bahena L, Landero-Marin C, Flores-Hernandez X, Alvarez-Coronel LD, Jimenez-Uribe AP, Salinas-Jazmin N, An Z, Velasco-Velazquez M. In silico-driven identification of Pranlukast as a Stabilizer of PD-L1 Homodimers. Anticancer Agents Med Chem 2025; 25:179-193. [PMID: 39411933 DOI: 10.2174/0118715206303675241009104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are critical immune checkpoints in cancer biology. Multiple small-molecule drugs have been developed as inhibitors of the PD-1/PD-L1 axis. Those drugs promote the formation of PD-L1 homodimers, causing their stabilization, internalization, and subsequent degradation. Drug repurposing is a strategy that expedites the clinical translation by identifying new effects of drugs with clinical use. Herein, we aimed to repurpose drugs as inductors of PD-L1 homodimerization and, therefore, as potential inhibitors of PD-L1. METHODS We generated a hybrid pharmacophore model by analyzing the structures of reported ligands that induce PD-L1 homodimerization and their target-binding mode. Pharmacophore-matching compounds were selected from a chemical library of Food and Drug Administration (FDA)-approved drugs. Their binding modes to PDL1 homodimers were assessed by molecular docking and the stability of the complexes and the corresponding binding energies were evaluated by molecular dynamics (MD) simulations. Finally, the activity of one drug as promoter of PD-L1 homodimerization was assessed in protein crosslinking assays. RESULTS We identified 12 pharmacophore-matching compounds, but only 4 reproduced the binding mode of the reference inhibitors. Further characterization by MD showed that pranlukast, an antagonist of leukotriene receptors that is used to treat asthma, generated stable and energy-favorable interactions with PD-L1 homodimers and induced homodimerization of recombinant PD-L1. CONCLUSION Our results suggest that pranlukast inhibits the PD-1/PD-L1 axis, meriting its repurposing as an antitumor drug.
Collapse
Affiliation(s)
- Luis Cordova-Bahena
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
- Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT), Mexico City, 03940, Mexico
| | - Carlos Landero-Marin
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
- School of Chemistry, UNAM, Mexico City, 04510, Mexico
| | - Xcaret Flores-Hernandez
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
- School of Chemistry, UNAM, Mexico City, 04510, Mexico
| | - Leonardo Daniel Alvarez-Coronel
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
- Graduate Program in Biochemical Sciences, UNAM, Mexico City, 04510, Mexico
| | | | - Nohemi Salinas-Jazmin
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Marco Velasco-Velazquez
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
12
|
Fang L, Gao D, Wang T, Zhao H, Zhang Y, Wang S. From nature to clinic: Quercetin's role in breast cancer immunomodulation. Front Immunol 2024; 15:1483459. [PMID: 39712006 PMCID: PMC11659267 DOI: 10.3389/fimmu.2024.1483459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Immunotherapy has brought hope to many breast cancer patients, but not all patients benefit from it. Quercetin (Qu), a natural product found in various sources, has anti-inflammatory and anti-tumor properties. We conducted a review of the pharmacological research of Qu in regulating anti-tumor immunity in vivo and in vitro. Qu can directly regulate the local tumor microenvironment (TME) by enhancing the activity of immune cells which includes promoting the infiltration of T cells and natural killer (NK) cells, inhibiting the recruitment of myeloid-derived suppressor cells and tumor-associated macrophages. Additionally, Qu inhibits anaerobic glycolysis in tumor cells, thereby reducing the production and transport of lactic acid. It also suppresses tumor angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway and the vitamin D pathway. Furthermore, Qu can enhance the efficacy of immunotherapy for breast cancer by modulating the systemic microenvironment. This includes inhibiting obesity-related chronic inflammation to decrease the production of inflammatory factors, regulating the composition of intestinal microbiota, and intervening in the metabolism of intestinal flora. At the same time, we also address challenges in the clinical application of Qu, such as low absorption rates and unknown effective doses. In conclusion, we highlight Qu as a natural immunomodulator that enhances immune cell activity and has the potential to be developed as an adjunct for breast cancer.
Collapse
Affiliation(s)
- Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dandan Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, Martin-Castillo B, Lupu R, Pujana MA, Sardanyès J, Alarcón T, Menendez JA. Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov 2024; 10:417. [PMID: 39349429 PMCID: PMC11442875 DOI: 10.1038/s41420-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024] Open
Abstract
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Stefano Pedarra
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Miguel Angel Pardo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roderic Espin Garcia
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071, Girona, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007, Girona, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Sardanyès
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain.
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
| |
Collapse
|
14
|
Tang J, Liu H, Li J, Zhang Y, Yao S, Yang K, You Z, Qiao X, Song Y. Regulation of post-translational modification of PD-L1 and associated opportunities for novel small-molecule therapeutics. Future Med Chem 2024; 16:1583-1599. [PMID: 38949857 PMCID: PMC11370925 DOI: 10.1080/17568919.2024.2366146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.
Collapse
Affiliation(s)
- Jinglin Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Jinze Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Yibo Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Suyang Yao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- Key Laboratory of Medicinal Chemistry & Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- Key Laboratory of Medicinal Chemistry & Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- State Key Laboratory of New Pharmaceutical Preparations & Excipients, Hebei University, Baoding, Hebei071002, China
| |
Collapse
|
15
|
Duan Z, Shi R, Gao B, Cai J. N-linked glycosylation of PD-L1/PD-1: an emerging target for cancer diagnosis and treatment. J Transl Med 2024; 22:705. [PMID: 39080767 PMCID: PMC11290144 DOI: 10.1186/s12967-024-05502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
During tumorigenesis and progression, the immune checkpoint programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) play critical roles in suppressing T cell-mediated anticancer immune responses, leading to T-cell exhaustion and subsequent tumor evasion. Therefore, anti-PD-L1/PD-1 therapy has been an attractive strategy for treating cancer over the past decade. However, the overall efficacy of this approach remains suboptimal, revealing an urgent need for novel insights. Interestingly, increasing evidence indicates that both PD-L1 on tumor cells and PD-1 on tumor-specific T cells undergo extensive N-linked glycosylation, which is essential for the stability and interaction of these proteins, and this modification promotes tumor evasion. In various preclinical models, targeting the N-linked glycosylation of PD-L1/PD-1 was shown to significantly increase the efficacy of PD-L1/PD-1 blockade therapy. Furthermore, deglycosylation of PD-L1 strengthens the signal intensity in PD-L1 immunohistochemistry (IHC) assays, improving the diagnostic and therapeutic relevance of this protein. In this review, we provide an overview of the regulatory mechanisms underlying the N-linked glycosylation of PD-L1/PD-1 as well as the crucial role of N-linked glycosylation in PD-L1/PD-1-mediated immune evasion. In addition, we highlight the promising implications of targeting the N-linked glycosylation of PD-L1/PD-1 in the clinical diagnosis and treatment of cancer. Our review identifies knowledge gaps and sheds new light on the cancer research field.
Collapse
Affiliation(s)
- Zhiyun Duan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Runhan Shi
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, P.R. China.
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, P.R. China.
| |
Collapse
|
16
|
Alqathama A. Natural products as promising modulators of breast cancer immunotherapy. Front Immunol 2024; 15:1410300. [PMID: 39050852 PMCID: PMC11266008 DOI: 10.3389/fimmu.2024.1410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and is considered a major global health challenge worldwide due to its high incidence and mortality rates. Treatment strategies for BC is wide-ranging and include surgery, radiotherapy, chemotherapy, targeted hormonal therapy and immunotherapy. Immunotherapy has gained popularity recently and is often integrated as a component of personalized cancer care because it aims to strengthen the immune system and enable it to recognize and eradicate transformed cells. It has fewer side-effects and lower toxicity than other treatment strategies, such as chemotherapy. Many natural products are being investigated for a wide range of therapeutic pharmacological properties, such as immune system modulation and activity against infection, auto-immune disease, and cancer. This review presents an overview of the major immune response-related pathways in BC, followed by detailed explanation of how natural compounds can act as immunomodulatory agents against biomolecular targets. Research has been carried out on many forms of natural products, including extracts, isolated entities, synthetic derivatives, nanoparticles, and combinations of natural compounds. Findings have shown significant regulatory effects on immune cells and immune cytokines that lead to immunogenic cancer cell death, as well as upregulation of macrophages and CD+8 T cells, and increased natural killer cell and dendritic cell activity. Natural products have also been found to inhibit some immuno-suppressive cells such as Treg and myeloid-derived suppressor cells, and to decrease immunosuppressive factors such as TGF-β and IL-10. Also, some natural compounds have been found to target and hinder immune checkpoints such as PD-L1.
Collapse
Affiliation(s)
- Aljawharah Alqathama
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
17
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Liu J, Xu X, Zhong H, Yu M, Abuduaini N, Zhang S, Yang X, Feng B. Glycosylation and Its Role in Immune Checkpoint Proteins: From Molecular Mechanisms to Clinical Implications. Biomedicines 2024; 12:1446. [PMID: 39062019 PMCID: PMC11274725 DOI: 10.3390/biomedicines12071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint proteins have become recent research hotspots for their vital role in maintaining peripheral immune tolerance and suppressing immune response function in a wide range of tumors. Therefore, investigating the immunomodulatory functions of immune checkpoints and their therapeutic potential for clinical use is of paramount importance. The immune checkpoint blockade (ICB) is an important component of cancer immunotherapy, as it targets inhibitory immune signaling transduction with antagonistic antibodies to restore the host immune response. Anti-programmed cell death-1 (PD-1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies are two main types of widely used ICBs that drastically improve the survival and prognosis of many patients with cancer. Nevertheless, the response rate of most cancer types remains relatively low due to the drug resistance of ICBs, which calls for an in-depth exploration to improve their efficacy. Accumulating evidence suggests that immune checkpoint proteins are glycosylated in forms of N-glycosylation, core fucosylation, or sialylation, which affect multiple biological functions of proteins such as protein biosynthesis, stability, and interaction. In this review, we give a brief introduction to several immune checkpoints and summarize primary molecular mechanisms that modulate protein stability and immunosuppressive function. In addition, newly developed methods targeting glycosylation on immune checkpoints for detection used to stratify patients, as well as small-molecule agents disrupting receptor-ligand interactions to circumvent drug resistance of traditional ICBs, in order to increase the clinical efficacy of immunotherapy strategies of patients with cancer, are also included to provide new insights into scientific research and clinical treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China; (J.L.); (X.X.); (H.Z.); (M.Y.); (N.A.); (S.Z.); (X.Y.)
| |
Collapse
|
20
|
Cheng C, Hsu SK, Chen YC, Liu W, Shu ED, Chien CM, Chiu CC, Chang WT. Burning down the house: Pyroptosis in the tumor microenvironment of hepatocellular carcinoma. Life Sci 2024; 347:122627. [PMID: 38614301 DOI: 10.1016/j.lfs.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1β and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.
Collapse
Affiliation(s)
- Chi Cheng
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ming Chien
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
21
|
Wang L, Fang Y, Ma Y, Zhao Z, Ma R, Zhang Y, Qiao Y, Wang X, Zhang Y. A novel natural Syk inhibitor suppresses IgE-mediated mast cell activation and passive cutaneous anaphylaxis. Bioorg Chem 2024; 146:107320. [PMID: 38569323 DOI: 10.1016/j.bioorg.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 μM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 μM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.
Collapse
Affiliation(s)
- Lele Wang
- Key Laboratory of Ethnomedicine in Ministry of Education, School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China
| | - Yuzhen Fang
- Key Laboratory of Ethnomedicine in Ministry of Education, School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China
| | - Yuqing Ma
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China
| | - Zixi Zhao
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China
| | - Ruonan Ma
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xing Wang
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Yuxin Zhang
- Key Laboratory of Ethnomedicine in Ministry of Education, School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China.
| |
Collapse
|
22
|
Kim SH, Park HM, Jeong HJ. Evaluation of PDL1 positive cancer cell-specific binding activity of recombinant anti-PDL1 scFv. Biotechnol Prog 2024; 40:e3439. [PMID: 38377106 DOI: 10.1002/btpr.3439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Programmed cell death-ligand 1 (PDL1) is a transmembrane protein that is characterized as an immune regulatory molecule. We recently developed a recombinant single-chain fragment of variable domain (scFv) against PDL1, which showed high binding efficiency to purified recombinant PDL1 protein. However, at that time, proof-of-concept data for the effect of scFv using PDL1-expressing cells was lacking. In this study, we conducted two kinds of cell-based immunoassays, western blotting and enzyme-linked immunosorbent assay, using anti-PDL1 scFv. The results indicate that scFv can selectively and sensitively detect PDL1 from PDL1 positive human cancer cell lines. Our findings suggest that scFv could be used as a potential PDL1 inhibitor agent and probe for cell-based immunoassays to detect PDL1.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Industry-Academia Cooperation Foundation, Hongik University, Sejong-si, South Korea
| | - Hae-Min Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si, South Korea
| |
Collapse
|
23
|
Xu J, Kong Y, Zhu P, Du M, Liang X, Tong Y, Li X, Dong C. Progress in small-molecule inhibitors targeting PD-L1. RSC Med Chem 2024; 15:1161-1175. [PMID: 38665838 PMCID: PMC11042164 DOI: 10.1039/d3md00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
PD-L1 is a transmembrane protein overexpressed by tumor cells. It binds to PD-1 on the surface of T-cells, suppresses T-cell activity and hinders the immune response against cancer. Clinically, several monoclonal antibodies targeting PD-1/PD-L1 have achieved significant success in cancer immunotherapy. Nevertheless, their disadvantages, such as unchecked immune responses, high cost and long half-life, stimulated pharmacologists to develop small-molecule inhibitors targeting PD-1/PD-L1. After a batch of excellent inhibitors with a biphenyl core structure were firstly reported by BMS, more and more researchers focused on small-molecule inhibitors targeting PD-L1 rather than PD-1. Numerous small-molecule inhibitors were extensively designed and synthesized in the past few years. In this paper, the structural characteristics of PD-L1 and complexes of PD-L1 with its inhibitors are elaborated and small molecule inhibitors developed in the last decade are summarized as well. This paper aims to provide insights into further designing and synthesis of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Jindan Xu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Yuanfang Kong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Pengbo Zhu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Mingyan Du
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Xuan Liang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Yan Tong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Xiaofei Li
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Chunhong Dong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| |
Collapse
|
24
|
Wang Z, Li M, Bi L, Hu X, Wang Y. Traditional Chinese Medicine in Regulating Tumor Microenvironment. Onco Targets Ther 2024; 17:313-325. [PMID: 38617090 PMCID: PMC11016250 DOI: 10.2147/ott.s444214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Tumor microenvironment (TME) is a complex and integrated system containing a variety of tumor-infiltrating immune cells and stromal cells. They are closely connected with cancer cells and influence the development and progression of cancer. Traditional Chinese medicine (TCM) is an important complementary therapy for cancer treatment in China. It mainly eliminates cancer cells by regulating TME. The aim of this review is to systematically summarize the crosstalk between tumor cells and TME, and to summarize the research progress of TCM in regulating TME. The review is of great significance in revealing the therapeutic mechanism of action of TCM, and provides an opportunity for the combined application of TCM and immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Mengyao Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ling Bi
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
25
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
26
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
27
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Schulz D, Feulner L, Santos Rubenich D, Heimer S, Rohrmüller S, Reinders Y, Falchetti M, Wetzel M, Braganhol E, Lummertz da Rocha E, Schäfer N, Stöckl S, Brockhoff G, Wege AK, Fritsch J, Pohl F, Reichert TE, Ettl T, Bauer RJ. Subcellular localization of PD-L1 and cell-cycle-dependent expression of nuclear PD-L1 variants: implications for head and neck cancer cell functions and therapeutic efficacy. Mol Oncol 2024; 18:431-452. [PMID: 38103190 PMCID: PMC10850815 DOI: 10.1002/1878-0261.13567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 12/18/2023] Open
Abstract
The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.
Collapse
Affiliation(s)
- Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Laura Feulner
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Dominique Santos Rubenich
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
- Postgraduation program in BiosciencesFederal University of Health Sciences from Porto AlegreBrazil
| | - Sina Heimer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Sophia Rohrmüller
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Yvonne Reinders
- Leibniz‐Institute for Analytical Sciences, ISAS e.V.DortmundGermany
| | - Marcelo Falchetti
- Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Martin Wetzel
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Elizandra Braganhol
- Department of Basic Health SciencesFederal University of Health Sciences from Porto AlegreBrazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgGermany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgGermany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Gero Brockhoff
- Department of Gynecology and ObstetricsUniversity Medical Center RegensburgGermany
| | - Anja K. Wege
- Department of Gynecology and ObstetricsUniversity Medical Center RegensburgGermany
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious DiseasesUniversity Medical Center RegensburgGermany
| | - Fabian Pohl
- Department of RadiotherapyUniversity Medical Center RegensburgGermany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| |
Collapse
|
29
|
Zou W, Luo X, Gao M, Yu C, Wan X, Yu S, Wu Y, Wang A, Fenical W, Wei Z, Zhao Y, Lu Y. Optimization of cancer immunotherapy on the basis of programmed death ligand-1 distribution and function. Br J Pharmacol 2024; 181:257-272. [PMID: 36775813 PMCID: PMC11080663 DOI: 10.1111/bph.16054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyuan Gao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Wan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Sun Z, Ma X, Zhao C, Fan L, Yin S, Hu H. Delta-tocotrienol disrupts PD-L1 glycosylation and reverses PD-L1-mediated immune suppression. Biomed Pharmacother 2024; 170:116078. [PMID: 38159375 DOI: 10.1016/j.biopha.2023.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
PD-L1-mediated immune escape plays an important role in cancer development and progression. Targeting PD-L1 is consider to be an attractive approach for cancer treatment. PD-L1 is a heavily N-linked glycosylated protein, and the glycosylation of PD-L1 is essential for its ability to interact with its receptor PD-1 to mediate immune suppression. In the present study, we demonstrated for the first time that delta-tocotrienol (δ-T3) not any of the other forms of vitamin E was able to disrupt PD-L1 glycosylation mechanistically associated with the suppression of TCF4-STT3a/STT3b axis. The inhibition of PD-L1 glycosylation by δ-T3 resulted in the decrease of PD-L1 expression and its exosomal secretion, leading to the reduction of PD-L1 and PD-1 interaction, and reversing PD-L1-mediated immune suppression, which in turn contributed to the inhibitory effect on tumor growth. The findings of the present study provide a novel mechanistic interpretation for the superior anticancer activity of δ-T3 among 8 isomers of the vitamin E.
Collapse
Affiliation(s)
- Zhenou Sun
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China; College of Food Science and Nutritional Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China; College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
31
|
Wang B, Jiang HM, Qi LM, Li X, Huang Q, Xie X, Xia Q. Deciphering resveratrol's role in modulating pathological pain: From molecular mechanisms to clinical relevance. Phytother Res 2024; 38:59-73. [PMID: 37795923 DOI: 10.1002/ptr.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Pathological pain, a multifaceted and debilitating ailment originating from injury or post-injury inflammation of the somatosensory system, poses a global health challenge. Despite its ubiquity, reliable therapeutic strategies remain elusive. To solve this problem, resveratrol, a naturally occurring nonflavonoid polyphenol, has emerged as a potential beacon of hope owing to its anti-inflammatory, antioxidant, and immunomodulatory capabilities. These properties potentially position resveratrol as an efficacious candidate for the management of pathological pain. This concise review summaries current experimental and clinical findings to underscore the therapeutic potential of resveratrol in pathological pain, casting light on the complex underlying pathophysiology. Our exploration suggests that resveratrol may exert its analgesic effect by the modulating pivotal signaling pathways, including PI3K/Akt/mTOR, TNFR1/NF-κB, MAPKs, and Nrf2. Moreover, resveratrol appears to attenuate spinal microglia activation, regulate primary receptors in dorsal root sensory neurons, inhibit pertinent voltage-gated ion channels, and curb the expression of inflammatory mediators and oxidative stress responses. The objective of this review is to encapsulate the pharmacological activity of resveratrol, including its probable signaling pathways, pharmacokinetics, and toxicology pertinent to the treatment of pathological pain. Hopefully, we aim to map out promising trajectories for the development of resveratrol as a potential analgesic.
Collapse
Affiliation(s)
- Biao Wang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Xia
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
32
|
Vijayan Y, Sandhu JS, Harikumar KB. Modulatory Role of Phytochemicals/Natural Products in Cancer Immunotherapy. Curr Med Chem 2024; 31:5165-5177. [PMID: 38549529 DOI: 10.2174/0109298673274796240116105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 09/06/2024]
Abstract
Immunotherapy is a newly emerging and effective approach to treating cancer. However, there are many challenges associated with using checkpoint inhibitors in this treatment strategy. The component of the tumor microenvironment plays a crucial role in antitumor immune response, regulating tumor immune surveillance and immunological evasion. Natural products/phytochemicals can modulate the tumor microenvironment and function as immunomodulatory agents. In clinical settings, there is a strong need to develop synergistic combination regimens using natural products that can effectively enhance the therapeutic benefits of immune checkpoint inhibitors relative to their effectiveness as single therapies. The review discusses immunotherapy, its side effects, and a summary of evidence suggesting the use of natural products to modulate immune checkpoint pathways.
Collapse
Affiliation(s)
- Yadu Vijayan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Jaskirat Singh Sandhu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
33
|
Wang Y, Zhou Y, Yang L, Lei L, He B, Cao J, Gao H. Challenges Coexist with Opportunities: Spatial Heterogeneity Expression of PD-L1 in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303175. [PMID: 37934012 PMCID: PMC10767451 DOI: 10.1002/advs.202303175] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Indexed: 11/08/2023]
Abstract
Cancer immunotherapy using anti-programmed death-ligand 1 (PD-L1) antibodies has been used in various clinical applications and achieved certain results. However, such limitations as autoimmunity, tumor hyperprogression, and overall low patient response rate impede its further clinical application. Mounting evidence has revealed that PD-L1 is not only present in tumor cell membrane but also in cytoplasm, exosome, or even nucleus. Among these, the dynamic and spatial heterogeneous expression of PD-L1 in tumors is mainly responsible for the unsatisfactory efficacy of PD-L1 antibodies. Hence, numerous studies focus on inhibiting or degrading PD-L1 to improve immune response, while a comprehensive understanding of the molecular mechanisms underlying spatial heterogeneity of PD-L1 can fundamentally transform the current status of PD-L1 antibodies in clinical development. Herein, the concept of spatial heterogeneous expression of PD-L1 is creatively introduced, encompassing the structure and biological functions of various kinds of PD-L1 (including mPD-L1, cPD-L1, nPD-L1, and exoPD-L1). Then an in-depth analysis of the regulatory mechanisms and potential therapeutic targets of PD-L1 is provided, seeking to offer a solid basis for future investigation. Moreover, the current status of agents is summarized, especially small molecular modulators development directed at these new targets, offering a novel perspective on potential PD-L1 therapeutics strategies.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Yang Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Lianyi Yang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Lei Lei
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Bin He
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Jun Cao
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
34
|
Lagunas-Rangel FA. Prediction of resveratrol target proteins: a bioinformatics analysis. J Biomol Struct Dyn 2024; 42:1088-1097. [PMID: 37011009 DOI: 10.1080/07391102.2023.2196698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Resveratrol is a natural compound with a wide range of biological functions that generate health benefits under normal conditions and in multiple diseases. This has attracted the attention of the scientific community, which has revealed that this compound exerts these effects through its action on different proteins. Despite the great efforts made, due to the challenges involved, not all the proteins with which resveratrol interacts have yet been identified. In this work, using protein target prediction bioinformatics systems, RNA sequencing analysis and protein-protein interaction networks, 16 proteins were identified as potential targets of resveratrol. Due to its biological relevance, the interaction of resveratrol with the predicted target CDK5 was further investigated. A docking analysis found that resveratrol can interact with CDK5 and be positioned in its ATP-binding pocket. Resveratrol forms hydrogen bonds between its three hydroxyl groups (-OH) and CDK5 residues C83, D86, K89 and D144. Molecular dynamics analysis showed that these bonds allow resveratrol to remain in the pocket and suggest inhibition of CDK5 activity. All this allows us to better understand how resveratrol acts and to consider CDK5 inhibition within its biological actions, mainly in neurodegenerative diseases where this protein has been shown to be relevant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
35
|
Yu W, Wang Z, Dai P, Sun J, Li J, Han W, Li K. The activation of SIRT1 by resveratrol reduces breast cancer metastasis to lung through inhibiting neutrophil extracellular traps. J Drug Target 2023; 31:962-975. [PMID: 37772906 DOI: 10.1080/1061186x.2023.2265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Neutrophil extracellular traps (NETs) play a crucial role in breast cancer metastasis. However, the therapeutic target of NETs in breast cancer metastasis is still unknown. Using a natural metabolite library and single-cell sequencing data analysis, we identified resveratrol (RES), a polyphenolic natural phytoalexin, and agonist of silent information regulator-1 (SIRT1) that suppressed NETs formation after cathepsin C (CTSC) treatment. In vivo, RES significantly hindered breast cancer metastasis in a murine orthotopic 4T1 breast cancer model. Serum levels of myeloperoxidase-DNA and neutrophil elastase-DNA in mouse breast cancer model were significantly lower after RES treatment. Correspondingly, the tumour infiltrated CD8+T cells in the lungs increased after the treatment. Mechanistically, RES targets SIRT1 in neutrophils and significantly inhibits the citrullination of histones H3, which is essential for chromatin decondensation and NETs formation. Furthermore, we identified that the NETs were suppressed by RES in bone marrow neutrophils after CTSC treatment, while specific deficiency of SIRT1 in neutrophils promoted NETs formation and breast cancer to lung metastasis. Thus, our results revealed that RES could be potentially identified as a viable therapeutic drug to prevent neutrophil cell death and breast cancer metastasis.
Collapse
Affiliation(s)
- Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuning Wang
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Dai
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Han
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Guo Y, Guo Y, Guo Z, Liu B, Xu J. Effect of Fragment 1 on the Binding of Epigallocatechin Gallate to the PD-L1 Dimer Explored by Molecular Dynamics. Molecules 2023; 28:7881. [PMID: 38067610 PMCID: PMC10708077 DOI: 10.3390/molecules28237881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Blocking the interaction between programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) by directly targeting the PD-L1 dimer has emerged as a hot topic in the field of cancer immunotherapy. Epigallocatechin gallate (EGCG), a natural product, has been demonstrated binding to the PD-L1 dimer in our previous study, but has a weaker binding capacity, moreover, EGCG is located at the end of the binding pocket of the PD-L1 dimer. The inhibitor fragment 1 (FRA) lies at the other end. So, we proposed that the introduction of FRA might be able to improve the binding ability. To illuminate this issue, molecular dynamics (MD) simulation was performed in the present study. Binding free energy calculations show that the binding affinity is significantly increased by 17 kcal/mol upon the introduction of FRA. It may be due to the energy contributions of emerging key residues ATyr56, AMet115, BTyr123, AIle54 and the enhanced contributions of initial key residues ATyr123 and BVal68. Binding mode and non-bonded interaction results indicate that FRA_EGCG (EGCG in combination with FRA) binds to the C-, F- and G-sheet of the PD-L1 dimer. Importantly, the introduction of FRA mainly strengthened the nonpolar interactions. The free energy landscape and secondary structure results further show that FRA_EGCG can interact with the PD-L1 dimer more stably. These data demonstrated here provide the theoretical basis for screening two or more natural products with additive inhibitory effect on this pathway and therefore exerting more effective anticancer immunity.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Yilin Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Zichao Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| |
Collapse
|
37
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Cerella C, Dicato M, Diederich M. Enhancing personalized immune checkpoint therapy by immune archetyping and pharmacological targeting. Pharmacol Res 2023; 196:106914. [PMID: 37714393 DOI: 10.1016/j.phrs.2023.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers. Recent findings show that dominant patterns of immune cell composition, T-cell status and heterogeneity, and spatiotemporal distribution of immune cells within the tumor microenvironment (TME) are becoming essential determinants of prognosis and therapeutic response. In this context, ICIs also function as investigational tools and proof of concept, allowing the validation of the identified mechanisms. After reviewing the current state of ICIs, this article will explore new comprehensive predictive markers for ICIs based on recent discoveries. We will discuss the recent establishment of a classification of TMEs into immune archetypes as a tool for personalized immune profiling, allowing patient stratification before ICI treatment. We will discuss the developing comprehension of T-cell diversity and its role in shaping the immune profile of patients. We describe the potential of strategies that score the mutual spatiotemporal modulation between T-cells and other cellular components of the TME. Additionally, we will provide an overview of a range of synthetic and naturally occurring or derived small molecules. We will compare compounds that were recently identified by in silico prediction to wet lab-validated drug candidates with the potential to function as ICIs and/or modulators of the cellular components of the TME.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
39
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
40
|
Feng C, Zhang L, Chang X, Qin D, Zhang T. Regulation of post-translational modification of PD-L1 and advances in tumor immunotherapy. Front Immunol 2023; 14:1230135. [PMID: 37554324 PMCID: PMC10405826 DOI: 10.3389/fimmu.2023.1230135] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The immune checkpoint molecules programmed cell death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are one of the most promising targets for tumor immunotherapy. PD-L1 is overexpressed on the surface of tumor cells and inhibits T cell activation upon binding to PD⁃1 on the surface of T cells, resulting in tumor immune escape. The therapeutic strategy of targeting PD-1/PD-L1 involves blocking this binding and restoring the tumor-killing effect of immune cells. However, in clinical settings, a relatively low proportion of cancer patients have responded well to PD-1/PD-L1 blockade, and clinical outcomes have reached a bottleneck and no substantial progress has been made. In recent years, PD-L1 post-translation modifications (PTMs) have gradually become a hot topic in the field of PD-L1 research, which will provide new insights to improve the efficacy of current anti-PD-1/PD-L1 therapies. Here, we summarized and discussed multiple PTMs of PD-L1, including glycosylation, ubiquitination, phosphorylation, acetylation and palmitoylation, with a major emphasis on mechanism-based therapeutic strategies (including relevant enzymes and targets that are already in clinical use and that may become drugs in the future). We also summarized the latest research progress of PTMs of PD-L1/PD-1 in regulating immunotherapy. The review provided novel strategies and directions for tumor immunotherapy research based on the PTMs of PD-L1/PD-1.
Collapse
Affiliation(s)
- Chong Feng
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Chang
- Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongliang Qin
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
41
|
Luo L, Lin C, Wang P, Cao D, Lin Y, Wang W, Zhao Y, Shi Y, Gao Z, Kang X, Zhang Y, Wang S, Wang J, Xu M, Liu H, Liu SL. Combined Use of Immune Checkpoint Inhibitors and Phytochemicals as a Novel Therapeutic Strategy against Cancer. J Cancer 2023; 14:2315-2328. [PMID: 37576404 PMCID: PMC10414047 DOI: 10.7150/jca.85966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has dramatically changed cancer treatment, opening novel opportunities to cure malignant diseases. To date, most prevalently targeted immune checkpoints are programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), with many others being under extensive investigations. However, according to available data, only a fraction of patients may respond to ICI therapy. Additionally, this therapy may cause severe adverse immune-related side effects, such as diarrhea, headache, muscle weakness, rash, hepatitis and leucopenia, although most of them are not fatal, they can affect the patient's treatment outcome and quality of life. On the other hand, growing evidence has shown that phytochemicals with anticancer effects may combine ICI therapy to augment the safety and effectiveness of the treatment against cancer while reducing the adverse side effects. In this review, we summarize the state of art in the various experiments and clinical application of ICIs plus phytochemicals, with a focus on their combined use as a novel therapeutic strategy to cure cancer.
Collapse
Affiliation(s)
- LingJie Luo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Caiji Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Pengfei Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Danli Cao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yiru Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Wenxue Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yufan Zhao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yongwei Shi
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zixiang Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xin Kang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yuanyuan Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuang Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jiaxing Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Mengzhi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
42
|
Kučan D, Oršolić N, Odeh D, Ramić S, Jakopović B, Knežević J, Jazvinšćak Jembrek M. The Role of Hyperthermia in Potentiation of Anti-Angiogenic Effect of Cisplatin and Resveratrol in Mice Bearing Solid Form of Ehrlich Ascites Tumour. Int J Mol Sci 2023; 24:11073. [PMID: 37446252 DOI: 10.3390/ijms241311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further.
Collapse
Affiliation(s)
- Darko Kučan
- Division of Abdominal Surgery and Organ Transplantation, Department of Surgery, University Hospital Merkur, Zajčeva 19, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, 10000 Zagreb, Croatia
| | - Boris Jakopović
- Dr Myko San-Health from Mushrooms Co., Miramarska Cesta 109, 10000 Zagreb, Croatia
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
43
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
44
|
Li S, Hao L, Zhang J, Deng J, Hu X. Focus on T cell exhaustion: new advances in traditional Chinese medicine in infection and cancer. Chin Med 2023; 18:76. [PMID: 37355637 DOI: 10.1186/s13020-023-00785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
In chronic infections and cancers, T lymphocytes (T cells) are exposed to persistent antigen or inflammatory signals. The condition is often associated with a decline in T-cell function: a state called "exhaustion". T cell exhaustion is a state of T cell dysfunction characterized by increased expression of a series of inhibitory receptors (IRs), decreased effector function, and decreased cytokine secretion, accompanied by transcriptional and epigenetic changes and metabolic defects. The rise of immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has dramatically changed the clinical treatment paradigm for patients. However, its low response rate, single target and high immunotoxicity limit its clinical application. The multiple immunomodulatory potential of traditional Chinese medicine (TCM) provides a new direction for improving the treatment of T cell exhaustion. Here, we review recent advances that have provided a clearer molecular understanding of T cell exhaustion, revealing the characteristics and causes of T cell exhaustion in persistent infections and cancers. In addition, this paper summarizes recent advances in improving T cell exhaustion in infectious diseases and cancer with the aim of providing a comprehensive and valuable source of information on TCM as an experimental study and their role in collaboration with ICIs therapy.
Collapse
Affiliation(s)
- Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Jiali Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
45
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Haloarchaeal carotenoids exert an in vitro antiproliferative effect on human breast cancer cell lines. Sci Rep 2023; 13:7148. [PMID: 37130864 PMCID: PMC10154395 DOI: 10.1038/s41598-023-34419-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/29/2023] [Indexed: 05/04/2023] Open
Abstract
Oxidative stress has been linked to the onset and progression of different neoplasia. Antioxidants might help prevent it by modulating biochemical processes involved in cell proliferation. Here, the aim was to evaluate the in vitro cytotoxic effect of Haloferax mediterranei bacterioruberin-rich carotenoid extracts (BRCE) (0-100 µg/ml) in six BC cell lines, representative of the intrinsic phenotypes and a healthy mammary epithelium cell line. Cell index values were obtained using xCELLigence RTCA System. Furthermore, cell diameter, viability, and concentration were measured at 12 h, 24 h, and 30 h. We found that BC cells were selectively affected by BRCE (SI > 1, p < 0.005). After 30 h, the population of BC cells exposed to 100 µg/ml was 11.7-64.6% of the control (p = 0.0001-0.0009). Triple-negative cells were significantly affected [MDA-MB-231 (IC50 51.8 µg/ml, p < 0.0001) and MDA-MB-468 (IC50 63.9 µg/ml, p < 0.0001)]. Cell size was also reduced after 30 h treatment in 3.8 (± 0.1) µm and 3.3 (± 0.02) µm for SK-BR-3 (p < 0.0001) and MDA-MB-468 (p < 0.0001), respectively. In conclusion, Hfx. mediterranei BRCE exerts a cytotoxic effect on BC cell lines representative of all studied intrinsic subtypes. Furthermore, results obtained for MDA-MB-231 and MDA-MB-468 are very promising, considering the aggressive behaviour of the triple-negative BC subtype.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry, Molecular Biology, Edaphology, and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03080, Alicante, Spain
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies "Ramón Margalef" University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Dr. Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010, Alicante, Spain
| | - Gloria Peiró
- Department of Pathology, Dr. Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010, Alicante, Spain
- Biotechnology Department, Immunology Area, Faculty of Sciences, University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology, and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03080, Alicante, Spain.
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies "Ramón Margalef" University of Alicante, Ap. 99, 03080, Alicante, Spain.
| |
Collapse
|
46
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
47
|
Wu X, Wang N, Liang J, Wang B, Jin Y, Liu B, Yang Y. Is the Triggering of PD-L1 Dimerization a Potential Mechanism for Food-Derived Small Molecules in Cancer Immunotherapy? A Study by Molecular Dynamics. Int J Mol Sci 2023; 24:ijms24021413. [PMID: 36674929 PMCID: PMC9864258 DOI: 10.3390/ijms24021413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4′-hydroxy-3′-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.
Collapse
|
48
|
Silibinin Overcomes EMT-Driven Lung Cancer Resistance to New-Generation ALK Inhibitors. Cancers (Basel) 2022; 14:cancers14246101. [PMID: 36551587 PMCID: PMC9777025 DOI: 10.3390/cancers14246101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) may drive the escape of ALK-rearranged non-small-cell lung cancer (NSCLC) tumors from ALK-tyrosine kinase inhibitors (TKIs). We investigated whether first-generation ALK-TKI therapy-induced EMT promotes cross-resistance to new-generation ALK-TKIs and whether this could be circumvented by the flavonolignan silibinin, an EMT inhibitor. ALK-rearranged NSCLC cells acquiring a bona fide EMT phenotype upon chronic exposure to the first-generation ALK-TKI crizotinib exhibited increased resistance to second-generation brigatinib and were fully refractory to third-generation lorlatinib. Such cross-resistance to new-generation ALK-TKIs, which was partially recapitulated upon chronic TGFβ stimulation, was less pronounced in ALK-rearranged NSCLC cells solely acquiring a partial/hybrid E/M transition state. Silibinin overcame EMT-induced resistance to brigatinib and lorlatinib and restored their efficacy involving the transforming growth factor-beta (TGFβ)/SMAD signaling pathway. Silibinin deactivated TGFβ-regulated SMAD2/3 phosphorylation and suppressed the transcriptional activation of genes under the control of SMAD binding elements. Computational modeling studies and kinase binding assays predicted a targeted inhibitory binding of silibinin to the ATP-binding pocket of TGFβ type-1 receptor 1 (TGFBR1) and TGFBR2 but solely at the two-digit micromolar range. A secretome profiling confirmed the ability of silibinin to normalize the augmented release of TGFβ into the extracellular fluid of ALK-TKIs-resistant NSCLC cells and reduce constitutive and inducible SMAD2/3 phosphorylation occurring in the presence of ALK-TKIs. In summary, the ab initio plasticity along the EMT spectrum may explain the propensity of ALK-rearranged NSCLC cells to acquire resistance to new-generation ALK-TKIs, a phenomenon that could be abrogated by the silibinin-driven attenuation of the TGFβ/SMAD signaling axis in mesenchymal ALK-rearranged NSCLC cells.
Collapse
|
49
|
Effects of small molecule-induced dimerization on the programmed death ligand 1 protein life cycle. Sci Rep 2022; 12:21286. [PMID: 36494467 PMCID: PMC9734112 DOI: 10.1038/s41598-022-25417-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) checkpoint blockade is central to Immuno-Oncology based therapies, and alternatives to antibody blockers of this interaction are an active area of research due to antibody related toxicities. Recently, small molecule compounds that induce PD-L1 dimerization and occlusion of PD-1 binding site have been identified and developed for clinical trials. This mechanism invokes an oligomeric state of PD-L1 not observed in cells previously, as PD-L1 is generally believed to function as a monomer. Therefore, understanding the cellular lifecycle of the induced PD-L1 dimer is of keen interest. Our report describes a moderate but consistent increase in the PD-L1 rate of degradation observed upon protein dimerization as compared to the monomer counterpart. This subtle change, while not resolved by measuring total PD-L1 cellular levels by western blotting, triggered investigations of the overall protein distribution across various cellular compartments. We show that PD-L1 dimerization does not lead to rapid internalization of neither transfected nor endogenously expressed protein forms. Instead, evidence is presented that dimerization results in retention of PD-L1 intracellularly, which concomitantly correlates with its reduction on the cell surface. Therefore, the obtained data for the first time points to the ability of small molecules to induce dimerization of the newly synthesized PD-L1 in addition to the protein already present on the plasma membrane. Overall, this work serves to improve our understanding of this important target on a molecular level in order to guide advances in drug development.
Collapse
|
50
|
Xiao L, Guan X, Xiang M, Wang Q, Long Q, Yue C, Chen L, Liu J, Liao C. B7 family protein glycosylation: Promising novel targets in tumor treatment. Front Immunol 2022; 13:1088560. [PMID: 36561746 PMCID: PMC9763287 DOI: 10.3389/fimmu.2022.1088560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these immune checkpoint proteins, leading to immunosuppression and rapid tumor progression. Therefore, regulation of glycosylation may be the "golden key" to relieve tumor immunosuppression. The exploration of a more precise glycosylation regulation mechanism and glycan structure of B7 family proteins is conducive to the discovery and clinical application of antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chaoyi Yue
- School of Medicine and Technology, Zunyi Medical University, Zunyi, China
| | - Lulu Chen
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| |
Collapse
|