1
|
Lad M, Beniwal AS, Jain S, Shukla P, Kalistratova V, Jung J, Shah SS, Yagnik G, Saha A, Sati A, Babikir H, Nguyen AT, Gill S, Rios J, Young JS, Lui A, Salha D, Diaz A, Aghi MK. Glioblastoma induces the recruitment and differentiation of dendritic-like "hybrid" neutrophils from skull bone marrow. Cancer Cell 2024; 42:1549-1569.e16. [PMID: 39255776 PMCID: PMC11446475 DOI: 10.1016/j.ccell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Tumor-associated neutrophil (TAN) effects on glioblastoma (GBM) biology remain under-characterized. We show here that neutrophils with dendritic features-including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate major histocompatibility complex (MHC)II-dependent T cell activation-accumulate intratumorally and suppress tumor growth in vivo. Trajectory analysis of patient TAN scRNA-seq identifies this "hybrid" dendritic-neutrophil phenotype as a polarization state that is distinct from canonical cytotoxic TANs, and which differentiates from local precursors. These hybrid-inducible immature neutrophils-which we identified in patient and murine glioblastomas-arise not from circulation, but from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a contributor of antitumoral myeloid antigen-presenting cells (APCs), including TANs, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow-such as intracalvarial AMD3100, whose survival-prolonging effect in GBM we report-present therapeutic potential.
Collapse
Affiliation(s)
- Meeki Lad
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Angad S Beniwal
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Saket Jain
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Poojan Shukla
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Venina Kalistratova
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jangham Jung
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Sumedh S Shah
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Garima Yagnik
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Atul Saha
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Ankita Sati
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Husam Babikir
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Alan T Nguyen
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Sabraj Gill
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jennifer Rios
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jacob S Young
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Austin Lui
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Diana Salha
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Aaron Diaz
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Manish K Aghi
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA.
| |
Collapse
|
2
|
Miao S, Rodriguez BL, Gibbons DL. The Multifaceted Role of Neutrophils in NSCLC in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2507. [PMID: 39061147 PMCID: PMC11274601 DOI: 10.3390/cancers16142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Shucheng Miao
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bertha Leticia Rodriguez
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
4
|
Taifour T, Attalla SS, Zuo D, Gu Y, Sanguin-Gendreau V, Proud H, Solymoss E, Bui T, Kuasne H, Papavasiliou V, Lee CG, Kamle S, Siegel PM, Elias JA, Park M, Muller WJ. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity 2023; 56:2755-2772.e8. [PMID: 38039967 DOI: 10.1016/j.immuni.2023.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/22/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.
Collapse
Affiliation(s)
- Tarek Taifour
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Sherif Samer Attalla
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Dongmei Zuo
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Yu Gu
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | | | - Hailey Proud
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Emilie Solymoss
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Tung Bui
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | | | - Chun Geun Lee
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Suchitra Kamle
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Peter M Siegel
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Jack A Elias
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Morag Park
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - William J Muller
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
5
|
Kwantwi LB. Overcoming anti-PD-1/PD-L1 immune checkpoint blockade resistance: the role of macrophage, neutrophils and mast cells in the tumor microenvironment. Clin Exp Med 2023; 23:3077-3091. [PMID: 37022584 DOI: 10.1007/s10238-023-01059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
In recent years, the anti-PD-1/PD-L1 blockade has become a game changer in cancer treatment following the unprecedented response rate. Regardless of the substantial therapy efficacy across various cancer types, some patients do not still respond to these therapies, indicating that a deeper understanding of the mechanisms of anti-PD-1/PD-L1 resistance is highly important. To overcome such resistance, the tumor-induced immunosuppressive mechanisms have been focused and several suppressor cell populations in the tumor microenvironment have been identified. Among these cells, macrophages, neutrophils, and mast cells are known to play key roles in anti-PD-1/PD-L1 resistance. Hence, gaining control over these innate immune cells can open opportunities for breaking tumor resistance to immune checkpoint inhibitors. Herein, a summary of the role of macrophages, neutrophils, and mast cells in anti-PD-1/PD-L1 resistance has been described. Also, strategies to overcome their therapeutic resistance to anti-PD-1/PD-L1 have been discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
6
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Pang L, Khan F, Heimberger AB, Chen P. Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Trends Cancer 2022; 8:839-854. [PMID: 35624002 PMCID: PMC9492629 DOI: 10.1016/j.trecan.2022.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal form of brain tumor in human adults. Myeloid-lineage cells, including macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and neutrophils, are the most frequent types of cell in the GBM tumor microenvironment (TME) that contribute to tumor progression. Emerging experimental evidence indicates that symbiotic interactions between cancer cells and myeloid cells are critical for tumor growth and immunotherapy resistance in GBM. In this review, we discuss the molecular mechanisms whereby cancer cells shape a myeloid cell-mediated immunosuppressive TME and, reciprocally, how such myeloid cells affect tumor progression and immunotherapy efficiency in GBM. Moreover, we highlight tumor-T cell symbiosis and summarize immunotherapeutic strategies intercepting this co-dependency in GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Wang G, Wang J, Niu C, Zhao Y, Wu P. Neutrophils: New Critical Regulators of Glioma. Front Immunol 2022; 13:927233. [PMID: 35860278 PMCID: PMC9289230 DOI: 10.3389/fimmu.2022.927233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
In cancer, neutrophils are an important part of the tumour microenvironment (TME). Previous studies have shown that circulating and infiltrating neutrophils are associated with malignant progression and immunosuppression in gliomas. However, recent studies have shown that neutrophils have an antitumour effect. In this review, we focus on the functional roles of neutrophils in the circulation and tumour sites in patients with glioma. The mechanisms of neutrophil recruitment, immunosuppression and the differentiation of neutrophils are discussed. Finally, the potential of neutrophils as clinical biomarkers and therapeutic targets is highlighted. This review can help us gain a deeper and systematic understanding of the role of neutrophils, and provide new insights for treatment in gliomas.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Principe DR, Cataneo JL, Timbers KE, Koch RM, Valyi-Nagy K, Mellgren A, Rana A, Gantt G. Leukocyte subtyping predicts for treatment failure and poor survival in anal squamous cell carcinoma. BMC Cancer 2022; 22:697. [PMID: 35751111 PMCID: PMC9229146 DOI: 10.1186/s12885-022-09742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Anal squamous cell carcinoma (SCC) generally carries a favorable prognosis, as most tumors are highly sensitive to standard of care chemoradiation. However, outcomes are poor for the 20–30% of patients who are refractory to this approach, and many will require additional invasive procedures with no guarantee of disease resolution. Methods To identify the patients who are unlikely to respond to the current standard of care chemoradiation protocol, we explored a variety of objective clinical findings as a potential predictor of treatment failure and/or mortality in a single center retrospective study of 42 patients with anal SCC. Results Patients with an increase in total peripheral white blood cells (WBC) and/or neutrophils (ANC) had comparatively poor clinical outcomes, with increased rates of death and treatment failure, respectively. Using pre-treatment biopsies from 27 patients, tumors with an inflamed, neutrophil dominant stroma also had poor therapeutic responses, as well as reduced overall and disease-specific survival. Following chemoradiation, we observed uniform reductions in nearly all peripheral blood leukocyte subtypes, and no association between peripheral white blood cells and/or neutrophils and clinical outcomes. Additionally, post-treatment biopsies were available from 13 patients. In post-treatment specimens, patients with an inflamed tumor stroma now demonstrated improved overall and disease-specific survival, particularly those with robust T-cell infiltration. Conclusions Combined, these results suggest that routinely performed leukocyte subtyping may have utility in risk stratifying patients for treatment failure in anal SCC. Specifically, pre-treatment patients with a high WBC, ANC, and/or a neutrophil-dense tumor stroma may be less likely to achieve complete response using the standard of care chemoradiation regimen, and may benefit from the addition of a subsequent line of therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09742-7.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Jose L Cataneo
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Kaytlin E Timbers
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Regina M Koch
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, IL, Chicago, USA
| | - Anders Mellgren
- Department of Surgery, Division of Colorectal Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Gerald Gantt
- Department of Surgery, Division of Colorectal Surgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Lin YJ, Wu CYJ, Wu JY, Lim M. The Role of Myeloid Cells in GBM Immunosuppression. Front Immunol 2022; 13:887781. [PMID: 35711434 PMCID: PMC9192945 DOI: 10.3389/fimmu.2022.887781] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Gliomas are intrinsic brain tumors that originate from glial cells. Glioblastoma (GBM) is the most aggressive glioma type and resistant to immunotherapy, mainly due to its unique immune environment. Dimensional data analysis reveals that the intra-tumoral heterogeneity of immune cell populations in the glioma microenvironment is largely made up of cells of myeloid lineage. Conventional therapies of combined surgery, chemotherapy and radiotherapy have achieved limited improvements in the prognosis of glioma patients, as myeloid cells are prominent mediators of immune and therapeutic responses—like immunotherapy resistance—in glioma. Myeloid cells are frequently seen in the tumor microenvironment (TME), and they are polarized to promote tumorigenesis and immunosuppression. Reprogramming myeloid cells has emerged as revolutionary, new types of immunotherapies for glioma treatment. Here we detail the current advances in classifying epigenetic, metabolic, and phenotypic characteristics and functions of different populations of myeloid cells in glioma TME, including myeloid-derived suppressor cells (MDSCs), glioma-associated microglia/macrophages (GAMs), glioma-associated neutrophils (GANs), and glioma-associated dendritic cells (GADCs), as well as the mechanisms underlying promotion of tumorigenesis. The final goal of this review will be to provide new insights into novel therapeutic approaches for specific targeting of myeloid cells to improve the efficacy of current treatments in glioma patients.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Medical Foundation, Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Neurosurgery, Chang Gung Medical Foundation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Janet Yuling Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Kaisar-Iluz N, Arpinati L, Shaul ME, Mahroum S, Qaisi M, Tidhar E, Fridlender ZG. The Bilateral Interplay between Cancer Immunotherapies and Neutrophils’ Phenotypes and Sub-Populations. Cells 2022; 11:cells11050783. [PMID: 35269405 PMCID: PMC8909700 DOI: 10.3390/cells11050783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy has become a leading modality for the treatment of cancer, but despite its increasing success, a substantial number of patients do not benefit from it. Cancer-related neutrophils have become, in recent years, a subject of growing interest. Distinct sub-populations of neutrophils have been identified at advanced stages of cancer. In this study, we aimed to evaluate the role of neutrophils in mediating the efficacy of immune checkpoint inhibitors (ICI) treatments (α-PD-1/PD-L1), by assessing lung tumor models in mice. We found that G-CSF overexpression by the tumor significantly potentiates the efficacy of ICI, whereas neutrophils’ depletion abrogated their responses. Adoptive transfer of circulating normal-density neutrophils (NDN) resulted in significantly reduced tumor growth, whereas low-density neutrophils (LDN) had no effect. We next investigated the effect of ICI on neutrophils’ functions. Following α-PD-L1 treatment, NDN displayed increased ROS production and increased cytotoxicity toward tumor cells but decreased degranulation. Together, our results suggest that neutrophils are important mediators of the ICI treatments and that mainly NDN are modulated following α-PD-L1 treatment. This research provides a better understanding of the function of neutrophils following immunotherapies and their impact on the efficacy of immunotherapy, supporting better understanding and future improvement of currently available treatments.
Collapse
Affiliation(s)
- Naomi Kaisar-Iluz
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Merav E. Shaul
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sojod Mahroum
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mohamad Qaisi
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Einat Tidhar
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Zvi G. Fridlender
- Institute of Pulmonary Medicine, Hadassah Medical Center, Jerusalem 91120, Israel; (N.K.-I.); (L.A.); (M.E.S.); (S.M.); (M.Q.); (E.T.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-6779311
| |
Collapse
|
12
|
Fan Y, Wang Y, Zhang J, Dong X, Gao P, Liu K, Ma C, Zhao G. Breaking Bad: Autophagy Tweaks the Interplay Between Glioma and the Tumor Immune Microenvironment. Front Immunol 2021; 12:746621. [PMID: 34671362 PMCID: PMC8521049 DOI: 10.3389/fimmu.2021.746621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Though significant strides in tumorigenic comprehension and therapy modality have been witnessed over the past decades, glioma remains one of the most common and malignant brain tumors characterized by recurrence, dismal prognosis, and therapy resistance. Immunotherapy advance holds promise in glioma recently. However, the efficacy of immunotherapy varies among individuals with glioma, which drives researchers to consider the modest levels of immunity in the central nervous system, as well as the immunosuppressive tumor immune microenvironment (TIME). Considering the highly conserved property for sustaining energy homeostasis in mammalian cells and repeatedly reported links in malignancy and drug resistance, autophagy is determined as a cutting angle to elucidate the relations between glioma and the TIME. In this review, heterogeneity of TIME in glioma is outlined along with the reciprocal impacts between them. In addition, controversies on whether autophagy behaves cytoprotectively or cytotoxically in cancers are covered. How autophagy collapses from its homeostasis and aids glioma malignancy, which may depend on the cell type and the cellular context such as reactive oxygen species (ROS) and adenosine triphosphate (ATP) level, are briefly discussed. The consecutive application of autophagy inducers and inhibitors may improve the drug resistance in glioma after overtreatments. It also highlights that autophagy plays a pivotal part in modulating glioma and the TIME, respectively, and the intricate interactions among them. Specifically, autophagy is manipulated by either glioma or tumor-associated macrophages to conform one side to the other through exosomal microRNAs and thereby adjust the interactions. Given that some of the crosstalk between glioma and the TIME highly depend on the autophagy process or autophagic components, there are interconnections influenced by the status and well-being of cells presumably associated with autophagic flux. By updating the most recent knowledge concerning glioma and the TIME from an autophagic perspective enhances comprehension and inspires more applicable and effective strategies targeting TIME while harnessing autophagy collaboratively against cancer.
Collapse
Affiliation(s)
- Yuxiang Fan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xuechao Dong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Pu Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Kai Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Research Supporting a Pilot Study of Metronomic Dapsone during Glioblastoma Chemoirradiation. Med Sci (Basel) 2021; 9:medsci9010012. [PMID: 33669324 PMCID: PMC7931060 DOI: 10.3390/medsci9010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
This short note presents previous research data supporting a pilot study of metronomic dapsone during the entire course of glioblastoma treatment. The reviewed data indicate that neutrophils are an integral part of human glioblastoma pathophysiology, contributing to or facilitating glioblastoma growth and treatment resistance. Neutrophils collect within glioblastoma by chemotaxis along several chemokine/cytokine gradients, prominently among which is interleukin-8. Old data from dermatology research has shown that the old and inexpensive generic drug dapsone inhibits neutrophils' chemotaxis along interleukin-8 gradients. It is on that basis that dapsone is used to treat neutrophilic dermatoses, for example, dermatitis herpetiformis, bullous pemphigoid, erlotinib-related rash, and others. The hypothesis of this paper is that dapsone will reduce glioblastomas' neutrophil accumulations by the same mechanisms by which it reduces dermal neutrophil accumulations in the neutrophilic dermatoses. Dapsone would thereby reduce neutrophils' contributions to glioblastoma growth. Dapsone is not an ideal drug, however. It generates methemoglobinemia that occasionally is symptomatic. This generation is reduced by concomitant use of the antacid drug cimetidine. Given the uniform lethality of glioblastoma as of 2020, the risks of dapsone 100 mg twice daily and cimetidine 400 mg twice daily is low enough to warrant a judicious pilot study.
Collapse
|