1
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
2
|
Zeng Y, Yang Z, Yang Y, Wang P. LncRNA NUTM2A-AS1 silencing inhibits glioma via miR-376a-3p/YAP1 axis. Cell Div 2024; 19:17. [PMID: 38730506 PMCID: PMC11088135 DOI: 10.1186/s13008-024-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The lncRNA NUTM2A-AS1 has been shown to be dysregulated in gastric cancer, while the roles in glioma is unclear. The aim of this study was to investigate the roles and potential mechanisms of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of glioma cells. The StarBase software and dual luciferase reporter assay were used to identify the relationship between lncRNA NUTM2A-AS1 and miR-376a-3p, and miR-376a-3p and YAP1. The expression of lncRNA NUTM2A-AS1, miR-376a-3p, and YAP1 in human glioma cell lines was detected by qRT-PCR. MTT and flow cytometry were used to detect the effects of lncRNA NUTM2A-AS1 or miR-376a-3p on the proliferation and apoptosis of U251 and A172 cells, respectively. In addition, changes of Bax and Bcl-2 expression in glioma cells were further verified by western blotting and qRT-PCR. The results showed that the expression of lncRNA NUTM2A-AS1 was elevated in glioma cell lines, while miR-376a-3p was decreased. LncRNA NUTM2A-AS1 was negatively correlated with miR-376a-3p. Silencing of lncRNA NUTM2A-AS1 enhanced the levels of miR-376a-3p, leading to reduced cell proliferation and increased apoptosis in glioma cells. YAP1 was a direct target of miR-376a-3p, and it was negatively regulated by miR-376a-3p in U251 and A172 cells. Further mechanistic studies suggested that miR-376a-3p reduced glioma cell proliferation and increased apoptosis by inhibiting YAP1 expression. In addition, lncRNA NUTM2A-AS1 positively regulated of YAP1 expression in glioma cells. In conclusion, silencing of lncRNA NUTM2A-AS1 inhibited proliferation and induced apoptosis in human glioma cells via the miR-376a-3p/YAP1 axis.
Collapse
Affiliation(s)
- Yuecheng Zeng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Zhenyu Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Yang Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| | - Peng Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| |
Collapse
|
3
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
5
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Fan H, Zhou Y, Zhang Z, Zhou G, Yuan C. ROR1-AS1: A Meaningful Long Noncoding RNA in Oncogenesis. Mini Rev Med Chem 2024; 24:1884-1893. [PMID: 38859780 DOI: 10.2174/0113895575294482240530154620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Long noncoding RNA (lncRNA) is a non-coding RNA with a length of more than 200 nucleotides, involved in multiple regulatory processes in vivo, and is related to the physiology and pathology of human diseases. An increasing number of experimental results suggest that when lncRNA is abnormally expressed, it results in the development of tumors. LncRNAs can be divided into five broad categories: sense, antisense, bidirectional, intronic, and intergenic. Studies have found that some antisense lncRNAs are involved in a variety of human tumorigenesis. The newly identified ROR1-AS1, which functions as an antisense RNA of ROR1, is located in the 1p31.3 region of the human genome. Recent studies have reported that abnormal expression of lncRNA ROR1-AS1 can affect cell growth, proliferation, invasion, and metastasis and increase oncogenesis and tumor spread, indicating lncRNA ROR1-AS1 as a promising target for many tumor biological therapies. In this study, the pathophysiology and molecular mechanism of ROR1-AS1 in various malignancies are discussed by retrieving the related literature. ROR1-AS1 is a cancer-associated lncRNA, and studies have found that it is either over- or underexpressed in multiple malignancies, including liver cancer, colon cancer, osteosarcoma, glioma, cervical cancer, bladder cancer, lung adenocarcinoma, and mantle cell lymphoma. Furthermore, it has been demonstrated that lncRNA ROR1-AS1 participates in proliferation, migration, invasion, and suppression of apoptosis of cancer cells. Furthermore, lncRNA ROR1-AS1 promotes the development of tumors by up-regulating or downregulating ROR1-AS1 conjugates and various pathways and miR-504, miR-4686, miR-670-3p, and miR-375 sponges, etc., suggesting that lncRNA ROR1-AS1 may be used as a marker in tumors or a potential therapeutic target for a variety of tumors.
Collapse
Affiliation(s)
- Hong Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
7
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
8
|
Chen Z, Zhou J, Liu Y, Ni H, Zhou B. Targeting MAGI2-AS3-modulated Akt-dependent ATP-binding cassette transporters as a possible strategy to reverse temozolomide resistance in temozolomide-resistant glioblastoma cells. Drug Dev Res 2023; 84:1482-1495. [PMID: 37551766 DOI: 10.1002/ddr.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Drug resistance is a major impediment to the successful treatment of glioma. This study aimed to elucidate the effects and mechanisms of the long noncoding RNA membrane-associated guanylate kinase inverted-2 antisense RNA 3 (MAGI2-AS3) on temozolomide (TMZ) resistance in glioma cells. MAGI2-AS3 expression in TMZ-resistant glioblastoma (GBM) cells was analyzed using the Gene Expression Omnibus data set GSE113510 and quantitative real-time PCR (qRT-PCR). Cell viability and TMZ half-maximal inhibitory concentration values were determined using the MTT assay. Apoptosis and cell cycle distribution were evaluated using flow cytometry. The expression of multidrug resistance 1 (MDR1), ATP-binding cassette superfamily G member 2 (ABCG2), protein kinase B (Akt), and phosphorylated Akt was detected using qRT-PCR and/or western blot analysis. MAGI2-AS3 was expressed at low levels in TMZ-resistant GBM cells relative to that in their parental cells. MAGI2-AS3 re-expression alleviated TMZ resistance in TMZ-resistant GBM cells. MAGI2-AS3 overexpression also accelerated TMZ-induced apoptosis and G2/M phase arrest. Mechanistically, MAGI2-AS3 overexpression reduced MDR1 and ABCG2 expression and inhibited the Akt pathway, whereas Akt overexpression abrogated the reduction in MDR1 and ABCG2 expression induced by MAGI2-AS3. Moreover, activation of the Akt pathway inhibited the effects of MAGI2-AS3 on TMZ resistance. MAGI2-AS3 inhibited tumor growth and enhanced the suppressive effect of TMZ on glioma tumorigenesis in vivo. In conclusion, MAGI2-AS3 reverses TMZ resistance in glioma cells by inactivating the Akt pathway.
Collapse
Affiliation(s)
- Zhongjun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Jingmin Zhou
- Emergency Department, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Yu Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Gao Y, Wu C, Huang J, Huang Z, Jin Z, Guo S, Tao X, Lu S, Zhang J, Zhang F, Zhai Y, Shi R, Ye P, Wu J. A new strategy to identify ADAM12 and PDGFRB as a novel prognostic biomarker for matrine regulates gastric cancer via high throughput chip mining and computational verification. Comput Biol Med 2023; 166:107562. [PMID: 37847945 DOI: 10.1016/j.compbiomed.2023.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Gastric cancer is a life-threatening disease that poses a serious risk to human health. Although there are numerous molecular targets for gastric cancer in clinical practice, they often exhibit low specificity and sensitivity. Consequently, this can result in a low early diagnosis rate, delayed treatment, and poor prognosis for patients with gastric cancer. Hence, it remains crucial to identify more precise diagnostic markers for this disease. METHODS This study utilized ceRNA chips and bioinformatics methods to investigate the key genes and mechanisms involved in matrine intervention in gastric cancer cells. RESULTS ADAM12 and PDGFRB are the key genes that are down-regulated after matrine intervention in gastric cancer cells. By conducting bioinformatics analysis, two ceRNA regulatory axes were identified, which are associated with the prognosis of gastric cancer. These axes are lncRNA DGCR5/hsa-miR-206/ADAM12 and circRNA ITGA3/hsa-miR-24-3p/PDGFRB. CONCLUSION The low expression of ADAM12 may weaken the digestion of extracellular matrix (ECM) molecules, which can result in the invasion and metastasis of tumor cells. This occurs without the catalysis of ECM proteases, thereby impacting the invasion and metastasis of gastric cancer cells. Additionally, the analysis of immune infiltration suggests that ADAM12 and PDGFRB may influence changes in the tumor immune microenvironment, thereby affecting the occurrence and development of gastric cancer. This study contributes to a deeper understanding of the role of the matrine-related ceRNA network in gastric cancer, providing a reference for clinical diagnosis and treatment. It holds significant importance in discovering new drug treatment targets.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengsen Jin
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Tao
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peizhi Ye
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 PMCID: PMC10294841 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
| | | | | | | | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
11
|
Tang G, Peng J, Huo L, Yin W. An N6-methyladenosine regulation- and mRNAsi-related prognostic index reveals the distinct immune microenvironment and immunotherapy responses in lower-grade glioma. BMC Bioinformatics 2023; 24:225. [PMID: 37264314 DOI: 10.1186/s12859-023-05328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is involved in tumorigenesis and progression as well as closely correlated with stem cell differentiation and pluripotency. Moreover, tumor progression includes the acquisition of stemness characteristics and accumulating loss of differentiation phenotype. Therefore, we integrated m6A modification and stemness indicator mRNAsi to classify patients and predict prognosis for LGG. METHODS We performed consensus clustering, weighted gene co-expression network analysis, and least absolute shrinkage and selection operator Cox regression analysis to identify an m6A regulation- and mRNAsi-related prognostic index (MRMRPI). Based on this prognostic index, we also explored the differences in immune microenvironments between high- and low-risk populations. Next, immunotherapy responses were also predicted. Moreover, single-cell RNA sequencing data was further used to verify the expression of these genes in MRMRPI. At last, the tumor-promoting and tumor-associated macrophage polarization roles of TIMP1 in LGG were validated by in vitro experiments. RESULTS Ten genes (DGCR10, CYP2E1, CSMD3, HOXB3, CABP4, AVIL, PTCRA, TIMP1, CLEC18A, and SAMD9) were identified to construct the MRMRPI, which was able to successfully classify patients into high- and low-risk group. Significant differences in prognosis, immune microenvironment, and immunotherapy responses were found between distinct groups. A nomogram integrating the MRMRPI and other prognostic factors were also developed to accurately predict prognosis. Moreover, in vitro experiments illustrated that inhibition of TIMP1 could inhibit the proliferation, migration, and invasion of LGG cells and also inhibit the polarization of tumor-associated macrophages. CONCLUSION These findings provide novel insights into understanding the interactions of m6A methylation regulation and tumor stemness on LGG development and contribute to guiding more precise immunotherapy strategies.
Collapse
Affiliation(s)
- Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, 410005, Hunan Province, People's Republic of China.
| | - Jianqiao Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, 410005, Hunan Province, People's Republic of China
| | - Longwei Huo
- Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin, 719000, People's Republic of China
| | - Wen Yin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
12
|
Lenda B, Żebrowska-Nawrocka M, Turek G, Balcerczak E. Zinc Finger E-Box Binding Homeobox Family: Non-Coding RNA and Epigenetic Regulation in Gliomas. Biomedicines 2023; 11:biomedicines11051364. [PMID: 37239035 DOI: 10.3390/biomedicines11051364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are the most common malignant brain tumours. Among them, glioblastoma (GBM) is a grade four tumour with a median survival of approximately 15 months and still limited treatment options. Although a classical epithelial to mesenchymal transition (EMT) is not the case in glioma due to its non-epithelial origin, the EMT-like processes may contribute largely to the aggressive and highly infiltrative nature of these tumours, thus promoting invasive phenotype and intracranial metastasis. To date, many well-known EMT transcription factors (EMT-TFs) have been described with clear, biological functions in glioma progression. Among them, EMT-related families of molecules such as SNAI, TWIST and ZEB are widely cited, well-established oncogenes considering both epithelial and non-epithelial tumours. In this review, we aimed to summarise the current knowledge with a regard to functional experiments considering the impact of miRNA and lncRNA as well as other epigenetic modifications, with a main focus on ZEB1 and ZEB2 in gliomas. Although we explored various molecular interactions and pathophysiological processes, such as cancer stem cell phenotype, hypoxia-induced EMT, tumour microenvironment and TMZ-resistant tumour cells, there is still a pressing need to elucidate the molecular mechanisms by which EMT-TFs are regulated in gliomas, which will enable researchers to uncover novel therapeutic targets as well as improve patients' diagnosis and prognostication.
Collapse
Affiliation(s)
- Bartosz Lenda
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Grzegorz Turek
- Department of Neurosurgery, Bródnowski Masovian Hospital, Kondratowicza 8, 03-242 Warsaw, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
13
|
GAS5 attenuates the malignant progression of glioma stem-like cells by promoting E-cadherin. Cancer Gene Ther 2023; 30:450-461. [PMID: 36460802 DOI: 10.1038/s41417-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
It has been widely reported that glioma stem-like cells (GSCs) serve a crucial role in the malignant progression of glioma. In particular, recent studies have reported that long non-coding RNAs (lncRNAs) are closely associated with glioma development. However, the underlying molecular regulatory mechanistic role of GSCs remains poorly understood. The present study established two highly malignant glioma stem-like cell lines from clinical surgical specimens. In these, it was found that the lncRNA growth arrest-specific 5 (GAS5) expression was downregulated in GSCs and high-grade glioma tissues, compared with normal human astrocyte cells (NHAs) and normal brain tissues, respectively, which also showed a positive correlation with patient survival. Functional assays revealed that knocking down GAS5 expression promoted the proliferation, invasion, migration, stemness, and tumorigenicity of GSGs, while suppressing their apoptosis. Mechanistically, GAS5 directly sponged miR-23a, which in turn functioned as an oncogene by inhibiting E-cadherin, through the assays of reverse transcription-quantitative PCR (RT-qPCR) and luciferase reports. In addition, rescue experiments demonstrated that GAS5 could promote the expression and function of E-cadherin in a miR-23a-dependent manner. Collectively, these data suggest that GAS5 functions as a suppressor in GSCs by targeting the miR-23a/E-cadherin axis, which may be a promising therapeutic target against glioma.
Collapse
|
14
|
Roh J, Im M, Kang J, Youn B, Kim W. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Anim Cells Syst (Seoul) 2023; 27:19-28. [PMID: 36819921 PMCID: PMC9937017 DOI: 10.1080/19768354.2023.2175497] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Glioma is the most common primary malignant brain tumor in adults and accounts for approximately 80% of brain and central nervous system tumors. In 2021, the World Health Organization (WHO) published a new taxonomy for glioma based on its histological features and molecular alterations. Isocitrate dehydrogenase (IDH) catalyzes the decarboxylation of isocitrate, a critical metabolic reaction in energy generation in cells. Mutations in the IDH genes interrupt cell differentiation and serve as molecular biomarkers that can be used to classify gliomas. For example, the mutant IDH is widely detected in low-grade gliomas, whereas the wild type is in high-grade ones, including glioblastomas. Long non-coding RNAs (lncRNAs) are epigenetically involved in gene expression and contribute to glioma development. To investigate the potential use of lncRNAs as biomarkers, we examined lncRNA dysregulation dependent on the IDH mutation status. We found that several lncRNAs, namely, AL606760.2, H19, MALAT1, PVT1 and SBF2-AS1 may function as glioma risk factors, whereas AC068643.1, AC079228.1, DGCR5, FAM13A-AS1, HAR1A and WDFY3-AS2 may have protective effects. Notably, H19, MALAT1, PVT1, and SBF2-AS1 have been associated with temozolomide resistance in glioma patients. This review study suggests that targeting glioma-associated lncRNAs might aid the treatment of glioma.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea, BuHyun Youn Department of Biological Sciences, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan46241, Republic of Korea; Wanyeon Kim Department of Biology Education, Korea National University of Education, 250 Taeseongtabyeon-ro, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungbuk28173, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea,Department of Biology Education, Korea National University of Education, Cheongju-si, Republic of Korea, BuHyun Youn Department of Biological Sciences, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan46241, Republic of Korea; Wanyeon Kim Department of Biology Education, Korea National University of Education, 250 Taeseongtabyeon-ro, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungbuk28173, Republic of Korea
| |
Collapse
|
15
|
Zhang B, Cheng Y, Li R, Lian M, Guo S, Liang C. Development of a novel angiogenesis-related lncRNA signature to predict the prognosis and immunotherapy of glioblastoma multiforme. Transl Cancer Res 2023; 12:13-30. [PMID: 36760384 PMCID: PMC9906052 DOI: 10.21037/tcr-22-1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
Background Long noncoding RNA (lncRNA) can regulate tumorigenesis, angiogenesis, proliferation, and other tumor biological behaviors, and is closely related to the growth and progression of glioma. The purpose of this research was to investigate the role of angiogenesis-related lncRNA in the prognosis and immunotherapy of glioblastoma multiforme (GBM). Methods Differential analysis was carried out to acquire angiogenesis-related differentially expressed lncRNAs (AR-DElncRNAs). The AR-DElncRNAs were then subjected to univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses to construct a prognostic model. Based on the median risk score, patients were classified into high-risk and low-risk groups. Kaplan-Meier survival analysis was conducted to estimate the prognostic value of the prognostic model. In addition, a nomogram was built to predict individual survival probabilities by combining clinicopathological characteristics and a prognostic model. Furthermore, immune infiltration, immunotherapy, and drug sensitivity analyses were administered to investigate the differences between the high- and low-risk groups. Results We identified 3 lncRNAs (DGCR5, PRKAG2-AS1, and ACAP2-IT1) that were significantly associated with the survival of GBM patients from the 255 AR-DElncRNAs based on univariate Cox and LASSO analyses. Then, a prognostic model was structured according to these 3 lncRNAs, from which we found that high-risk GBM patients had a worse prognosis than that of low-risk patients. Moreover, the risk score was determined to be an independent prognostic factor [hazard ratio (HR) =1.444; 95% confidence interval (CI): 1.014-2.057; P<0.05]. The immune microenvironment analysis revealed that the immune score, stromal score, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) score were significantly higher in the high-risk group than in the low-risk group. Neutrophils, macrophages, immature dendritic cells (iDCs), natural killer (NK) CD56dim cells, activated DCs (aDCs), and uncharacterized cells were different in the high- and low-risk groups. In addition, the high-risk group had a stronger sensitivity to immunotherapy. Furthermore, the sensitivity of 28 potential chemotherapeutic drugs differed significantly between the high- and low-risk groups. Conclusions A novel angiogenesis-related lncRNA signature could be used to predict the prognosis and treatment of GBM.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaling Cheng
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruichun Li
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minxue Lian
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China;,Department of Radiology Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
17
|
Xu X, Liang Y, Gareev I, Liang Y, Liu R, Wang N, Yang G. LncRNA as potential biomarker and therapeutic target in glioma. Mol Biol Rep 2023; 50:841-851. [PMID: 36331751 DOI: 10.1007/s11033-022-08056-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Glioma is the most frequent type of malignant tumor in the central nervous system, accounting for about 80% of primary malignant brain tumors, usually with a poor prognosis. A number of studies have been conducted on the molecular abnormalities in glioma to further understand its pathogenesis, and it has been found that lncRNAs (long non-coding RNA) play a key role in angiogenesis, tumor growth, infiltration and metastasis of glioma. Since specific lncRNAs have an aberrant expression in brain tissue, cerebrospinal fluid as well as peripheral circulation of glioma patients, they are considered to be potential biomarkers. This review focuses on the biological characteristics of lncRNA and its value as a biomarker for glioma diagnosis and prognosis. Moreover, in view of the role of lncRNAs in glioma proliferation and chemoradiotherapy resistance, we discussed the feasibility for lncRNAs as therapeutic targets. Finally, the persisting deficiencies and future prospects of using lncRNAs as clinical biomarkers and therapeutic targets were concluded.
Collapse
Affiliation(s)
- Xun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Yuan Liang
- Department of Neurosurgery, Xuzhou Third People's Hospital, Xuzhou, China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Russia, 450008
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Rui Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Nieland L, van Solinge TS, Cheah PS, Morsett LM, El Khoury J, Rissman JI, Kleinstiver BP, Broekman ML, Breakefield XO, Abels ER. CRISPR-Cas knockout of miR21 reduces glioma growth. Mol Ther Oncolytics 2022; 25:121-136. [PMID: 35572197 PMCID: PMC9052041 DOI: 10.1016/j.omto.2022.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNAs, including microRNAs (miRNAs), support the progression of glioma. miR-21 is a small, non-coding transcript involved in regulating gene expression in multiple cellular pathways, including the regulation of proliferation. High expression of miR-21 has been shown to be a major driver of glioma growth. Manipulating the expression of miRNAs is a novel strategy in the development of therapeutics in cancer. In this study we aimed to target miR-21. Using CRISPR genome-editing technology, we disrupted the miR-21 coding sequences in glioma cells. Depletion of this miRNA resulted in the upregulation of many downstream miR-21 target mRNAs involved in proliferation. Phenotypically, CRISPR-edited glioma cells showed reduced migration, invasion, and proliferation in vitro. In immunocompetent mouse models, miR-21 knockout tumors showed reduced growth resulting in an increased overall survival. In summary, we show that by knocking out a key miRNA in glioma, these cells have decreased proliferation capacity both in vitro and in vivo. Overall, we identified miR-21 as a potential target for CRISPR-based therapeutics in glioma.
Collapse
Affiliation(s)
- Lisa Nieland
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Thomas S. van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Pike See Cheah
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Liza M. Morsett
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Joseph I. Rissman
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Marike L.D. Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands
| | - Xandra O. Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Erik R. Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
19
|
Fu Y, Sun H. The molecular mechanism of circRHOBTB3 inhibits the proliferation and invasion of epithelial ovarian cancer by serving as the ceRNA of miR-23a-3p. J Ovarian Res 2022; 15:66. [PMID: 35650643 PMCID: PMC9158168 DOI: 10.1186/s13048-022-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
Rising evidences bespeak that circular RNAs are indispensable in regulating cellular biological behaviors and engaging in diseases' occurrence. CircRHOBTB3 has been reported to participate intimately in the progression of some cancers. Nevertheless, the mechanism by which circRHOBTB3 regulates tumorigenesis in epithelial ovarian cancer (EOC) remains ill-defined. The present study determined the expression pattern and bio-effects of circRHOBTB3 in EOC. Furthermore, it revealed that circRHOBTB3 could serve as the ceRNA of miR‑23a-3p to facilitate PTEN expression, suppress proliferation, G1/S transition, invasion, and promote apoptosis in EOC. Summarily, our findings provided a primary research foundation that circRHOBTB3 might be typified as a neoteric biomarker and a promising target of EOC, which is essential for improving the early diagnosis and precision treatment, so as to cut down EOC's mortality finally.
Collapse
Affiliation(s)
- Yihan Fu
- Obstetrics and Gynecology Hospital of Fudan University, No. 128 Shenyang Road, Yangpu District, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Hong Sun
- Obstetrics and Gynecology Hospital of Fudan University, No. 128 Shenyang Road, Yangpu District, Shanghai, China
| |
Collapse
|
20
|
Machine Learning-Based Integration Develops a Pyroptosis-Related lncRNA Model to Enhance the Predicted Value of Low-Grade Glioma Patients. JOURNAL OF ONCOLOGY 2022; 2022:8164756. [PMID: 35646114 PMCID: PMC9135526 DOI: 10.1155/2022/8164756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022]
Abstract
Background Molecular features have been included in the categorization of gliomas because they may be excellent predictors of tumor prognosis. Lower-grade glioma (LGGs, which comprise grade 2 and grade 3 gliomas) patients have a wide variety of outcomes. The goal of this research is to investigate a pyroptosis-based long noncoding RNA (lncRNA) profile and see whether it can be used to predict LGG prognosis. Methods The Genotype-Tissue Expression (GTEx) and Cancer Genome Atlas (TCGA) datasets were utilized to get RNA data and clinical information for this research. Six considerably related lncRNAs (AL355574.1, AL355974.2, Z97989.1, SNAI3-AS1, LINC02593, and CYTOR) were selected using Cox regression (univariate and multivariate) and LASSO Cox regression. A variety of statistical techniques, including ROC curves, nomogram, and Kaplan-Meier curves, were utilized to verify the risk score's accuracy. Following that, bioinformatics studies were carried out to investigate the possible molecular processes that influence LGG prognosis. The variations in pathway enrichment were investigated using GSEA. The immune microenvironment inconsistencies were investigated using CIBERSORT, ESTIMATE, MCPcounter, TIMER algorithms, and ssGSEA. Results We discovered six lncRNAs with distinct expression patterns that are linked to LGG prognosis. Kaplan-Meier studies showed a signature of high-risk lncRNAs associated with a poor prognosis for LGG. Furthermore, the AUC of the lncRNA signature was 0.763, indicating that they may be used to predict LGG prognosis. In predicting LGG prognosis, our risk assessment approach outperformed conventional clinicopathological characteristics. In the high-risk group of people, GSEA identified tumor-related pathways and immune-related pathways. Furthermore, T cell-related activities such as T cell coinhibition and costimulation, check point, APC coinhibition and costimulation, CCR, and inflammatory promoting were shown to be substantially different between the two groups in TCGA analysis. Immune checkpoints including PD-1, CTLA4, and PD-L1 were expressed differentially in the two groups as well. Conclusion This study found that pyroptosis-based lncRNAs were useful in predicting LGG patients' survival, suggesting that they may be used as a therapeutic target in the future.
Collapse
|
21
|
Liu K, Chen H, Wang Y, Jiang L, Li Y. Evolving Insights Into the Biological Function and Clinical Significance of Long Noncoding RNA in Glioblastoma. Front Cell Dev Biol 2022; 10:846864. [PMID: 35531099 PMCID: PMC9068894 DOI: 10.3389/fcell.2022.846864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most prevalent and aggressive cancers worldwide. The overall survival period of GBM patients is only 15 months even with standard combination therapy. The absence of validated biomarkers for early diagnosis mainly accounts for worse clinical outcomes of GBM patients. Thus, there is an urgent requirement to characterize more biomarkers for the early diagnosis of GBM patients. In addition, the detailed molecular basis during GBM pathogenesis and oncogenesis is not fully understood, highlighting that it is of great significance to elucidate the molecular mechanisms of GBM initiation and development. Recently, accumulated pieces of evidence have revealed the central roles of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of GBM by binding with DNA, RNA, or protein. Targeting those oncogenic lncRNAs in GBM may be promising to develop more effective therapeutics. Furthermore, a better understanding of the biological function and underlying molecular basis of dysregulated lncRNAs in GBM initiation and development will offer new insights into GBM early diagnosis and develop novel treatments for GBM patients. Herein, this review builds on previous studies to summarize the dysregulated lncRNAs in GBM and their unique biological functions during GBM tumorigenesis and progression. In addition, new insights and challenges of lncRNA-based diagnostic and therapeutic potentials for GBM patients were also introduced.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Wang
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yi Li, ; Liping Jiang,
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi Li, ; Liping Jiang,
| |
Collapse
|
22
|
Han Y, Cai X, Pan M, Gong J, Cai W, Lu D, Xu C. MicroRNA-21-5p acts via the PTEN/Akt/FOXO3a signaling pathway to prevent cardiomyocyte injury caused by high glucose/high fat conditions. Exp Ther Med 2022; 23:230. [PMID: 35222707 PMCID: PMC8815051 DOI: 10.3892/etm.2022.11154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in cardiovascular disease. miR-21-5p is known to be involved in the regulation of cardiomyocyte injury under high glucose and high fat (HG-HF) conditions, but its mechanism of action remains unclear. In the present study, a cardiomyocyte cell line, H9c2, was treated with 33 mM glucose and 250 µM sodium palmitate for 24, 48, and 72 h to produce HG-HF injury. After treatment, miR-21-5p expression was detected by reverse transcription-quantitative PCR. A miR-21-5p mimic was then constructed and transfected into the cells and the potential molecular mechanism was investigated using Cell Counting Kit-8, TUNEL, flow cytometry and western blot assays. Expression of miR-21-5p was significantly downregulated by HG-HF treatment of H9c2 cells for 24, 48, and 72 h. In subsequent experiments, cells were treated for an intermediate period (48 h). Compared with the control group, HG-HF treatment significantly inhibited H9c2 proliferation and promoted apoptosis, while these effects were significantly reduced in the miR-21-5p mimic. Compared with the control group, HG-HF treatment significantly increased reactive oxygen species, while miR-21-5p mimic significantly reduced this effect. Compared with the control group, HG-HF treatment significantly increased the expression of the pro-apoptotic proteins Bax and phosphorylated (p)-Akt and decreased the expression of the anti-apoptotic proteins Bcl-2, p-PTEN, and p-FOXO3a, while overexpression of miR-21-5p significantly reduced these effects. The results revealed that miR-21-5p inhibited apoptosis and oxidative stress in H9c2 cells induced by HG-HF, likely through the PTEN/Akt/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xiaoqi Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Min Pan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wenqin Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dan Lu
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
23
|
Luo G, Chen J, Ren Z. Regulation of Methylase METTL3 on Fat Deposition. Diabetes Metab Syndr Obes 2021; 14:4843-4852. [PMID: 34984016 PMCID: PMC8709552 DOI: 10.2147/dmso.s344472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and abundant type of internal post-transcriptional RNA modification in eukaryotic cells. METTL3 is a methylation modifying enzyme, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing. In addition, it was found that 67% of 3'-UTR regions containing m6A sites had at least one miRNA binding site, and the number of m6A at 3'-UTR sites was closely related to the binding sites of miRNA. With the improvement of human living standards, obesity has become a very serious and urgent problem. The essence of obesity is the accumulation of excess fat. Exploring the origin and development mechanisms of adipocyte from the perspective of fat deposition has always been a hotspot in the field of adipocyte research. The aim of the present review is to focus on METTL3 regulating fat deposition through mRNA/adipocyte differentiation axis and pri-miRNA/pre-miRNA/target genes/adipocyte differentiation and to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for obesity, fat deposition disease and molecular breeding.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Jialing Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| |
Collapse
|
24
|
EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2021; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
|
25
|
Huang K, Yue X, Zheng Y, Zhang Z, Cheng M, Li L, Chen Z, Yang Z, Bian E, Zhao B. Development and Validation of an Mesenchymal-Related Long Non-Coding RNA Prognostic Model in Glioma. Front Oncol 2021; 11:726745. [PMID: 34540695 PMCID: PMC8446619 DOI: 10.3389/fonc.2021.726745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.
Collapse
Affiliation(s)
- Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Xia H, Huang Z, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Li Z, Yu L, Huang P, Kang P, Su Z, Xu Y, Yam JWP, Cui Y. LncRNA DiGeorge syndrome critical region gene 5: A crucial regulator in malignant tumors. Biomed Pharmacother 2021; 141:111889. [PMID: 34323697 DOI: 10.1016/j.biopha.2021.111889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/30/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA), a subgroup of ncRNA with a length of more than 200 nt without protein coding function, has been recognized by the academia for its mediating effects of dysregulated expression on the tumorigenesis and development of a variety of tumors. LncRNA DiGeorge syndrome critical region gene 5 (DGCR5), originally found to induce DiGeorge syndrome, has been confirmed to be extremely dysregulated in multiple tumors, which mediates the malignant phenotypes of hepatocellular carcinoma, pancreatic cancer, lung cancer, etc. through the regulation of Wnt/β-catenin, MEK/ERK1/2 and other cancerous signaling pathways as a molecular sponge. Researches on the cancerous derivation-related pathways involved in DGCR5 can provide potential molecular intervention targets for tumor precision treatment. Moreover, liquid biopsy based on the detection of DGCR5 in body fluids is also expected to provide a non-invasive evaluation method for the early diagnosis and prognostic evaluation of malignant tumors.
Collapse
Affiliation(s)
- Haoming Xia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhizhou Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China.
| |
Collapse
|
27
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
28
|
Zhang M, Hamblin MH, Yin KJ. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int 2021; 148:105102. [PMID: 34153353 DOI: 10.1016/j.neuint.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Central nervous system (CNS) injuries are one of the leading causes of morbidity and mortality worldwide, accompanied with high medical costs and a decreased quality of life. Brain vascular disorders are involved in the pathological processes of CNS injuries and might play key roles for their recovery and prognosis. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs), which comprise a very heterogeneous group of non-protein-coding RNAs greater than 200 nucleotides, have emerged as functional mediators in the regulation of vascular homeostasis under pathophysiological conditions. Remarkably, lncRNAs can regulate gene transcription and translation, thus interfering with gene expression and signaling pathways by different mechanisms. Hence, a deeper insight into the function and regulatory mechanisms of lncRNAs following CNS injury, especially cerebrovascular-related lncRNAs, could help in establishing potential therapeutic strategies to improve or inhibit neurological disorders. In this review, we highlight recent advancements in understanding of the role of lncRNAs and their application in mediating cerebrovascular pathologies after CNS injury.
Collapse
Affiliation(s)
- Mengqi Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA, 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
29
|
Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 2021; 12:587. [PMID: 34099633 PMCID: PMC8184765 DOI: 10.1038/s41419-021-03858-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.
Collapse
|
30
|
Cen L, Liu R, Liu W, Li Q, Cui H. Competing Endogenous RNA Networks in Glioma. Front Genet 2021; 12:675498. [PMID: 33995499 PMCID: PMC8117106 DOI: 10.3389/fgene.2021.675498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.
Collapse
Affiliation(s)
- Liang Cen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Qian J, Xu Y, Xu X, Tao Z, Luo Y, Xu Y, Zhang Y, Qian C. Hsa_circ_0091581 promotes glioma progression by regulating RMI1 via sponging miR-1243-5p. J Cancer 2021; 12:3249-3256. [PMID: 33976734 PMCID: PMC8100801 DOI: 10.7150/jca.55558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2021] [Indexed: 01/03/2023] Open
Abstract
Glioma is a pervasive malignancy and the main cause of cancer-related deaths worldwide. Circular RNA is an important subject of cancer research, and its role and function in glioma are poorly understood. This study demonstrated that hsa_circ_0091581 is upregulated in glioma tissues and cells. The results of the CCK-8, EdU, and transwell assays indicated that hsa_circ_0091581 promotes proliferation, migration, and invasion of glioma cells. The results of the luciferase reporter and RNA immunoprecipitation assays indicated that the mechanism of the effects of hsa_circ_0091581 on glioma cells involves sponging miR-1243-5p to regulate RMI1. The results of the rescue experiments indicated that hsa_circ_0091581 regulates proliferation, migration, and invasion of glioma cells by targeting RMI1 in a miR-1243-5p dependent manner. The results of the nude mice xenograft assays showed that knockdown of hsa_circ_0091581 inhibits glioma growth in vivo. Thus, our study determined the role of hsa_circ_0091581/miR-1243-5p/RMI1 in glioma and suggests that this axis may be a novel therapeutic target in glioma.
Collapse
Affiliation(s)
- Jin Qian
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yingna Xu
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Xing Xu
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Zhenyu Tao
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yang Luo
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yichang Xu
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Yong Zhang
- Department of Neurosurgery, People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Chunfa Qian
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Adylova A, Mukhanbetzhanovna AA, Attar R, Yulaevna IM, Farooqi AA. Regulation of TGFβ/SMAD signaling by long non-coding RNAs in different cancers: Dark Knight in the Castle of molecular oncology. Noncoding RNA Res 2021; 6:23-28. [PMID: 33511320 PMCID: PMC7814108 DOI: 10.1016/j.ncrna.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/15/2022] Open
Abstract
One of the complex themes in recent years has been the multi-layered regulation of TGFβ signaling in cancer cells. TGFβ/SMAD signaling pathway is a highly complicated web of proteins which work spatio-temporally to regulate multiple steps of carcinogenesis. TGFβ/SMAD has been shown to dualistically regulate cancer progression. Therefore, TGFβ/SMAD signaling behaves as a “double-edged sword” in molecular oncology. Accordingly, regulation of TGFβ/SMAD is multi-layered because of oncogenic and tumor suppressor long non-coding RNAs (LncRNAs). In this review, we have summarized most recent breakthroughs in our understanding related to regulation of TGFβ/SMAD signaling by lncRNAs. We have comprehensively analyzed how different lncRNAs positively and negatively regulate TGFβ/SMAD signaling in different cancers. We have gathered missing pieces of an incomplete jig-saw puzzle of lncRNA-interactome ranging from “sponge effects” of lncRNAs to mechanistic modulation of TGFβ/SMAD signaling by lncRNAs.
Collapse
Affiliation(s)
- Aima Adylova
- Biomedical Engineering & Molecular Medicine PhD candidate, Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | | | | |
Collapse
|