1
|
Gozdas E, Avelar-Pereira B, Fingerhut H, Dacorro L, Jo B, Williams L, O'Hara R, Hosseini SMH. Long-term cognitive training enhances fluid cognition and brain connectivity in individuals with MCI. Transl Psychiatry 2024; 14:447. [PMID: 39443463 PMCID: PMC11500385 DOI: 10.1038/s41398-024-03153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a risk factor for Alzheimer's disease (AD). Multi-domain cognitive training (CT) may slow cognitive decline and delay AD onset. However, most work involves short interventions, targeting single cognitive domains or lacking active controls. We conducted a single-blind randomized controlled trial to investigate the effect of a 6-month, multi-domain CT on Fluid Cognition, functional connectivity in memory and executive functioning networks (primary outcomes), and white matter microstructural properties (secondary outcome) in aMCI. Sixty participants were randomly assigned to either a multi-domain CT or crossword training (CW) group, and thirty-four participants completed the intervention. We found a significant group-by-time interaction in Fluid Cognition (p = 0.007, F (1,28) = 8.26, Cohen's d = 0.38, 95% confidence interval [CI]: 2.45-14.4), with 90% of CT patients showing post-intervention improvements (p < 0.01, Cohen's d = 0.7). The CT group also showed better post-intervention Fluid Cognition than healthy controls (HCs, N = 45, p = 0.045). Functional connectivity analyses showed a significant group-by-time interaction (Cohen's d ≥ 0.8) in the dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex (IPC) networks. Specifically, CT displayed post-intervention increases whereas CW displayed decreases in functional connectivity. Moreover, increased connectivity strength between the left DLPFC and medial PFC was associated with improved Fluid Cognition. At a microstructural level, we observed a decline in fiber density (FD) for both groups, but the CT group declined less steeply (1.3 vs. 2%). The slower decline in FD for the CT group in several tracts, including the cingulum-hippocampus tract, was associated with better working memory. Finally, we identified regions in cognitive control and memory networks for which baseline functional connectivity and microstructural properties were associated with changes in Fluid Cognition. Long-term, multi-domain CT improves cognitive functioning and functional connectivity and delays structural brain decline in aMCI (ClinicalTrials.gov number: NCT03883308).
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Leanne Williams
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Varela-López B, Zurrón M, Lindín M, Díaz F, Galdo-Alvarez S. Compensation versus deterioration across functional networks in amnestic mild cognitive impairment subtypes. GeroScience 2024:10.1007/s11357-024-01369-9. [PMID: 39367933 DOI: 10.1007/s11357-024-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Functional connectivity studies to detect neurophysiological correlates of amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer's disease, have generated contradictory results in terms of compensation and deterioration, as most of the studies did not distinguish between the different aMCI subtypes: single-domain aMCI (sd-aMCI) and multiple-domain aMCI (md-aMCI). The present study aimed to characterize the neurophysiological correlates of aMCI subtypes by using resting-state functional magnetic resonance imaging. The study included sd-aMCI (n = 29), md-aMCI (n = 26), and control (n = 30) participants. The data were subjected to independent component analysis (ICA) to explore the default mode network (DMN) and the fronto-parietal control network (FPCN). Additionally, seed-based and moderation analyses were conducted to investigate the connectivity of the medial temporal lobe and functional networks. aMCI subtypes presented differences in functional connectivity relative to the control group: sd-aMCI participants displayed increased FPCN connectivity and reduced connectivity between the posterior parahippocampal gyrus (PHG) and medial structures; md-aMCI participants exhibited lower FPCN connectivity, higher anterior PHG connectivity with frontal structures and lower posterior PHG connectivity with central-parietal and temporo-occipital areas. Additionally, md-aMCI participants showed higher posterior PHG connectivity with structures of the DMN than both control and sd-aMCI participants, potentially indicating more severe cognitive deficits. The results showed gradual and qualitative neurofunctional differences between the aMCI subgroups, suggesting the existence of compensatory (sd-aMCI) and deterioration (md-aMCI) mechanisms in functional networks, mainly originated in the DMN. The findings support consideration of the subgroups as different stages of MCI within the Alzheimer disease continuum.
Collapse
Affiliation(s)
- Benxamín Varela-López
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Cognitive Neuroscience Research Group (Neucoga-Aging), Instituto de Psicoloxía, USC (IPsiUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Montserrat Zurrón
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Cognitive Neuroscience Research Group (Neucoga-Aging), Instituto de Psicoloxía, USC (IPsiUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Mónica Lindín
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Cognitive Neuroscience Research Group (Neucoga-Aging), Instituto de Psicoloxía, USC (IPsiUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Fernando Díaz
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Cognitive Neuroscience Research Group (Neucoga-Aging), Instituto de Psicoloxía, USC (IPsiUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Santiago Galdo-Alvarez
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Cognitive Neuroscience Research Group (Neucoga-Aging), Instituto de Psicoloxía, USC (IPsiUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
3
|
Liu T, Wang M, Zhang J, Ye C, Funahashi S, Liu J, Wang L, Yan T. Brain network dynamics in patients with single- and multiple-domain amnestic mild cognitive impairment. Alzheimers Dement 2024. [PMID: 39219112 DOI: 10.1002/alz.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Brain network dynamics have been extensively explored in patients with amnestic mild cognitive impairment (aMCI); however, differences in single- and multiple-domain aMCI (SD-aMCI and MD-aMCI) remain unclear. METHODS Using multicenter datasets, coactivation patterns (CAPs) were constructed and compared among normal control (NC), SD-aMCI, MD-aMCI, and Alzheimer's disease (AD) patients based on individual high-order cognitive network (HOCN) and primary sensory network (PSN) parcellations. Correlations between spatiotemporal characteristics and neuropsychological scores were analyzed. RESULTS Compared to NC, SD-aMCI showed temporal alterations in HOCN-dominant CAPs, while MD-aMCI showed alterations in PSN-dominant CAPs. In addition, transitions from SD-aMCI to AD may involve PSN, while MD-aMCI to AD involves both PSN and HOCN. Results were generally consistent across datasets from Chinese and White populations. DISCUSSION The HOCN and PSN are distinctively involved in aMCI subtypes and in the transformation between aMCI subtypes and AD, highlighting the necessity of aMCI subtype classification in AD studies. HIGHLIGHTS Individual functional network parcellations and coactivation pattern (CAP) analysis were performed to characterize spatiotemporal differences between single- and multiple-domain amnestic mild cognitive impairment (SD-aMCI and MD-aMCI), and between distinct aMCI subtypes and Alzheimer's disease (AD). The analysis of multicenter datasets converged on four pairs of recurrent CAPs, including primary sensory networks (PSN)-dominant CAPs, high-order cognitive networks (HOCN)-dominant CAPs, and PSN-HOCN-interacting CAPs. The HOCN and PSN are distinctively involved in aMCI subtypes and in the transformation between distinct aMCI subtypes and AD.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Mingjun Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Chuyang Ye
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto, Japan
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Li Y, Zheng Y, Rong L, Zhou Y, Zhu Z, Xie Q, Liang Z, Zhao X. Altered Function and Structure of the Cerebellum Associated with Gut-Brain Regulation in Crohn's Disease: a Structural and Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01715-9. [PMID: 39096431 DOI: 10.1007/s12311-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 08/05/2024]
Abstract
This study employed structural and functional magnetic resonance imaging (MRI) to investigate changes in the function and structure of the cerebellum associated with gut-brain axis (GBA) regulation in patients diagnosed with Crohn's disease (CD). The study comprised 20 CD patients, including 12 with active disease (CD-A) and 8 in remission (CD-R), as well as 21 healthy controls. Voxel-based morphometry (VBM) was utilized for structural analysis of cerebellar gray matter volume, while independent component analysis (ICA) was applied for functional analysis of cerebellar functional connectivity (FC). The results showed significant GMV reduction in the left posterior cerebellar lobe across all CD patients compared to HCs, with more pronounced differences in the CD-A subgroup. Additionally, an increase in mean FC of the cerebellar network was observed in all CD patients, particularly in the CD-A subgroup, which demonstrated elevated FC in the vermis and bilateral posterior cerebellum. Correlation analysis revealed a positive relationship between cerebellar FC and the Crohn's Disease Activity Index (CDAI) and a trend toward a negative association with the reciprocal of the Self-rating Depression Scale (SDS) score in CD patients. The study's findings suggest that the cerebellum may play a role in the abnormal regulation of the GBA in CD patients, contributing to a better understanding of the neural mechanisms underlying CD and highlighting the cerebellum's potential role in modulating gut-brain interactions.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lan Rong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Wang X, Peng L, Zhan S, Yin X, Huang L, Huang J, Yang J, Zhang Y, Zeng Y, Liang S. Alterations in hippocampus-centered morphological features and function of the progression from normal cognition to mild cognitive impairment. Asian J Psychiatr 2024; 93:103921. [PMID: 38237533 DOI: 10.1016/j.ajp.2024.103921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 03/08/2024]
Abstract
Mild cognitive impairment (MCI) is a significant precursor to dementia, highlighting the critical need for early identification of individuals at high risk of MCI to prevent cognitive decline. The study aimed to investigate the changes in brain structure and function before the onset of MCI. This study enrolled 19 older adults with progressive normal cognition (pNC) to MCI and 19 older adults with stable normal cognition (sNC). The gray matter (GM) volume and functional connectivity (FC) were estimated via magnetic resonance imaging during their normal cognition state 3 years prior. Additionally, spatial associations between FC maps and neurochemical profiles were examined using JuSpace. Compared to the sNC group, the pNC group showed decreased volume in the left hippocampus and left amygdala. The significantly positive correlation was observed between the GM volume of the left hippocampus and the MMSE scores after 3 years in pNC group. Besides, it showed that the pNC group had increased FC between the left hippocampus and the anterior-posterior cingulate gyrus, which was significantly correlated with the spatial distribution of dopamine D2 and noradrenaline transporter. Taken together, the study identified the abnormal brain characteristics before the onset of MCI, which might provide insight into clinical research.
Collapse
Affiliation(s)
- Xiuxiu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiayang Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Junchao Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fuzhou 350001, China.
| |
Collapse
|
6
|
Shang S, Wang L, Xu Y, Zhang H, Chen L, Dou W, Yin X, Ye J, Chen YC. Optimization of structural connectomes and scaled patterns of structural-functional decoupling in Parkinson's disease. Neuroimage 2023; 284:120450. [PMID: 37949260 DOI: 10.1016/j.neuroimage.2023.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is manifested with disrupted topology of the structural connection network (SCN) and the functional connection network (FCN). However, the SCN and its interactions with the FCN remain to be further investigated. This multimodality study attempted to precisely characterize the SCN using diffusion kurtosis imaging (DKI) and further identify the neuropathological pattern of SCN-FCN decoupling, underscoring the neurodegeneration of PD. Diffusion-weighted imaging and resting-state functional imaging were available for network constructions among sixty-nine patients with PD and seventy demographically matched healthy control (HC) participants. The classification performance and topological prosperities of both the SCN and the FCN were analyzed, followed by quantification of the SCN-FCN couplings across scales. The SCN constructed by kurtosis metrics achieved optimal classification performance (area under the curve 0.89, accuracy 80.55 %, sensitivity 78.40 %, and specificity 80.65 %). Along with diverse alterations of structural and functional network topology, the PD group exhibited decoupling across scales including: reduced global coupling; increased nodal coupling within the sensorimotor network (SMN) and subcortical network (SN); higher intramodular coupling within the SMN and SN and lower intramodular coupling of the default mode network (DMN); decreased coupling between the modules of DMN-fronto-parietal network and DMN-visual network, but increased coupling between the SMN-SN module. Several associations between the coupling coefficient and topological properties of the SCN, as well as between network values and clinical scores, were observed. These findings validated the clinical implementation of DKI for structural network construction with better differentiation ability and characterized the SCN-FCN decoupling as supplementary insight into the pathological process underlying PD.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lijuan Wang
- Department of Radiology, Jintang First People's Hospital, Sichuan University, Chengdu, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ye
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Wu H, Song Y, Yang X, Chen S, Ge H, Yan Z, Qi W, Yuan Q, Liang X, Lin X, Chen J. Functional and structural alterations of dorsal attention network in preclinical and early-stage Alzheimer's disease. CNS Neurosci Ther 2023; 29:1512-1524. [PMID: 36942514 PMCID: PMC10173716 DOI: 10.1111/cns.14092] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are known as the preclinical and early stage of Alzheimer's disease (AD). The dorsal attention network (DAN) is mainly responsible for the "top-down" attention process. However, previous studies mainly focused on single functional modality and limited structure. This study aimed to investigate the multimodal alterations of DAN in SCD and aMCI to assess their diagnostic value in preclinical and early-stage AD. METHODS Resting-state functional magnetic resonance imaging (MRI) was carried out to measure the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC). Structural MRI was used to calculate the gray matter volume (GMV) and cortical thickness. Moreover, receiver-operating characteristic (ROC) analysis was used to distinguish these alterations in SCD and aMCI. RESULTS The SCD and aMCI groups showed both decreased ReHo in the right middle temporal gyrus (MTG) and decreased GMV compared to healthy controls (HCs). Especially in the SCD group, there were increased fALFF and increased ReHo in the left inferior occipital gyrus (IOG), decreased fALFF and increased FC in the left inferior parietal lobule (IPL), and reduced cortical thickness in the right inferior temporal gyrus (ITG). Furthermore, functional and structural alterations in the SCD and aMCI groups were closely related to episodic memory (EM), executive function (EF), and information processing speed (IPS). The combination of multiple indicators of DAN had a high accuracy in differentiating clinical stages. CONCLUSIONS Our current study demonstrated functional and structural alterations of DAN in SCD and aMCI, especially in the MTG, IPL, and SPL. Furthermore, cognitive performance was closely related to these significant alterations. Our study further suggested that the combined multiple indicators of DAN could be acted as the latent neuroimaging markers of preclinical and early-stage AD for their high diagnostic value.
Collapse
Affiliation(s)
- Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Yang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Zhang J, Hu S, Liu Y, Lyu H, Huang X, Li X, Chen J, Hu Q, Xu J, Yu H. Acupuncture Treatment Modulate Regional Homogeneity of Dorsal Lateral Prefrontal Cortex in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 90:173-184. [DOI: 10.3233/jad-220592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Although acupuncture is widely used to improve cognitive and memory in the amnesic mild cognitive impairment (aMCI) patients with impressive effectiveness, its neural mechanism remains largely unclear. Objective: We aimed to explore functional magnetic resonance imaging (fMRI) mechanism of acupuncture for aMCI. Methods: A randomized, controlled, single-blind research was performed. A total of 46 aMCI patients were randomly assigned into verum and sham acupuncture group, who received a total of 24 times treatments (3 times/week, 8 weeks). Clinical evaluation and fMRI scanning were performed at baseline and after treatment for all aMCI patients. The interaction effects and inter-group effects of regional homogeneity (ReHo) were performed using mixed effect models, and the correlations between clinical improvement and neuroimaging changes before and after verum acupuncture treatment were analyzed using Pearson correlations. Results: As a result, interaction effects showed increased ReHo value in left dorsal lateral prefrontal cortex (DLPFC), increased functional connectivity between left DLPFC and left precuneus, and decreased functional connectivity between left DLPFC and left inferior temporal gyrus after verum acupuncture but inversely after sham acupuncture in the aMCI. Condition effects showed increased ReHo in right lingual gyrus, and bilateral post-central gyrus after verum and sham acupuncture in the aMCI. In addition, the changed Montreal Cognitive Assessment scores in verum acupuncture group were significantly correlated with changed ReHo values in left DLPFC. Conclusion: Together, our findings further confirmed that acupuncture could be used as a promising complementary therapy for aMCI by modulating function of left DLPFC to improve cognitive symptoms.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shan Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Hanqing Lyu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xingxian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinbei Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianxiang Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Contemporary Clinical Acupuncture Medicine, Shenzhen, China
| |
Collapse
|
9
|
Silberstein RB, Pipingas A, Scholey AB. Homocysteine Modulates Brain Functional Connectivity in a Memory Retrieval Task. J Alzheimers Dis 2022; 90:199-209. [DOI: 10.3233/jad-220612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Homocysteine, a methionine metabolite, is a recognized risk factor for accelerated age-related cognitive decline and dementia. Objective: In the light of studies indicating increases in brain activity and brain functional connectivity in the early stages of age-related cognitive decline, we undertook a study to examine the relationship between plasma homocysteine levels and brain functional connectivity in a group of late middle-aged males at risk of cognitive decline due to high body mass index and a sedentary lifestyle. Methods: Brain functional connectivity was measured using the steady state visual evoked potential event related partial coherence while 38 participants performed a memory task where each trial comprised an object recognition task followed by a location memory task. Results: We observed a significant transient peak in the correlation between plasma homocysteine levels and fronto-parietal brain functional connectivity immediately before the presentation of the memory location component of the task. Significantly, this correlation was only apparent if the participant pool included individuals with homocysteine concentrations above 11μmole/L. Conclusion: Our findings suggest that the increased brain functional connectivity observed in the earlier stages of age-related cognitive decline reflects pathognomonic changes in brain function and not compensatory changes engaged to enhance task performance. Our findings also suggest that homocysteine interferes with the inhibition of cortical networks where this inhibition is necessary for optimum task performance. Finally, we observed that the effect of homocysteine on brain functional connectivity is only apparent at concentrations above 11μmol/L.
Collapse
Affiliation(s)
- Richard B. Silberstein
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Neuro-Insight Pty Ltd, Hawthorn, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Andrew B. Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
10
|
Ng KP, Qian X, Ng KK, Ji F, Rosa-Neto P, Gauthier S, Kandiah N, Zhou JH. Stage-dependent differential influence of metabolic and structural networks on memory across Alzheimer's disease continuum. eLife 2022; 11:e77745. [PMID: 36053063 PMCID: PMC9477498 DOI: 10.7554/elife.77745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Large-scale neuronal network breakdown underlies memory impairment in Alzheimer's disease (AD). However, the differential trajectories of the relationships between network organisation and memory across pathology and cognitive stages in AD remain elusive. We determined whether and how the influences of individual-level structural and metabolic covariance network integrity on memory varied with amyloid pathology across clinical stages without assuming a constant relationship. Methods Seven hundred and eight participants from the Alzheimer's Disease Neuroimaging Initiative were studied. Individual-level structural and metabolic covariance scores in higher-level cognitive and hippocampal networks were derived from magnetic resonance imaging and [18F] fluorodeoxyglucose positron emission tomography using seed-based partial least square analyses. The non-linear associations between network scores and memory across cognitive stages in each pathology group were examined using sparse varying coefficient modelling. Results We showed that the associations of memory with structural and metabolic networks in the hippocampal and default mode regions exhibited pathology-dependent differential trajectories across cognitive stages using sparse varying coefficient modelling. In amyloid pathology group, there was an early influence of hippocampal structural network deterioration on memory impairment in the preclinical stage, and a biphasic influence of the angular gyrus-seeded default mode metabolic network on memory in both preclinical and dementia stages. In non-amyloid pathology groups, in contrast, the trajectory of the hippocampus-memory association was opposite and weaker overall, while no metabolism covariance networks were related to memory. Key findings were replicated in a larger cohort of 1280 participants. Conclusions Our findings highlight potential windows of early intervention targeting network breakdown at the preclinical AD stage. Funding Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). We also acknowledge the funding support from the Duke NUS/Khoo Bridge Funding Award (KBrFA/2019-0020) and NMRC Open Fund Large Collaborative Grant (OFLCG09May0035).
Collapse
Affiliation(s)
- Kok Pin Ng
- Department of Neurology, National Neuroscience InstituteSingaporeSingapore
- Duke-NUS Medical SchoolSingaporeSingapore
- Lee Kong Chian School of Medicine, Nanyang Technological University SingaporeSingaporeSingapore
| | - Xing Qian
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Fang Ji
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill UniversityMontrealCanada
- Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Serge Gauthier
- Department of Neurology & Neurosurgery, McGill UniversityMontrealCanada
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University SingaporeSingaporeSingapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition and Centre for Translational MR Research,Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Electrical and Computer Engineering, National University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme (ISEP), National University of SingaporeSingaporeSingapore
| | | |
Collapse
|
11
|
Wu H, Song Y, Chen S, Ge H, Yan Z, Qi W, Yuan Q, Liang X, Lin X, Chen J. An Activation Likelihood Estimation Meta-Analysis of Specific Functional Alterations in Dorsal Attention Network in Mild Cognitive Impairment. Front Neurosci 2022; 16:876568. [PMID: 35557608 PMCID: PMC9086967 DOI: 10.3389/fnins.2022.876568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is known as the prodromal stage of the Alzheimer’s disease (AD) spectrum. The recent studies have advised that functional alterations in the dorsal attention network (DAN) could be used as a sensitive marker to forecast the progression from MCI to AD. Therefore, our aim was to investigate specific functional alterations in the DAN in MCI. Methods We systematically searched PubMed, EMBASE, and Web of Science and chose relevant articles based on the three functional indicators, the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the DAN in MCI. Based on the activation likelihood estimation, we accomplished the aggregation of specific coordinates and the analysis of functional alterations. Results A total of 38 studies were involved in our meta-analysis. By summing up included articles, we acquired specific brain region alterations in the DAN mainly in the superior temporal gyrus (STG), middle temporal gyrus (MTG), superior frontal gyrus (SFG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), precentral gyrus (preCG), inferior parietal lobule (IPL), superior parietal lobule (SPL). At the same time, the key area that shows anti-interaction with default mode network included the IPL in the DAN. The one showing interactions with executive control network was mainly in the MFG. Finally, the frontoparietal network showed a close connection with DAN especially in the IPL and IFG. Conclusion This study demonstrated abnormal functional markers in the DAN and its interactions with other networks in MCI group, respectively. It provided the foundation for future targeted interventions in preventing the progression of AD. Systematic Review Registration [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021287958].
Collapse
Affiliation(s)
- Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Yu Q, Li Q, Fang W, Wang Y, Zhu Y, Wang J, Shen Y, Han Y, Zou D, Cheng O. Disorganized resting-state functional connectivity between the dorsal attention network and intrinsic networks in Parkinson's disease with freezing of gait. Eur J Neurosci 2021; 54:6633-6645. [PMID: 34479401 DOI: 10.1111/ejn.15439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Freezing of gait (FOG) is a common and complex manifestation of Parkinson's disease (PD) and is associated with impairment of attention. The purpose of this study was to evaluate the functional network connectivity (FNc) changes between the dorsal attention network (DAN) and the other seven intrinsic networks relevant to attention, visual-spatial, executive and motor functions in PD with or without FOG. Forty-three idiopathic PD patients (21 with FOG [FOG+] versus 22 without FOG [FOG-]) and 18 healthy controls (HC) were recruited in this study. The data-driven independent component analysis (ICA) method was used to extract and analyze the above-mentioned resting-state networks (RSNs). Compared with FOG-, FOG+ displayed decreased positive connectivity between the DAN and medial visual network (mVN) and sensory-motor network (SMN) and increased negative connectivity between the DAN and default mode network (DMN). The within-network connectivity in the SMN and visual networks were decreased, whereas the connectivity within DMN was increased significantly in FOG+. Correlation analysis showed that the clock drawing test (CDT) scores were positively correlated with the functional connectivity of mVN (r = 0.573, p = 0.008) and lateral visual network (lVN) (r = 0.510, p = 0.022), the Timed Up and Go Test (TUG) duration were negatively correlated with the connectivity of SMN (r = -0.629, p = 0.003), and the Frontal Assessment Battery (FAB) scores were negatively correlated with the connectivity of DMN in FOG+. Functional connectivity was changed in multiple intra-networks in patients with FOG. Inordinate inter-network connectivity between the DAN and other intrinsic networks may partly contribute to the mechanism of freezing.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qun Li
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuchan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingcheng Zhu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yalian Shen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Wang T, Liao H, Zi Y, Wang M, Mao Z, Xiang Y, Zhang L, Li J, Shen Q, Cai S, Tan C. Distinct Changes in Global Brain Synchronization in Early-Onset vs. Late-Onset Parkinson Disease. Front Aging Neurosci 2020; 12:604995. [PMID: 33381021 PMCID: PMC7767969 DOI: 10.3389/fnagi.2020.604995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Early- and late-onset Parkinson's disease (EOPD and LOPD, respectively) have different risk factors, clinical features, and disease course; however, the functional outcome of these differences have not been well characterized. This study investigated differences in global brain synchronization changes and their clinical significance in EOPD and LOPD patients. Patients with idiopathic PD including 25 EOPD and 24 LOPD patients, and age- and sex-matched healthy control (HC) subjects including 27 younger and 26 older controls (YCs and OCs, respectively) were enrolled. Voxel-based degree centrality (DC) was calculated as a measure of global synchronization and compared between PD patients and HC groups matched in terms of disease onset and severity. DC was decreased in bilateral Rolandic operculum and left insula and increased in the left superior frontal gyrus (SFG) and precuneus of EOPD patients compared to YCs. DC was decreased in the right putamen, mid-cingulate cortex, bilateral Rolandic operculum, and left insula and increased in the right cerebellum-crus1 of LOPD patients compared to OCs. Correlation analyses showed that DC in the right cerebellum-crus1 was inversely associated with the Hamilton Depression Scale (HDS) score in LOPD patients. Thus, EOPD and LOPD patients show distinct alterations in global synchronization relative to HCs. Furthermore, our results suggest that the left SFG and right cerebellum-crus1 play important roles in the compensation for corticostriatal-thalamocortical loop injury in EOPD and LOPD patients, whereas the cerebellum is a key hub in the neural mechanisms underlying LOPD with depression. These findings provide new insight into the clinical heterogeneity of the two PD subtypes.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijuan Xiang
- Department of Radiology, Hunan Province Maternal and Child Health Care Hospital, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|