1
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
2
|
Wang J, Wang Y, Xiao H, Yang W, Zuo W, You Z, Wu C, Bao J. Dynamic O-GlcNAcylation coordinates etoposide-triggered tumor cell pyroptosis by regulating p53 stability. J Biol Chem 2025; 301:108050. [PMID: 39667498 PMCID: PMC11761933 DOI: 10.1016/j.jbc.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
O-GlcNAcylation, a modification of nucleocytoplasmic proteins in mammals, plays a critical role in various cellular processes. However, the interplay and their underlying mechanisms in chemotherapy-induced tumor regression between O-GlcNAcylation and pyroptosis, a form of programmed cell death associated with innate immunity, remains unclear. Here, we observed that during the etoposide-induced pyroptosis of SH-SY5Y and A549 cells, overall O-GlcNAcylation levels are substantially reduced. Pharmacological inhibition or genetic manipulation of O-GlcNAcylation, such as OGT inhibition or OGA overexpression, sensitized these cells to etoposide-induced pyroptosis both in vitro and in vivo. Mechanistically, mutations at S96 and S149 residues attenuated p53 O-GlcNAcylation, weakening its interaction with MDM2, reducing p53 ubiquitination, and increasing protein stability. These results suggest that S96 may be a putative O-GlcNAcylation site. Therefore, p53 target genes-Fas, DR-5, Puma, and PIDD-were transcriptionally upregulated, leading to activation of the caspase-3-GSDME axis and promoting etoposide-induced pyroptosis in various tumor cells. This study demonstrates a previously uncharacterized association between O-GlcNAcylation and chemotherapy-induced pyroptosis, offering potential therapeutic interventions for pyroptosis-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Yida Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Huan Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Wanyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Weibo Zuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Ziming You
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
4
|
Wang D, Zhang L, Nan J, Wan S, Luo J, Li X, Chen W. High glucose elevates intracellular calcium level and induces ferroptosis in glomerular endothelial cells through the miR-223-3p/ITPR3 pathway. Mol Cell Endocrinol 2024; 594:112384. [PMID: 39426490 DOI: 10.1016/j.mce.2024.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
We investigated the link between ferroptosis and the miR-223-3p/inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) pathway in diabetic kidney disease (DKD). Blood samples from DKD patients and healthy controls were analysed for iron ions, calcium ions, and lipid peroxidation. High-glucose-induced glomerular endothelial cells were used to simulate DKD. MiR-223-3p overexpression or silencing was achieved using adenoviruses, affecting ferroptosis regulators (glutathione peroxidase 4 [GPX4], cystine/glutamate transporter (xCT), and long-chain acyl-CoA synthetase 4 [ACSL4]) and ITPR3. DKD patients showed elevated levels of iron ions, calcium ions, and lipid peroxidation. High glucose downregulated miR-223-3p, reducing xCT and GPX4 expression and increasing ACSL4 expression. MiR-223-3p was confirmed to target ITPR3 through luciferase reporter assay. MiR-223-3p overexpression reversed high-glucose-induced effects on ferroptosis markers and ITPR3 expression. In summary, high glucose levels decreased miR-223-3p expression, leading to increased calcium ion levels and ferroptosis, potentially through ITPR3 modulation. These findings provide insights into the mechanisms underlying DKD and its potential therapeutic targets.
Collapse
Affiliation(s)
- Dekai Wang
- Department of Endocrinology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, 443002, Hubei, China; Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Lihua Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China.
| | - Juanli Nan
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Shengbi Wan
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Jingmei Luo
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Xueqiong Li
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
5
|
Hong H, Huang Y, Yang Z, Jiang X, Liu H. Pyroptosis-related lncRNAs are potential biomarkers for predicting prognoses and immune landscapes in patients with gastric adenocarcinoma. Discov Oncol 2024; 15:684. [PMID: 39565540 PMCID: PMC11579272 DOI: 10.1007/s12672-024-01579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the significance of pyroptosis-related lncRNAs (PRlncRNA) in predicting prognoses and immune landscapes of patients with gastric adenocarcinoma (STAD). METHODS Transcriptomic data and clinicopathological data were obtained from The Cancer Genome Atlas database. Based on correlation analysis and univariate Cox regression, prognostic PRlncRNA were identified. Subsequently, a PRlncRNA prognostic signature (PRLPS) was generated via least absolute shrinkage and selection operator (LASSO) regression, Kaplan-Meier method, receiver operating characteristic (ROC) curves, principal component analysis, and univariate and multivariate regression. Besides, the clinicopathological characteristics, tumor microenvironment (TME) scores, the immune landscapes in different risk subgroups were explored. Moreover, based on three PRlncRNA, we constructed a competing endogenous RNA (ceRNA) network. Additionally, Gene Set Enrichment Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) and Gene Ontology (GO) analysis were performed for biological functional analysis based on the difference between high- and low- risk groups, which also used to screen out potential STAD drugs. RESULTS 21 PRlncRNA made up the prognostic signature, which had significant value in predicting the overall survival (OS), clinicopathological features, TME, immune checkpoint genes expression, and the response to immune checkpoint inhibitors of patients with STAD. In a addition, we constructed a ceRNA network comprising 3 PRlncRNAs and 69 mRNAs. The function of PRlncRNA was related to cancer-associated pathways. Ten small molecular drugs that might improve the prognosis of patients were screened out by connectivity maps. CONCLUSIONS Using PRlncRNA as a prognostic indicator for STAD, we identified predictive biomarkers and immunotherapy targets while refreshing our understanding.
Collapse
Affiliation(s)
- Haidu Hong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yuancheng Huang
- Department of Oncology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, Guangdong, China
- Cancer Center, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University), Dongguan, 523000, Guangdong, China
| | - Zehong Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiaotao Jiang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Hong Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
6
|
Yu J, He C, Peng Y, Wen Y, Wang J. LncRNA CASC9 facilitates papillary thyroid cancer development and doxorubicin resistance via miR-28-3p/BCL-2 axis and PI3K/AKT signaling pathway. J Cardiothorac Surg 2024; 19:629. [PMID: 39538340 PMCID: PMC11559104 DOI: 10.1186/s13019-024-03129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is a malignant tumor that poses a serious threat to human health. LncRNA CASC9 serves as an oncogene in numerous tumors. The purpose of this study was to explore the mechanism of lncRNA CASC9 regulating doxorubicin (Dox) resistance in PTC. METHODS The expression of CASC9, miR-28-3p and BCL-2 in PTC tissues or dox-resistant cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot (WB). CCK-8, colony formation assay, flow cytometry and transwell assay were used to measure the semi-inhibitory concentration (IC50) of dox, cell proliferation, apoptosis and migration, respectively. Dual luciferase reporter gene assays were performed to verify the targeting relationship between miR-28-3p and CASC9 or BCL-2. Rescue experiments were applied to verify the mechanism of CASC9. Finally, the role of CASC9 was verified by xenograft modeling in vivo. RESULTS We discovered that CASC9 was enhanced in PTC tissues, cells and Dox-resistant cells (BCPAP/Dox and K1/Dox). Furthermore, CASC9 inhibition markedly restrained the proliferation, migration and facilitated apoptosis of Dox cells. In vivo experiments also showed that silencing of CASC9 inhibited tumor growth. Meanwhile, knockdown of CASC9 sensitized PTC cells to Dox. CASC9 enhanced tumor progression by activating the PI3K/AKT signaling pathway. Furthermore, bioinformatics analysis identified miR-28-3p as a downstream target of CASC9. MiR-28-3p inhibitor reversed the impact of CASC9 knockdown in BCPAP/Dox and K1/Dox. Further studies showed that CASC9 positively regulated BCL-2 expression through miR-28-3p. miR-28-3p weakened Dox resistance, proliferation, migration and accelerated apoptosis of PTC cells via BCL-2. CONCLUSION CASC9, as an oncogenic lncRNA, has a promotional effect on Dox resistance and PTC progression via miR-28-3p/BCL-2 axis and PI3K/AKT signaling pathway.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Doxorubicin/pharmacology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/drug therapy
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Mice
- Cell Proliferation/drug effects
- Animals
- Gene Expression Regulation, Neoplastic/drug effects
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Mice, Nude
Collapse
Affiliation(s)
- Jianping Yu
- Thyroid Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Chun He
- Thyroid Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Yun Peng
- Thyroid Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Yuzhong Wen
- Thyroid Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Jing Wang
- Intensive Care Unit, Ganzhou People's Hospital, No.16 Meiguan Avenue, Zhanggong District, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
7
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
9
|
Huang K, Yu L, Lu D, Zhu Z, Shu M, Ma Z. Long non-coding RNAs in ferroptosis, pyroptosis and necroptosis: from functions to clinical implications in cancer therapy. Front Oncol 2024; 14:1437698. [PMID: 39267831 PMCID: PMC11390357 DOI: 10.3389/fonc.2024.1437698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Li Yu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Dingci Lu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ziyi Zhu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Min Shu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Zhaowu Ma
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Wang S, He H, Qu L, Shen Q, Dai Y. Dual roles of inflammatory programmed cell death in cancer: insights into pyroptosis and necroptosis. Front Pharmacol 2024; 15:1446486. [PMID: 39257400 PMCID: PMC11384570 DOI: 10.3389/fphar.2024.1446486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lailiang Qu
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Qianhe Shen
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Yihang Dai
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
11
|
Zhan X, Li J, Ding Y, Zhou F, Zeng R, Lei L, Zhang Y, Feng A, Qu Y, Yang Z. Pyroptosis-related long-noncoding RNA signature predicting survival and immunotherapy efficacy in patients with lung squamous cell carcinoma. Clin Exp Med 2024; 24:145. [PMID: 38960987 PMCID: PMC11222204 DOI: 10.1007/s10238-024-01409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Pyroptosis-related long-noncoding RNAs (PRlncRNAs) play an important role in cancer progression. However, their role in lung squamous cell carcinoma (LUSC) is unclear. A risk model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis based on RNA sequencing data from The Cancer Genome Atlas database. The LUSC cohort was divided into high- and low-risk groups based on the median risk score. For the prognostic value of the model, the Kaplan-Meier analysis, log-rank test, and Cox regression analysis were performed. A nomogram was constructed to predict the prognosis of patients, using a risk score and clinical parameters such as age, sex, clinical stage, and tumor node metastasis classification (TNM) stage. Afterwards, six common algorithms were employed to assess the invasion of immune cells. The Gene Set Enrichment Analysis (GSEA) was conducted to identify differences between patients at high and low risk. Furthermore, the pRRophetic package was employed to forecast the half-maximal inhibitory doses of prevalent chemotherapeutic drugs, while the tumor immune dysfunction and exclusion score was computed to anticipate the response to immunotherapy. The expression levels of the seven PRlncRNAs were examined in both LUSC and normal lung epithelial cell lines using RT-qPCR. Proliferation, migration, and invasion assays were also carried out to investigate the role of MIR193BHG in LUSC cells. Patients in the low-risk group showed prolonged survival in the total cohort or subgroup analysis. The Cox regression analysis showed that the risk model could act as an independent prognostic factor for patients with LUSC. The results of GSEA analysis revealed that the high-risk group showed enrichment of cytokine pathways, Janus tyrosine kinase/signal transducer and activator of the transcription signalling pathway, and Toll-like receptor pathway. Conversely, the low-risk group showed enrichment of several gene repair pathways. Furthermore, the risk score was positively correlated with immune cell infiltration. Moreover, patients in the high-risk category showed reduced responsiveness to conventional chemotherapeutic medications and immunotherapy. The majority of the long noncoding RNAs in the risk model were confirmed to be overexpressed in LUSC cell lines compared to normal lung epithelial cell lines by in vitro tests. Further studies have shown that downregulating the expression of MIR193BHG may inhibit the growth, movement, and infiltration capabilities of LUSC cells, whereas increasing the expression of MIR193BHG could enhance these malignant tendencies. This study found that PRlncRNAs were linked to the prognosis of LUSC patients. The risk model, evaluated across various clinical parameters and treatment modalities, shows potential as a future reference for clinical applications.
Collapse
Affiliation(s)
- Xiang Zhan
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jixian Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yi Ding
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Fengge Zhou
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Lingli Lei
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Ying Zhang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Qu
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
12
|
Sivagurunathan N, Rahamathulla MP, Al-Dossary H, Calivarathan L. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Mol Neurobiol 2024; 61:4619-4632. [PMID: 38105409 DOI: 10.1007/s12035-023-03809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Hussein Al-Dossary
- University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India.
| |
Collapse
|
13
|
Song H, Adu-Amankwaah J, Zhao Q, Yang D, Liu K, Bushi A, Zhao J, Yuan J, Tan R. Decoding long non‑coding RNAs: Friends and foes in cancer development (Review). Int J Oncol 2024; 64:61. [PMID: 38695241 PMCID: PMC11095623 DOI: 10.3892/ijo.2024.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer remains a formidable adversary, challenging medical advancements with its dismal prognosis, low cure rates and high mortality rates. Within this intricate landscape, long non‑coding RNAs (lncRNAs) emerge as pivotal players, orchestrating proliferation and migration of cancer cells. Harnessing the potential of lncRNAs as therapeutic targets and prognostic markers holds immense promise. The present comprehensive review delved into the molecular mechanisms underlying the involvement of lncRNAs in the onset and progression of the top five types of cancer. By meticulously examining lncRNAs across diverse types of cancer, it also uncovered their distinctive roles, highlighting their exclusive oncogenic effects or tumor suppressor properties. Notably, certain lncRNAs demonstrate diverse functions across different cancers, confounding the conventional understanding of their roles. Furthermore, the present study identified lncRNAs exhibiting aberrant expression patterns in numerous types of cancer, presenting them as potential indicators for cancer screening and diagnosis. Conversely, a subset of lncRNAs manifests tissue‑specific expression, hinting at their specialized nature and untapped significance in diagnosing and treating specific types of cancer. The present comprehensive review not only shed light on the intricate network of lncRNAs but also paved the way for further research and clinical applications. The unraveled molecular mechanisms offer a promising avenue for targeted therapeutics and personalized medicine, combating cancer proliferation, invasion and metastasis.
Collapse
Affiliation(s)
- Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Dongqi Yang
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuntao Liu
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinxiang Yuan
- Lin He Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
14
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
15
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
16
|
Saleh RO, Al-Hawary SIS, Hammoud A, Hjazi A, Ayad Abdulrazzaq S, Rajput P, Alawsi T, Alnajar MJ, Alawadi A. The long non-coding RNAs (lncRNA) in the pathogenesis of gastric cancer cells: molecular mechanisms and involvement miRNAs. Mol Biol Rep 2024; 51:615. [PMID: 38704760 DOI: 10.1007/s11033-024-09546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
A complex sequence of occurrences, including host genetic vulnerability, Helicobacter pylori infection, and other environmental variables, culminate in gastric cancer (GC). The development of several genetic and epigenetic changes in oncogenes and tumor suppressor genes causes dysregulation of several signaling pathways, which upsets the cell cycle and the equilibrium between cell division and apoptosis, leading to GC. Developments in computational biology and RNA-seq technology enable quick detection and characterization of long non-coding RNAs (lncRNAs). Recent studies have shown that long non-coding RNAs (lncRNAs) have multiple roles in the development of gastric cancer. These lncRNAs interact with molecules of protein, RNA, DNA, and/or combinations. This review article explores several gastric cancer-associated lncRNAs, such as ADAMTS9-AS2, UCA1, XBP-1, and LINC00152. These various lncRNAs could change GC cell apoptosis, migration, and invasion features in the tumor microenvironment. This review provides an overview of the most recent research on lncRNAs and GC cell apoptosis, migration, invasion, and drug resistance, focusing on studies conducted in cancer cells and healthy cells during differentiation.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait City, Kuwait.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences , Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Pranchal Rajput
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Taif Alawsi
- Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al-Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
17
|
Zhai R, Gong Z, Wang M, Ni Z, Zhang J, Wang M, Zhang Y, Zeng F, Gu Z, Chen X, Wang X, Zhou P, Liu L, Zhu W. Neutrophil extracellular traps promote invasion and metastasis via NLRP3-mediated oral squamous cell carcinoma pyroptosis inhibition. Cell Death Discov 2024; 10:214. [PMID: 38697992 PMCID: PMC11066066 DOI: 10.1038/s41420-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are reticular structures composed of neutrophil elastase (NE), cathepsin G (CG) and DNA-histone enzyme complexes. Accumulating evidence has revealed that NETs play important roles in tumor progression, metastasis, and thrombosis. However, our understanding of its clinical value and mechanism of action in oral squamous cell carcinoma (OSCC) is limited and has not yet been systematically described. Here, we aimed to investigate the clinical significance of NETs in OSCC and the mechanisms by which they affect its invasive and metastatic capacity. Our results demonstrated that high enrichment of NETs is associated with poor prognosis in OSCC, and mechanistic studies have shown that NE in NETs promotes invasion and metastasis via NLRP3-mediated inhibition of pyroptosis in OSCC. These findings may provide a new therapeutic approach for OSCC.
Collapse
Affiliation(s)
- Rundong Zhai
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Zizhen Gong
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Mengqi Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Zihui Ni
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Jiayi Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Mengyao Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Yu Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Fanrui Zeng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xingyu Chen
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Xiudi Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Pengcheng Zhou
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Laikui Liu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China.
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China.
| | - Weiwen Zhu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China.
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China.
| |
Collapse
|
18
|
Zhao D, Wu T, Tan Z, Xu J, Lu Z. Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review. Expert Rev Anticancer Ther 2024; 24:239-251. [PMID: 38594965 DOI: 10.1080/14737140.2024.2341737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention. We have observed that ncRNAs may exert significant influence on cancer therapy, chemotherapy, radio- therapy, targeted therapy and immunotherapy, by regulating pyroptosis. AREAS COVERED Literatures were searched (December 2023) for studies on cancer therapy for ncRNAs-mediated pyroptotic cell death. EXPERT OPINION The most universal mechanical strategy for ncRNAs to regulate target genes is competitive endogenous RNAs (ceRNA). Besides, certain ncRNAs could directly interact with proteins and modulate downstream genes to induce pyroptosis, resulting in tumor growth or inhibition. In this review, we aim to display that ncRNAs, predominantly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), could function as potential biomarkers for diagnosis and prognosis and produce new insights into anti-cancer strategies modulated by pyroptosis for clinical applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Liu L, Li X, Song L, Yang Y, Li B. Circular RNA hsa_circ_0094976 modulates GPR155 to inhibit gastric adenocarcinoma malignant characteristics by targeting miR-223-3p. Pathol Res Pract 2024; 257:155325. [PMID: 38678850 DOI: 10.1016/j.prp.2024.155325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The abnormal expression of circular RNA (circRNA) has been confirmed to be closely related to the development of many human diseases including gastric adenocarcinoma (GA). This study aimed to elucidate the molecular mechanism and biological function of hsa_circ_0094976 (circ_0094976) in GA. METHODS The expression of circ_0094976, miR-223-3p, and G protein-coupled receptor 155 (GPR155) mRNA was measured by quantitative real-time polymerase chain reaction. Cell viability, cell proliferation, colony formation, migration, and invasion were estimated by cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine assay, colony formation assay, and transwell assay, respectively. The bioinformatics analysis, dual-luciferase reporter assay, and RNA pull-down assay were used for predicting and verifying the interaction of the circ_0094976/miR-223-3p/GPR155 axis. A xenograft mouse model was performed in nude mice to reveal the role of circ_0094976 in vivo. RESULTS Circ_0094976 was down-regulated in GA tissues and GA cell lines compared to normal controls. Overexpression of circ_0094976 inhibited the GA cell growth, migration, and invasion in vitro, and tumor growth in vivo. Circ_0094976 directly targeted miR-223-3p, and GPR155 was a direct target of miR-223-3p. Moreover, circ_0094976 sponging miR-223-3p to increase the expression of GPR155. CONCLUSION We disclosed that circ_0094976 could act as a sponge of miR-223-3p to regulate the expression of GPR155, and further restrain the development of GA, which may provide new insight into the therapy of GA.
Collapse
Affiliation(s)
- Li Liu
- Department of Laboratory, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Xuefeng Li
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Lingli Song
- Department of Laboratory, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Yuhan Yang
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Binxian Li
- Department of Laboratory, Affiliated Hospital of Beihua University, Jilin 132011, China.
| |
Collapse
|
20
|
Shi Y, Adu-Amankwaah J, Zhao Q, Li X, Yu Q, Bushi A, Yuan J, Tan R. Long non-coding RNAs in drug resistance across the top five cancers: Update on their roles and mechanisms. Heliyon 2024; 10:e27207. [PMID: 38463803 PMCID: PMC10923722 DOI: 10.1016/j.heliyon.2024.e27207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cancer drug resistance stands as a formidable obstacle in the relentless fight against the top five prevalent cancers: breast, lung, colorectal, prostate, and gastric cancers. These malignancies collectively account for a significant portion of cancer-related deaths worldwide. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal players in the intricate landscape of cancer biology, and their roles in driving drug resistance are steadily coming to light. This comprehensive review seeks to underscore the paramount significance of lncRNAs in orchestrating resistance across a spectrum of different cancer drugs, including platinum drugs (DDP), tamoxifen, trastuzumab, 5-fluorouracil (5-FU), paclitaxel (PTX), and Androgen Deprivation Therapy (ADT) across the most prevalent types of cancer. It delves into the multifaceted mechanisms through which lncRNAs exert their influence on drug resistance, shedding light on their regulatory roles in various facets of cancer biology. A comprehensive understanding of these lncRNA-mediated mechanisms may pave the way for more effective and personalized treatment strategies, ultimately improving patient outcomes in these challenging malignancies.
Collapse
Affiliation(s)
- Yue Shi
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Clinical Medical College, Jining Medical University, 272067, Jining, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
| | - Qianxue Yu
- Clinical Medical College, Jining Medical University, 272067, Jining, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, 272067, Jining, China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Wang A, Wang Y, Du C, Yang H, Wang Z, Jin C, Hamblin MR. Pyroptosis and the tumor immune microenvironment: A new battlefield in ovarian cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189058. [PMID: 38113952 DOI: 10.1016/j.bbcan.2023.189058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Ovarian cancer is a less common tumor in women compared to cervical or breast cancer, however it is more malignant and has worse outcomes. Ovarian cancer patients still have a five-year survival rate < 50% despite advances in therapy. Due to recent developments in immune checkpoint inhibitors (ICIs), cancer immunotherapy has attracted increased interest. Pyroptosis is a highly inflammatory form of cell death, which is essential for bridging innate and adaptive immunity, and is involved in immune regulation within the tumor microenvironment (TME). Recent research has shown that pyroptosis can promote immunotherapy of ovarian cancer, including treatment with chimeric antigen receptor T-cells (CAR-T) or ICIs. Moreover, inflammasomes, various signaling pathways and lncRNAs can all affect pyroptosis in ovarian cancer. Here we discuss how pyroptosis affects the development and progression of ovarian cancer as well as the TME. We also provide a summary of small molecule drugs that could target pyroptotic cell death processes and may be useful in ovarian cancer therapy.
Collapse
Affiliation(s)
- Aihong Wang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Yin Wang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Chenxiang Du
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Huilun Yang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Zhengping Wang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Canhui Jin
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
22
|
Liang X, Qin Y, Wu D, Wang Q, Wu H. Pyroptosis: a double-edged sword in lung cancer and other respiratory diseases. Cell Commun Signal 2024; 22:40. [PMID: 38225586 PMCID: PMC10790448 DOI: 10.1186/s12964-023-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Pyroptosis is an active cell death process mediated by gasdermin family proteins including Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. Emerging evidences have shown that pyroptosis contributes to many pulmonary diseases, especially lung cancer, and pneumonia. The exact roles of pyroptosis and gasdermin family proteins are tremendously intricate. Besides, there are evidences that pyroptosis contributes to these respiratory diseases. However, it often plays a dual role in these diseases which is a cause for concern and makes it difficult for clinical translation. This review will focus on the multifaceted roles of pyroptosis in respiratory diseases.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Ya Qin
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Dan Wu
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Qiong Wang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| |
Collapse
|
23
|
Chen W, Cheng J, Cai Y, Wang P, Jin J. The pyroptosis-related signature predicts prognosis and influences the tumor immune microenvironment in dedifferentiated liposarcoma. Open Med (Wars) 2024; 19:20230886. [PMID: 38221934 PMCID: PMC10787309 DOI: 10.1515/med-2023-0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background Dedifferentiated liposarcoma (DDL), a member of malignant mesenchymal tumors, has a high local recurrence rate and poor prognosis. Pyroptosis, a newly discovered programmed cell death, is tightly connected with the progression and outcome of tumor. Objective The aim of this study was to explore the role of pyroptosis in DDL. Methods We obtained the RNA sequencing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases to identify different pyroptosis-related genes (PRGs) expression pattern. An unsupervised method for clustering based on PRGs was performed. Based on the result of cluster analysis, we researched clinical outcomes and immune microenvironment between clusters. The differentially expressed genes (DEGs) between the two clusters were used to develop a prognosis model by the LASSO Cox regression method, followed by the performance of functional enrichment analysis and single-sample gene set enrichment analysis. All of the above results were validated in the Gene Expression Omnibus (GEO) dataset. Results Forty-one differentially expressed PRGs were found between tumor and normal tissues. A consensus clustering analysis based on PRGs was conducted and classified DDL patients into two clusters. Cluster 2 showed a better outcome, higher immune scores, higher immune cells abundances, and higher expression levels in numerous immune checkpoints. DEGs between clusters were identified. A total of 5 gene signatures was built based on the DEGs and divided all DDL patients of the TCGA cohort into low-risk and high-risk groups. The low-risk group indicates greater inflammatory cell infiltration and better outcome. For external validation, the survival difference and immune landscape between the two risk groups of the GEO cohort were also significant. Receiver operating characteristic curves implied that the risk model could exert its function as an outstanding predictor in predicting DDL patients' prognoses. Conclusion Our findings revealed the clinical implication and key role in tumor immunity of PRGs in DDL. The risk model is a promising predictive tool that could provide a fundamental basis for future studies and individualized immunotherapy.
Collapse
Affiliation(s)
- Wenjing Chen
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jun Cheng
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Yiqi Cai
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Pengfei Wang
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jinji Jin
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| |
Collapse
|
24
|
Si Y, Liu L, Fan Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov 2024; 10:10. [PMID: 38182564 PMCID: PMC10770122 DOI: 10.1038/s41420-023-01783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Inflammasomes are thought to be important mediators of host defense against microbial pathogens and maintenance of gastrointestinal tract homeostasis. They can modulate caspase-1 to promote IL-18 and IL-1β secretion and promote phagocytosis induced by bacterial pathogens. NLRP3 is an inflammasome comprising a multiprotein complex assembled by pattern recognition receptors in the cell cytoplasm. It is a crucial component of the innate immune system. Dysregulation of NLRP3 may contribute to inflammatory diseases and intestinal cancers. Recent research suggests that NLRP3 plays an essential role in tumor development; therefore, intensive study of its mechanism is warranted as it could play a key role in the treatment of digestive system tumors. In this review, we discuss the mechanism and role of NLRP3 in tumors of the digestive system and response strategies to modulate NLRP3 for potential use in tumor treatment.
Collapse
Affiliation(s)
- Yuxin Si
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
25
|
Hayashi‐Okada M, Sato S, Nakashima K, Sakai T, Tamehisa T, Kajimura T, Tamura I, Sueoka K, Sugino N. Identification of long noncoding RNAs downregulated specifically in ovarian high-grade serous carcinoma. Reprod Med Biol 2024; 23:e12572. [PMID: 38571514 PMCID: PMC10988898 DOI: 10.1002/rmb2.12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose To investigate whether long noncoding RNAs (lncRNAs) are involved in the development or malignant behavior of ovarian high-grade serous carcinoma (HGSC), we attempted to identify lncRNAs specific to HGSC. Methods Total RNAs were isolated from HGSC, normal ovarian, and fallopian tube tissue samples and were subjected to a PCR array that can analyze 84 cancer-associated lncRNAs. The lncRNAs that were upregulated and downregulated in HGSC in comparison to multiple samples of normal ovary and fallopian tube were validated by real-time RT-PCR. To infer the function, ovarian cancer cell lines that overexpress the identified lncRNAs were established, and the activation of cell proliferation, migration, and invasion was analyzed. Results Eleven lncRNAs (ACTA2-AS1, ADAMTS9-AS2, CBR3-AS1, HAND2-AS1, IPW, LINC00312, LINC00887, MEG3, NBR2, TSIX, and XIST) were downregulated in HGSC samples. We established the cell lines that overexpress ADAMTS9-AS2, CBR3-AS1, or NBR2. In cell lines overexpressing ADAMTS9-AS2, cell proliferation was suppressed, but migration and invasion were promoted. In cell lines overexpressing CBR3-AS1 or NBR2, cell migration tended to be promoted, although cell proliferation and invasion were unchanged. Conclusion We identified eleven lncRNAs that were specifically downregulated in HGSC. Of these, CBR3-AS1, NBR2, and ADAMTS9-AS2 had unique functions in the malignant behaviors of HGSC.
Collapse
Affiliation(s)
- Maki Hayashi‐Okada
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Shun Sato
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kengo Nakashima
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takahiro Sakai
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Tetsuro Tamehisa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takuya Kajimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kotaro Sueoka
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
26
|
Bandi DP, Sudhakar U, Parthasarathy H, Rajamani SR, Krishnaswamy B. Expression dynamics of microRNA-223/Ras-associated binding protein 12 axis in Stage III/Grade B periodontal disease: A case-control analysis. J Indian Soc Periodontol 2024; 28:99-105. [PMID: 38988960 PMCID: PMC11232797 DOI: 10.4103/jisp.jisp_179_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Background The intricate interplay between periodontal polymicrobial flora and an altered immune response is the central cause of periodontal disease. Multiple cell death methods and their interactions, along with the associated signaling pathways, significantly impact the initiation and advancement of periodontitis. Our speculation revolves around the role of the miR-223/Ras-associated binding protein (RAB12) signaling axis in regulating autophagy-induced pyroptosis, contributing to the pathophysiology of periodontitis. Thus, this study aimed to investigate miR-223 and RAB12 expression patterns in Stage III/Grade B periodontal disease. Materials and Methods The study included 50 healthy individuals and 50 patients diagnosed with Stage III/Grade B periodontal disease. Clinical parameters were cataloged for each participant. miRNA-223 underwent an in silico analysis to identify its potential target genes. Gingival crevicular fluid (GCF) samples were collected from the subjects for real-time polymerase chain reaction to evaluate the expression of both miR-223 and the RAB12 gene. Results The miRTargetLink2.0 analysis highlighted the RAB12 gene as a prime target for miR-223. In periodontal disease patients, miR-223 and RAB12 gene expressions significantly increased (15.21 and 34.70-fold changes, respectively; P < 0.05). Receiver operating characteristic analysis suggested that miR-223 is a potential biomarker for periodontal disease, with 76% diagnostic accuracy and an area under the curve of 0.777 (P < 0.01). Conclusion MicroRNA-223 and its target gene RAB12 exhibit high expression levels in GCF samples from individuals with periodontal disease. This suggests modulation of autophagy and the signaling mechanism for pyroptotic cell death in periodontal tissues during pathogenesis. Consequently, the miR-223/RAB12 axis might represent a plausible link for periodontal disease.
Collapse
Affiliation(s)
- Dhathri Priya Bandi
- Department of Periodontology, Thaimoogambigai Dental College and Hospital, M.G.R. Educational and Research Institute, Kattankulathur, Chennai, Tamil Nadu, India
| | - Uma Sudhakar
- Department of Periodontology, Thaimoogambigai Dental College and Hospital, M.G.R. Educational and Research Institute, Kattankulathur, Chennai, Tamil Nadu, India
| | - Harinath Parthasarathy
- Department of Periodontology, S.R.M. Dental College and Hospital, Kattankulathur, Chennai, Tamil Nadu, India
| | - Snophia Rani Rajamani
- Department of Periodontology, Thaimoogambigai Dental College and Hospital, Kattankulathur, Chennai, Tamil Nadu, India
| | - Balasubramanian Krishnaswamy
- Former Assistant Professor, Department of Periodontology, SRM Dental College and Hospital, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Li L, Liao A. Application of pyroptosis score in the treatment and prognosis evaluation of gastric cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1882-1889. [PMID: 38448382 PMCID: PMC10930744 DOI: 10.11817/j.issn.1672-7347.2023.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 03/08/2024]
Abstract
Pyroptosis is a kind of proinflammatory programmed cell death mediated by inflammasome. It affects the occurrence and development of gastric cancer through different ways, showing dual effects. On the one hand, inflammasome-mediated inflammatory response is highly likely to participate in the formation and development of early tumors; on the other hand, drugs can inhibit the deterioration process of tumor proliferation, invasion and metastasis through activating the pathways of inflammasome and pyroptosis. Recently, many agents based on pyroptosis have been found to inhibit gastric cancer by promoting the secondary pyroptosis pathway, regulating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and inhibiting caspase-1. The establishment of cell pyrodeath models can predict the prognosis of gastric cancer patients. Most of the models show that gastric cancer patients with high pyroptosis level have better prognosis and longer overall survival. Pyroptosis scores can also be used to predict the response of gastric cancer patients to immunotherapy and to screen potential anti-gastric cancer drugs. Therefore, in-depth understanding of the potential mechanism of pyroptosis affecting the progression of gastric cancer and the role of pyroptosis score in the treatment and prognosis assessment of gastric cancer will be helpful to find a new and effective method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Luyun Li
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| | - Aijun Liao
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|
28
|
Ghasemian A, Omear HA, Mansoori Y, Mansouri P, Deng X, Darbeheshti F, Zarenezhad E, Kohansal M, Pezeshki B, Wang Z, Tang H. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development. Front Genet 2023; 14:1297093. [PMID: 38094755 PMCID: PMC10716712 DOI: 10.3389/fgene.2023.1297093] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 10/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the main fatal cancers. Cell signaling such as Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling substantially influences the process of gene expression and cell growth. Long non-coding RNAs (lncRNAs) play regulatory roles in cell signaling, cell proliferation, and cancer fate. Hence, lncRNAs can be considered biomarkers in cancers. The inhibitory or activating effects of different lncRNAs on the JAK/STAT pathway regulate cancer cell proliferation or tumor suppression. Additionally, lncRNAs regulate immune responses which play a role in immunotherapy. Mechanisms of lncRNAs in CRC via JAK/STAT regulation mainly include cell proliferation, invasion, metastasis, apoptosis, adhesion, and control of inflammation. More profound findings are warranted to specifically target the lncRNAs in terms of activation or suppression in hindering CRC cell proliferation. Here, to understand the lncRNA cross-talk in CRC through the JAK/STAT signaling pathway, we collected the related in vitro and in vivo data. Future insights may pave the way for the development of novel diagnostic tools, therapeutic interventions, and personalized treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hadeel A. Omear
- College of Science, University of Tikrit University, Tikrit, Iraq
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Farzaneh Darbeheshti
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
29
|
Wang J, Mi Y, Sun X, Xue X, Zhao H, Zhang M, Hu B, Bukhari I, Zheng P. Lnc-PTCHD4-AS inhibits gastric cancer through MSH2-MSH6 dimerization and ATM-p53-p21 activation. Aging (Albany NY) 2023; 15:13558-13578. [PMID: 38016120 DOI: 10.18632/aging.205329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Conserved long non-coding RNAs (lncRNAs) have not thoroughly been studied in many cancers, including gastric cancer (GC). We have identified a novel lncRNA PTCHD4-AS which was highly conserved between humans and mice and naturally downregulated in GC cell lines and tissues. Notably, PTCHD4-AS was found to be transcriptionally induced by DNA damage agents and its upregulation led to cell cycle arrest at the G2/M phase, in parallel, it facilitated the cell apoptosis induced by cisplatin (CDDP) in GC. Mechanistically, PTCHD4-AS directly bound to the DNA mismatch repair protein MSH2-MSH6 dimer, and facilitated the binding of dimer to ATM, thereby promoting the expression of phosphorylated ATM, p53 and p21. Here we conclude that the upregulation of PTCHD4-AS inhibits proliferation and increases CDDP sensitivity of GC cells via binding with MSH2-MSH6 dimer, activating the ATM-p53-p21 pathway.
Collapse
Affiliation(s)
- Jingyun Wang
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huanjie Zhao
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Mengfei Zhang
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Baitong Hu
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
30
|
Wu C, Xing W, Zhang Y, Wang J, Zuo N, Sun F, Liu Q, Liu S. NLRP3/miR-223-3p axis attenuates neuroinflammation induced by chronic intermittent hypoxia. Funct Integr Genomics 2023; 23:342. [PMID: 37991531 DOI: 10.1007/s10142-023-01268-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Obstructive sleep apnea (OSA) is mainly characterized by chronic intermittent hypoxia (CIH) with multiple brain injuries. Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is considered the most important factor inducing and maintaining inflammation. However, the role of NLRP3 and its underlying mechanism in CIH-elicited neuroinflammation remains unclear. We constructed an OSA-related CIH in vivo model and assessed the rats' cognitive behavior in the Morris water maze. The combination of miR-223-3p and NLRP3 was confirmed by the TargetScan database, double luciferase reporter gene experiment, and RNA immunoprecipitation (RIP) experiment. Western blot and ELISA assay were used to analyze the effects of miR-223-3p targeting NLRP3 on the expression of pyroptotic or inflammatory factors in vivo in CIH rats. Severe cognitive impairment was observed in rats at week 6 post-treatment, with increased inflammatory factors in the blood and hippocampus, heightened NLRP3 expression, and low miR-223-3p levels. And the good binding activity of the two was confirmed by dual luciferase reporter and RIP experiments. Next, we found that silencing NLRP3 or overexpression of miR-223-3p in the CIH model could improve cognitive deficits and reduce the level of proinflammatory factors and pyroptosis factors in rats. Finally, based on silencing NLRP3 or overexpression miR-223-3p, we confirmed that there was a regulatory relationship between miR-223-3p and NLRP3. Our results suggested that the NLRP3/ miR-223-3p axis played a role in attenuating CIH-induced neuroinflammation.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshanxi Road, Wuhu, 241006, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, Anhui, China
| | - Wen Xing
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, Anhui, China
- Department of Gerontology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yuanxiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Jue Wang
- School Doctor Courtyard, Wannan Medical College, Wuhu, Anhui, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshanxi Road, Wuhu, 241006, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Fuqin Sun
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshanxi Road, Wuhu, 241006, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Qi Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshanxi Road, Wuhu, 241006, Anhui, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshanxi Road, Wuhu, 241006, Anhui, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
| |
Collapse
|
31
|
Unida V, Mangano E, Camboni T, Consolandi C, Desideri A, Severgnini M, Cifola I, Biocca S. Insights on the molecular mechanisms of cytotoxicity induced by AS1411 linked to folate-functionalized DNA nanocages in cancer cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102710. [PMID: 37734452 DOI: 10.1016/j.nano.2023.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Self-assembled multivalent DNA nanocages are an emerging class of molecules useful for biomedicine applications. Here, we investigated the molecular mechanisms of cytotoxicity induced by AS1411 free aptamer, AS1411-linked nanocages (Apt-NCs) and nanocages harboring both folate and AS1411 functionalization (Fol-Apt-NCs) in HeLa and MDA-MB-231 cancer cell lines. The three treatments showed different cytotoxic efficacy and Fol-Apt-NCs resulted the most effective in inhibiting cell proliferation and inducing apoptotic pathways and ROS activation in both HeLa and MDA-MB-231 cells. RNA-seq analysis allowed to identify biological functions and genes altered by the various treatments, depending on the AS1411 route of intracellular entry, highlighting the different behavior of the two cancer cell lines. Notably, Fol-Apt-NCs altered the expression of a subset of genes associated to cancer chemoresistance in MDA-MB-231, but not in HeLa cells, and this may explain the increased chemosensitivity to drugs delivered through DNA nanocages of the triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Valeria Unida
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Eleonora Mangano
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy.
| | - Tania Camboni
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy.
| | - Clarissa Consolandi
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy.
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Marco Severgnini
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy.
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy.
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
32
|
Zhang RN, Jing ZQ, Zhang L, Sun ZJ. Epigenetic regulation of pyroptosis in cancer: Molecular pathogenesis and targeting strategies. Cancer Lett 2023; 575:216413. [PMID: 37769798 DOI: 10.1016/j.canlet.2023.216413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Immune checkpoint blockade therapy has revolutionized the field of cancer treatment, leading to durable responses in patients with advanced and metastatic cancers where conventional therapies were insufficient. However, factors like immunosuppressive cells and immune checkpoint molecules within the tumor microenvironment (TME) can suppress the immune system and thus negatively affect the efficiency of immune checkpoint inhibitors. Pyroptosis, a gasdermin-induced programmed cell death, could transform "cold tumors" to "hot tumors" to improve the milieu of TME, thus enhancing the immune response and preventing tumor growth. Recently, evidence showed that epigenetics could regulate pyroptosis, which further affects tumorigenesis, suggesting that epigenetics-based tumor cells pyroptosis could be a promising therapeutic strategy. Hence, this review focuses on the pyroptotic mechanism and summarizes three common types of epigenetics, DNA methylation, histone modification, and non-coding RNA, all of which have a role in regulating the expression of transcription factors and proteins involved in pyroptosis in cancer. Especially, we discuss targeting strategies on epigenetic-regulated pyroptosis and provide insights on the future trend of cancer research which may fuel cancer therapies into a new step.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China
| | - Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
34
|
Li Y, Xu K, Zhang Y, Mao H, Qiu Q, Yan Z, Liu X, Du Y, Chen Z. Identification of a basement membrane-related genes signature with immune correlation in bladder urothelial carcinoma and verification in vitro. BMC Cancer 2023; 23:1021. [PMID: 37872487 PMCID: PMC10591420 DOI: 10.1186/s12885-023-11340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/26/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Bladder urothelial carcinoma (BLCA) is the most common genitourinary cancer and the prognosis of patients is often poor. However, studies of basement membrane-related genes (BM-related genes) in BLCA are less reported. Therefore, we established a BM-related genes signature to explore their functional and prognostic value in BLCA. METHODS In this study, a BM-related genes signature was constructed by LASSO-Cox regression analysis, and then a series of bioinformatics methods was used to assess the accuracy and validity of the signature. We constructed a nomogram for clinical application and also screened for possible therapeutic drugs. To investigate the functions and pathways affected by BM-related genes in BLCA, we performed functional enrichment analyses. In addition, we analyzed the immune cell infiltration landscape and immune checkpoint-related genes in the high and low-risk groups. Finally, we confirmed the prognostic value of BM-related genes in BLCA in vitro. RESULTS Combining multiple bioinformatics approaches, we identified a seven-gene signature. The accuracy and validity of this signature in predicting BLCA patients were confirmed by the test cohort. In addition, the risk score was strongly correlated with prognosis, immune checkpoint genes, drug sensitivity, and immune cell infiltration landscape. The risk score is an independent prognostic factor for BLCA patients. Further experiments revealed that all seven signature genes were differentially expressed between BLCA cell lines and normal bladder cells. Finally, overexpression of LAMA2 inhibited the migration and invasion ability of BLCA cell lines. CONCLUSIONS In summary, the BM-related genes signature was able to predict the prognosis of BLCA patients accurately, indicating that the BM-related genes possess great clinical value in the diagnosis and treatment of BLCA. Moreover, LAMA2 could be a potential therapeutic target, which provides new insights into the application of the BM-related genes in BLCA patients.
Collapse
Affiliation(s)
- Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Kai Xu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Hu Mao
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qiangmin Qiu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiwei Yan
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
35
|
Zhu A, Cheng C, Lin S, Hong Z, Shi Z, Deng H, Zhang G. Silence of linc00023 inhibits pyroptosis and promotes cell proliferation via regulating p53. Gene 2023; 882:147628. [PMID: 37429368 DOI: 10.1016/j.gene.2023.147628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE The objective of our study is to investigate the role and potential mechanism of linc00023 in the development of pyroptosis in clear cell renal cell carcinoma (ccRCC). METHODS We assessed the expression of linc00023 in cells using qRT-PCR. Following linc00023 knockdown, we monitored cell proliferation and the pyroptosis marker using MTS, qRT-PCR, western blot analysis, and ELISA assays. Additionally, we performed RNA sequencing after linc00023 knockdown and validated the involvement of p53 using western blot analysis. Furthermore, we evaluated the potential mechanism by assessing cell proliferation and the expression of the pyroptosis marker after treatment with a p53 activator in linc00023-inhibited cells. RESULTS Linc00023 expression was downregulated in ccRCC cells. Among them, ACHN cells exhibited higher linc00023 expression and were selected for further investigation. Knockdown of linc00023 resulted in increased cell proliferation and decreased pyroptosis. Furthermore, inhibition of linc00023 led to changes in the expression of numerous mRNAs, including p53. Importantly, the p53 activator ReACp53 reversed the effects of linc00023 knockdown on cell proliferation and pyroptosis. CONCLUSION In conclusion, our findings suggested that linc00023 regulates pyroptosis in ccRCC by modulating p53 expression.
Collapse
Affiliation(s)
- Anyi Zhu
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Cheng Cheng
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shuangquan Lin
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhengdong Hong
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zimin Shi
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Huanhuan Deng
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Gan Zhang
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
36
|
Kazemi A, Goodarzi M, Daneshipour K, Sarabadani H, Shahpar Z, Hajiagha BS, Kheradjoo H, Mohammadzadehsaliani S. Unrevealing the vital role of ncRNAs in Gastric Cancer chemoresistance. Pathol Res Pract 2023; 250:154761. [PMID: 37689003 DOI: 10.1016/j.prp.2023.154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023]
Abstract
The high incidence of gastric cancer in many nations and poor overall survival rates has remained a serious global health concern. Chemoresistance in gastric cancer is a significant issue that hinders the efficacy of available treatment options. In gastric cancer, non-coding RNAs like microRNAs, long non-coding RNAs, and circular RNAs have become effective regulators of chemoresistance. These non-coding RNAs can influence several mechanisms, including drug efflux transporters, drug metabolism, and detoxification, cancer stem cells and the epithelial-mesenchymal transition, autophagy and apoptosis, and the tumor microenvironment. In this article review, we summarize the key roles non-coding RNAs play in the chemoresistance of gastric cancer and consider how they might be used in clinical settings as markers for diagnosis and prognosis, as well as potential targets and treatment plans. We also emphasize the need for additional study and collaborations in this area and highlight the difficulties and opportunities in non-coding RNA research for gastric cancer chemoresistance. This review offers crucial insights into the intricate relationship between non-coding RNAs and chemoresistance in gastric cancer, with implications for precision oncology and personalized medicine.
Collapse
Affiliation(s)
- Aida Kazemi
- Department of Biomedical Science, Monash University, Melbourne, Australia
| | - Masomeh Goodarzi
- Department of Biology, Zabol University of Medical Sciences, Zabol, Iran
| | - Kosar Daneshipour
- Department of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Zahra Shahpar
- M.Sc, Technical Department, İstanbul University, İstanbul, Türkiye
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
37
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
38
|
Wang J, Hua S, Bao H, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm (Beijing) 2023; 4:e374. [PMID: 37752941 PMCID: PMC10518439 DOI: 10.1002/mco2.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Nonprogrammed cell death (NPCD) and programmed cell death (PCD) are two types of cell death. Cell death is significantly linked to tumor development, medication resistance, cancer recurrence, and metastatic dissemination. Therefore, a comprehensive understanding of cell death is essential for the treatment of cancer. Pyroptosis is a kind of PCD distinct from autophagy and apoptosis in terms of the structure and function of cells. The defining features of pyroptosis include the release of an inflammatory cascade reaction and the expulsion of lysosomes, inflammatory mediators, and other cellular substances from within the cell. Additionally, it displays variations in osmotic pressure both within and outside the cell. Pyroptosis, as evidenced by a growing body of research, is critical for controlling the development of inflammatory diseases and cancer. In this paper, we reviewed the current level of knowledge on the mechanism of pyroptosis and inflammasomes and their connection to cancer and inflammatory diseases. This article presents a theoretical framework for investigating the potential of therapeutic targets in cancer and inflammatory diseases, overcoming medication resistance, establishing nanomedicines associated with pyroptosis, and developing risk prediction models in refractory cancer. Given the link between pyroptosis and the emergence of cancer and inflammatory diseases, pyroptosis-targeted treatments may be a cutting-edge treatment strategy.
Collapse
Affiliation(s)
- Jie‐Lin Wang
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Sheng‐Ni Hua
- Department of Radiation OncologyZhuhai Peoples HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hai‐Juan Bao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jing Yuan
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yang Zhao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shuo Chen
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
39
|
Huang H, Weng Y, Tian W, Lin X, Chen J, Luo L. Molecular mechanisms of pyroptosis and its role in anti-tumor immunity. Int J Biol Sci 2023; 19:4166-4180. [PMID: 37705746 PMCID: PMC10496503 DOI: 10.7150/ijbs.86855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Pyroptosis is a form of cell death that is characterized by the destruction of the cell, and it has implications in both the immune system and cancer immunotherapy. The gasdermin family is responsible for the activation of pyroptosis, which involves the formation of pores in the cellular membrane that permit the discharge of inflammatory factors. The inflammasome response is a powerful mechanism that helps to eliminate bacteria and cancer cells when cellular damage occurs. As tumor cells become more resilient to apoptosis, other treatments for cancer are becoming more popular. It is essential to gain a thorough understanding of pyroptosis in order to use it in cancer treatment, considering the intricate association between pyroptosis and the immune system's defensive reaction against tumors. This review offers an overview of the mechanisms of pyroptosis, the relationship between the gasdermin family and pyroptosis, and the interplay between pyroptosis and anti-tumor immunity. In addition, the potential implications of pyroptosis in cancer immunotherapy are discussed. Additionally, we explore future research possibilities and introduce a novel approach to tumor treatment.
Collapse
Affiliation(s)
- Hongyong Huang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanmin Weng
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, Guangdong, 518036, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, Guangdong, 518036, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China
| |
Collapse
|
40
|
Hsu SK, Chen YE, Shu ED, Ko CC, Chang WT, Lin IL, Li CY, Gallego RP, Chiu CC. The Pyroptotic and Nonpyroptotic Roles of Gasdermins in Modulating Cancer Progression and Their Perspectives on Cancer Therapeutics. Arch Immunol Ther Exp (Warsz) 2023; 71:14. [PMID: 37258998 DOI: 10.1007/s00005-023-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/02/2023]
Abstract
Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known as DFNA5), and DFNB59 (also known as pejvakin). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-En Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rovelyn P Gallego
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| |
Collapse
|
41
|
Wu Y, Wen X, Xia Y, Yu X, Lou Y. LncRNAs and regulated cell death in tumor cells. Front Oncol 2023; 13:1170336. [PMID: 37313458 PMCID: PMC10258353 DOI: 10.3389/fonc.2023.1170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Regulated Cell Death (RCD) is a mode of cell death that occurs through drug or genetic intervention. The regulation of RCDs is one of the significant reasons for the long survival time of tumor cells and poor prognosis of patients. Long non-coding RNAs (lncRNAs) which are involved in the regulation of tumor biological processes, including RCDs occurring on tumor cells, are closely related to tumor progression. In this review, we describe the mechanisms of eight different RCDs which contain apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis, autosis and cuproptosis. Meanwhile, their respective roles in the tumor are aggregated. In addition, we outline the literature that is related to the regulatory relationships between lncRNAs and RCDs in tumor cells, which is expected to provide new ideas for tumor diagnosis and treatment.
Collapse
|
42
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Jiang M, Fang C, Ma Y. Prognosis Risk Model Based on Pyroptosis-Related lncRNAs for Gastric Cancer. Biomolecules 2023; 13:biom13030469. [PMID: 36979404 PMCID: PMC10046686 DOI: 10.3390/biom13030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor with a low survival rate, high recurrence rate, and poor prognosis. With respect to this, pyroptosis is a type of programmed cell death that can affect the occurrence and development of tumors. Indeed, long non-coding RNAs (lncRNAs) were broadly applied for the purposes of early diagnosis, treatment, and prognostic analysis in regard to cancer. Based on the association of these three purposes, we developed a novel prognosis risk model based on pyroptosis-related lncRNAs (PRlncRNAs) for GC. The PRlncRNAs were obtained via univariate and multivariate Cox regression in order to build the predictive signatures. The Kaplan–Meier and gene set enrichment analysis (GSEA) methods were used to evaluate the overall survival (OS) and functional differences between the high- and low-risk groups. Moreover, the correlation of the signatures with immune cell infiltration was determined through single-sample gene set enrichment analysis (ssGSEA). Finally, we analyzed this correlation with the treatment responses in the GC patients; then, we performed quantitative reverse transcription polymerase chain reactions (qRT-PCRs) in order to verify the risk model. The high-risk group received a worse performance in terms of prognosis and OS when compared to the low-risk group. With respect to this, the area under the receiver operating characteristic curve (ROC) was found to be 0.808. Through conducting the GSEA, it was found that the high-risk groups possessed a significant enrichment in terms of tumor–immunity pathways. Furthermore, the ssGSEA revealed that the predictive features possessed strong associations with immune cell infiltration in regard to GC. In addition, we highlighted that anti-immune checkpoint therapy, combined with conventional chemotherapy drugs, may be more suitable for high-risk patients. The expression levels of LINC01315, AP003392.1, AP000695.2, and HAGLR were significantly different between the GC cell lines and the normal cell lines. As such, the six PRlncRNAs could be regarded as important prognostic biomarkers for the purposes of subsequent diagnoses, treatments, prognostic predictions, and the mechanism research of GC.
Collapse
|
44
|
A review on the role of ADAMTS9-AS2 in different disorders. Pathol Res Pract 2023; 243:154346. [PMID: 36746036 DOI: 10.1016/j.prp.2023.154346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Recent decade has seen a tremendous progress in identification of the role of different long non-coding RNAs (lncRNAs) in human pathologies. ADAMTS9-AS2 is an example of lncRNAs with different roles in human disorders. It is mostly acknowledged as a tumor suppressor lncRNA in different types of cancers. However, it has been reported to be up-regulated in tongue squamous cell carcinoma, salivary adenoid cystic carcinoma and glioblastoma. Moreover, ADAMTS9-AS2 is possibly involved in the pathoetiology of pulpitis, acute ischemic stroke, type 2 diabetes and its complications. This lncRNA sponges miR-196b-5p, miR-223-3p, miR-130a-5p, miR-600, miR-223-3p, miR-27a-3p, miR-32, miR-143-3p, miR-143-3p and miR-182-5p in order to regulate downstream mRNAs. This review aims at summarization of the role of ADAMTS9-AS2 in different disorders with a particular focus on its diagnostic and prognostic values.
Collapse
|
45
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
46
|
Huang Q, Yan J, Jiang Q, Guo F, Mo L, Deng T. Construction of a pyroptosis-related lncRNAs signature for predicting prognosis and immunotherapy response in glioma. Medicine (Baltimore) 2023; 102:e32793. [PMID: 36820554 PMCID: PMC9907962 DOI: 10.1097/md.0000000000032793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Recent studies have proved that pyroptosis-related long non-coding RNAs (PRlncRNAs) are closely linked to tumor progression, prognosis, and immunity. Here, we systematically evaluated the correlation of PRlncRNAs with glioma prognosis. This study included 3 glioma cohorts (The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and Gravendeel). Through Pearson correlation analysis, PRlncRNAs were screened from these 3 cohorts. Univariate Cox regression analysis was then carried out to determine the prognostic PRlncRNAs. A pyroptosis-related lncRNAs signature (PRLS) was then built by least absolute shrinkage and selection operator and multivariate Cox analyses. We systematically evaluated the correlation of the PRLS with the prognosis, immune features, and tumor mutation burden in glioma. A total of 14 prognostic PRlncRNAs overlapped in all cohorts and were selected as candidate lncRNAs. Based on The Cancer Genome Atlas cohort, a PRLS containing 7 PRlncRNAs was built. In all cohorts, the PRLS was proved to be a good predictor of glioma prognosis, with a higher risk score related to a poorer prognosis. We observed obvious differences in the immune microenvironment, immune cell infiltration level, and immune checkpoint expression in low- and high-risk subgroups. Compared with low-risk cases, high-risk cases had lower Tumor Immune Dysfunction and Exclusion scores and greater tumor mutation burden, indicating that high-risk cases can be more sensitive to immunotherapy. A nomogram combining PRLS and clinical parameters was constructed, which showed more robust and accurate predictive power. In conclusion, the PRLS is a potentially useful indicator for predicting prognosis and response to immunotherapy in glioma. Our findings may provide a useful insight into clinically individualized treatment strategies for patients.
Collapse
Affiliation(s)
- Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Qian Jiang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
- * Correspondence: Teng Deng, Department of Neurosurgery, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi 530021, PR China (e-mail: )
| |
Collapse
|
47
|
Zhong G, Guo C, Shang Y, Cui Z, Zhou M, Sun M, Fu Y, Zhang L, Feng H, Chen C. Development of a novel pyroptosis-related LncRNA signature with multiple significance in acute myeloid leukemia. Front Genet 2023; 13:1029717. [PMID: 36685973 PMCID: PMC9845279 DOI: 10.3389/fgene.2022.1029717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Pyroptosis, a programmed cell death (PCD) with highly inflammatory form, has been recently found to be associated with the origin of hematopoietic malignancies. Long noncoding RNA (lncRNA) had emerged as an essential mediator to regulate gene expression and been involved in oncogenesis. However, the roles of pyroptosis-related lncRNA (PRlncRNA) in acute myeloid leukemia (AML) have not yet been completely clarified. Methods: We collected AML datasets from public databases to obtain PRlncRNA associated with survival and constructed a PRlncRNA signature using Lasso-Cox regression analysis. Subsequently, we employed RT-PCR to confirm its expression difference and internal training to further verify its reliability. Next, AML patients were classified into two subgroups by the median risk score. Finally, the differences between two groups in immune infiltration, enrichment analysis and drug sensitivity were further explored. Results: A PRlncRNA signature and an effective nomogram combined with clinicopathological variables to predict the prognosis of AML were constructed. The internal validations showed that the PRlncRNA risk score model was an accurate and productive indicator to predict the outcome of AML. Furthermore, this study indicated that higher inflammatory cell and immunosuppressive cells, and less sensitive to conventional chemotherapy drugs were highlighted in the high-risk group. Conclusion: Through comprehensive analysis of PRlncRNA model, our study may offer a valuable basis for future researches in targeting pyroptosis and tumor microenvironment (TME) and provide new measures for prevention and treatment in AML.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chong Guo
- The Second Hospital of Shandong University, Jinan, China
| | - Yangli Shang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingshan Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China,*Correspondence: Chunyan Chen,
| |
Collapse
|
48
|
Prediction of Survival and Tumor Microenvironment Infiltration Based on Pyroptosis-Related lncRNAs in Pancreatic Cancer. DISEASE MARKERS 2022; 2022:5634887. [PMID: 36618967 PMCID: PMC9822759 DOI: 10.1155/2022/5634887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer (PC) is a fatal tumor with high mortality. Pyroptosis plays a tumor suppressor role as a novel cell death. However, the influences of the pyroptosis-related lncRNAs (PRlncRNAs) on the prognosis and tumor microenvironment (TME) infiltration have not been fully studied in PC. Using coexpression analysis and univariate Cox regression analysis, we identified seventeen prognostic PRlncRNAs from The Cancer Genome Atlas (TCGA) dataset, which were all expressed differently in normal and tumor samples. A seven-PRlncRNA risk signature was constructed and validated using the least absolute shrinkage and selection operator (LASSO) regression. Furthermore, we verified its independence and created a nomogram to validate the clinical viability of the risk signature. We then identified its relationship with clinical factors and evaluated its values in TME infiltration, functional enrichment, tumor mutation, and therapeutic responses in PC. Lower ImmuneScore, ESTIMATEScore, and advanced tumor stage were connected with high-risk score. The low-risk group was characterized by better OS, elevated immune activation, and higher susceptibility of pazopanib and sunitinib. The high-risk group possessed a worse immune infiltration and poor survival, with higher tumor mutations and lapatinib and paclitaxel that may be better choices in this group. In conclusion, we developed an original seven-PRlncRNA risk signature to predict prognosis, TME infiltration, tumor mutation, and therapeutic options for PC patients.
Collapse
|
49
|
Du C, Han X, Zhang Y, Guo F, Yuan H, Wang F, Li M, Ning F, Wang W. DARS-AS1 modulates cell proliferation and migration of gastric cancer cells by regulating miR-330-3p/NAT10 axis. Open Med (Wars) 2022; 17:2036-2045. [PMID: 36568518 PMCID: PMC9755708 DOI: 10.1515/med-2022-0583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
The long noncoding RNA DARS-AS1 was aberrantly expressed and participated in several human cancer progressions, whereas whether DARS-AS1 is involved in human gastric cancer remains unclear. This study aimed to investigate the influence of DARS-AS1 on gastric cancer progression and explore the potential regulatory network of DARS-AS1/miR-330-3p/NAT10. The expression levels of DARS-AS1, miR-330-3p, and NAT10 were measured by quantitative real-time polymerase chain reaction. The CCK-8 assay and Transwell assay were used to determine the cell viability, migration, and invasion capacities, respectively. The target association between miR-330-3p and DARS-AS1 or NAT10 was confirmed using a luciferase reporter assay. In result, DARS-AS1 levels were elevated in tumor tissues and associated with shorter overall survival in patients with gastric cancer. Knockdown of DARS-AS1 could hamper cell viability, migration, and invasion in gastric cancer cells. DARS-AS1 acts as a competitive endogenous RNA to regulate the NAT10 expression by sponging miR-330-3p in gastric cancer cells. In conclusion, DARS-AS1 was elevated in gastric cancer, and DARS-AS1/miR-330-3p/NAT10 signaling offered some new horizons for predicting prognosis and a novel therapeutic method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chunjuan Du
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xia Han
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yanyan Zhang
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fengli Guo
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No 324, Jingwuweiqi Road, Jinan, Shandong, 250021, China
| |
Collapse
|
50
|
Li S, Chen Z, Zhou R, Wang S, Wang W, Liu D, Li M, Guo T. Hsa_circ_0048674 facilitates hepatocellular carcinoma progression and natural killer cell exhaustion depending on the regulation of miR-223-3p/PDL1. Histol Histopathol 2022; 37:1185-1199. [PMID: 35187630 DOI: 10.14670/hh-18-440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) play vital regulatory roles in human cancers, including hepatocellular carcinoma (HCC). In this study, we aimed to explore the functions of hsa_circ_0048674 in HCC development. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to detect hsa_circ_0048674, ubiquitin-like with PHD and RING finger domains 1 (UHRF1), microRNA-223-3p (miR-223-3p) and programmed death ligand 1 (PDL1). RNase R assay and Actinomycin D assay were employed to analyze the stability of hsa_circ_0048674. Cell Counting Kit-8 (CCK-8) assay, colony formation assay and 5-ethynyl-2'- deoxyuridine (EdU) assay were conducted to assess cell proliferation. Flow cytometry analysis, transwell assay and tube formation assay were carried out for cell apoptosis, migration, invasion and angiogenesis, respectively. Western blot assay was adopted for protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to analyze the relationship between miR-223-3p and hsa_circ_0048674 or PDL1. Murine xenograft model assay was conducted for the function of hsa_circ_0048674 in vivo. Immunohistochemistry (IHC) assay was used to detect Ki-67 level in tumor tissues. Enzyme linked immunosorbent assay (ELISA) kits were employed for the concentrations of inflammatory factors. RESULTS Hsa_circ_0048674 was highly expressed in HCC tissues and cells. Silencing of hsa_circ_0048674 repressed cell growth, migration, invasion and angiogenesis and promoted apoptosis in HCC cells in vitro and hampered tumor growth in vivo. Hsa_circ_0048674 served as an miR-223-3p sponge to alter PDL1 expression. MiR-223-3p inhibition or PDL1 overexpression restored the impacts of hsa_circ_0048674 silencing on HCC malignant behaviors. In addition, hsa_circ_0048674 knockdown promoted natural killer (NK) cell-mediated cytotoxicity to HCC cells. CONCLUSION Hsa_circ_0048674 knockdown decelerated HCC progression through the mediation of the miR-223-3p/PDL1 axis.
Collapse
Affiliation(s)
- Suihui Li
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhuangzhong Chen
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruisheng Zhou
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sisi Wang
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenping Wang
- Tumor Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - De Liu
- Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengquan Li
- Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tiansheng Guo
- Department of Oncology, Panyu Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|