1
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2024:1-18. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
2
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Yang J, Liang J, Hu N, He N, Liu B, Liu G, Qin Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer's Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci Ther 2024; 30:e70091. [PMID: 39460538 PMCID: PMC11512114 DOI: 10.1111/cns.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuronal loss, commonly linked to amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Recent research highlights the gut microbiota as a key player in modulating neuroinflammation, a critical pathological feature of AD. Understanding the role of the gut microbiota in this process is essential for uncovering new therapeutic avenues and gaining deeper insights into AD pathogenesis. METHODS This review provides a comprehensive analysis of how gut microbiota influences neuroinflammation and glial cell function in AD. A systematic literature search was conducted, covering studies from 2014 to 2024, including reviews, clinical trials, and animal studies. Keywords such as "gut microbiota," "Alzheimer's disease," "neuroinflammation," and "blood-brain barrier" were used. RESULTS Dysbiosis, or the imbalance in gut microbiota composition, has been implicated in the modulation of key AD-related mechanisms, including neuroinflammation, blood-brain barrier integrity, and neurotransmitter regulation. These disruptions may accelerate the onset and progression of AD. Additionally, therapeutic strategies targeting gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation, show promise in modulating AD pathology. CONCLUSIONS The gut microbiota is a pivotal factor in AD pathogenesis, influencing neuroinflammation and disease progression. Understanding the role of gut microbiota in AD opens avenues for innovative diagnostic, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Jianshe Yang
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Niyuan Hu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ningjuan He
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Guoliang Liu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ying Qin
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| |
Collapse
|
4
|
Fairley LH, Grimm A, Herff SA, Eckert A. Translocator protein (TSPO) ligands attenuate mitophagy deficits in the SH-SY5Y cellular model of Alzheimer's disease via the autophagy adaptor P62. Biochimie 2024; 224:132-138. [PMID: 38280505 DOI: 10.1016/j.biochi.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Mitochondrial dysfunction has been widely implicated in the pathogenesis of Alzheimer's disease (AD), with accumulation of damaged and dysfunctional mitochondria occurring early in the disease. Mitophagy, which governs mitochondrial turnover and quality control, is impaired in the AD brain, and strategies aimed at enhancing mitophagy have been identified as promising therapeutic targets. The translocator protein (TSPO) is an outer mitochondrial membrane protein that is upregulated in AD, and ligands targeting TSPO have been shown to exert neuroprotective effects in mouse models of AD. However, whether TSPO ligands modulate mitophagy in AD has not been explored. Here, we provide evidence that the TSPO-specific ligands Ro5-4864 and XBD173 attenuate mitophagy deficits and mitochondrial fragmentation in a cellular model of AD overexpressing the human amyloid precursor protein (APP). Ro5-4864 and XBD173 appear to enhance mitophagy via modulation of the autophagic cargo receptor P62/SQSTM1, in the absence of an effect on PARK2, PINK1, or LC3 level. Taken together, these findings indicate that TSPO ligands may be promising therapeutic agents for ameliorating mitophagy deficits in AD.
Collapse
Affiliation(s)
- Lauren H Fairley
- Research Cluster, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Steffen A Herff
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Anne Eckert
- Research Cluster, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
5
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
6
|
Singh A, Mazumder A, Das S, Tyagi PK, Chaitanya MVNL. Probiotics in Action: Enhancing Immunity and Combatting Diseases for Optimal Health. JOURNAL OF NATURAL REMEDIES 2024:1153-1167. [DOI: 10.18311/jnr/2024/35894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 01/03/2025]
Abstract
This review offers an in-depth examination of the mechanisms underlying the microbiome's defense against viral infections, with a specific focus on probiotic interventions. Mycotoxins, secondary compounds produced by microfungi, pose significant health risks. Yet, certain strains of Lactic Acid Bacteria (LAB) have exhibited remarkable efficacy in eliminating aflatoxin B1 (AFB1), the most toxic member of the aflatoxin family. Experimental setups demonstrated AFB1 binding to specific LAB strains, persisting even after gastric digestion. Laboratory studies revealed a potential protective mechanism wherein pre-incubation of probiotics with mycotoxins reduced their adhesion to mucus. Animal trials further underscored the benefits of oral probiotic administration, showcasing increased fecal excretion of mycotoxins and mitigation of associated health risks. Cyanobacteria-generated microcystins in drinking water pose a significant threat to human health. Probiotic bacteria, particularly strains like Bifidobacterium longum and Lactobacillus rhamnosus, have demonstrated exceptional efficacy in removing the cyanobacterial peptide toxin microcystin-LR. Optimized conditions resulted in rapid toxin elimination, highlighting the potential of probiotics in water purification. Engineered probiotics represent a cutting-edge approach to tailor microorganisms for specific therapeutic applications, exhibiting promise in treating metabolic disorders, Alzheimer's disease, and type 1 diabetes. Additionally, they serve as innovative diagnostic tools, capable of detecting pathogens and inflammation markers within the body. In the realm of antimicrobial peptide production, probiotics offer a promising platform, with genetically modified strains engineered to produce human β-defensin 2 (HBD2) for treating Crohn's disease, showcasing their potential in targeted theurapetic delivery. Biocontainment strategies have been implemented to prevent unintended environmental impacts.
Collapse
|
7
|
Qu L, Li Y, Liu F, Fang Y, He J, Ma J, Xu T, Wang L, Lei P, Dong H, Jin L, Yang Q, Wu W, Sun D. Microbiota-Gut-Brain Axis Dysregulation in Alzheimer's Disease: Multi-Pathway Effects and Therapeutic Potential. Aging Dis 2024; 15:1108-1131. [PMID: 37728579 PMCID: PMC11081173 DOI: 10.14336/ad.2023.0823-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
An essential regulator of neurodegenerative conditions like Alzheimer's disease (AD) is the gut microbiota. Alterations in intestinal permeability brought on by gut microbiota dysregulation encourage neuroinflammation, central immune dysregulation, and peripheral immunological dysregulation in AD, as well as hasten aberrant protein aggregation and neuronal death in the brain. However, it is unclear how the gut microbiota transmits information to the brain and how it influences brain cognition and function. In this review, we summarized the multiple pathways involved in the gut microbiome in AD and provided detailed treatment strategies based on the gut microbiome. Based on these observations, this review also discusses the problems, challenges, and strategies to address current therapeutic strategies.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
- College of Veterinary Medicine, Jilin University, Changchun 130118, China.
| | - Yanwei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Meng J, Liu S, Wu X. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit Rev Microbiol 2024; 50:300-314. [PMID: 36946080 DOI: 10.1080/1040841x.2023.2190392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
The use of probiotics to regulate the intestinal microbiota to prevent and treat a large number of disorders and diseases has been an international research hotspot. Although conventional probiotics have a certain regulatory role in nutrient metabolism, inhibiting pathogens, inducing immune regulation, and maintaining intestinal epithelial barrier function, they are unable to treat certain diseases. In recent years, aided by the continuous development of synthetic biology, engineering probiotics with desired characteristics and functionalities to benefit human health has made significant progress. In this article, we summarise the mechanism of action of conventional probiotics and their limitations and highlight the latest developments in the design and construction of probiotics as living diagnostics and therapeutics for the detection and treatment of a series of diseases, including pathogen infections, cancer, intestinal inflammation, metabolic disorders, vaccine delivery, cognitive health, and fatty liver. Besides we discuss the concerns regarding engineered probiotics and corresponding countermeasures and outline the desired features in the future development of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
| | - Shufan Liu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology; College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
9
|
Laguna JG, Freitas ADS, Barroso FAL, De Jesus LCL, De Vasconcelos OAGG, Quaresma LS, Américo MF, Campos GM, Glória RDA, Dutra JDCF, Da Silva TF, Vital KD, Fernandes SO, Souza RO, Martins FDS, Ferreira E, Santos TM, Birbrair A, De Oliveira MFA, Faria AMC, Carvalho RDDO, Venanzi FM, Le Loir Y, Jan G, Guédon É, Azevedo VADC. Recombinant probiotic Lactococcus lactis delivering P62 mitigates moderate colitis in mice. Front Microbiol 2024; 15:1309160. [PMID: 38680913 PMCID: PMC11047439 DOI: 10.3389/fmicb.2024.1309160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction and objective p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.
Collapse
Affiliation(s)
- Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando Da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Simone O. Fernandes
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Ramon O. Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Túlio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Franco Maria Venanzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | | | | | | | | |
Collapse
|
10
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Guo J, Zhou B, Niu Y, Liu L, Yang L. Engineered probiotics introduced to improve intestinal microecology for the treatment of chronic diseases: present state and perspectives. J Diabetes Metab Disord 2023; 22:1029-1038. [PMID: 37975092 PMCID: PMC10638336 DOI: 10.1007/s40200-023-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/05/2023] [Indexed: 11/19/2023]
Abstract
Purpose Correcting intestinal microecological imbalance has become one of the core strategies to treat chronic diseases. Some traditional microecology-based therapies targeting intestine, such as prebiotic therapy, probiotic therapy and fecal microbiota transplantation therapy, have been used in the prevention and treatment of clinical chronic diseases, which still facing low safety and poor controllability problems. The development of synthetic biology technology has promoted the development of intestinal microecology-based therapeutics for chronic diseases, which exhibiting higher robustness and controllability, and become an important part of the next generation of microecological therapy. The purpose of this review is to summarize the application of synthetic biology in intestinal microecology-based therapeutics for chronic diseases. Methods The available literatures were searched to find out experimental studies and relevant review articles on the application of synthetic biology in intestinal microecology-based therapeutics for chronic diseases from year 1990 to 2023. Results Evidence proposed that synthetic biology has been applied in the intestinal microecology-based therapeutics for chronic diseases, covering metabolic diseases (e.g. diabetes, obesity, nonalcoholic fatty liver disease and phenylketonuria), digestive diseases (e.g. inflammatory bowel disease and colorectal cancer), and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). Conclusion This review summarizes the application of synthetic biology in intestinal microecology-based therapeutics for major chronic diseases and discusses the opportunities and challenges in the above process, providing clinical possibilities of synthetic biology technology applied in microecological therapies.
Collapse
Affiliation(s)
- Jianquan Guo
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, (Shanxi Medical University), Ministry of Education, Taiyuan, PR China
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Bangyuan Zhou
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Yali Niu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 Shanxi PR China
| | - Liyang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, 030619 Jinzhong, PR China
| |
Collapse
|
12
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Lim CM, González Díaz A, Fuxreiter M, Pun FW, Zhavoronkov A, Vendruscolo M. Multiomic prediction of therapeutic targets for human diseases associated with protein phase separation. Proc Natl Acad Sci U S A 2023; 120:e2300215120. [PMID: 37774095 PMCID: PMC10556643 DOI: 10.1073/pnas.2300215120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/02/2023] [Indexed: 10/01/2023] Open
Abstract
The phenomenon of protein phase separation (PPS) underlies a wide range of cellular functions. Correspondingly, the dysregulation of the PPS process has been associated with numerous human diseases. To enable therapeutic interventions based on the regulation of this association, possible targets should be identified. For this purpose, we present an approach that combines the multiomic PandaOmics platform with the FuzDrop method to identify PPS-prone disease-associated proteins. Using this approach, we prioritize candidates with high PandaOmics and FuzDrop scores using a profiling method that accounts for a wide range of parameters relevant for disease mechanism and pharmacological intervention. We validate the differential phase separation behaviors of three predicted Alzheimer's disease targets (MARCKS, CAMKK2, and p62) in two cell models of this disease. Overall, the approach that we present generates a list of possible therapeutic targets for human diseases associated with the dysregulation of the PPS process.
Collapse
Affiliation(s)
- Christine M. Lim
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alicia González Díaz
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova35131, Italy
| | - Frank W. Pun
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, China
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
14
|
Jury-Garfe N, You Y, Martínez P, Redding-Ochoa J, Karahan H, Johnson TS, Zhang J, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and paucity of tau seeding in the amyloid plaque microenvironment contributes to cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550884. [PMID: 37546928 PMCID: PMC10402121 DOI: 10.1101/2023.07.27.550884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer's disease (AD) brain pathology (i.e. Aβ-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aβ that preserves brain health and slows down the progression of AD pathology.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hande Karahan
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Travis S. Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jungsu Kim
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C. Troncoso
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A. Lasagna-Reeves
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
16
|
Zmysłowska-Polakowska E, Płoszaj T, Skoczylas S, Mojsak P, Ciborowski M, Kretowski A, Lukomska-Szymanska M, Szadkowska A, Mlynarski W, Zmysłowska A. Evaluation of the Oral Bacterial Genome and Metabolites in Patients with Wolfram Syndrome. Int J Mol Sci 2023; 24:ijms24065596. [PMID: 36982670 PMCID: PMC10053501 DOI: 10.3390/ijms24065596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
In Wolfram syndrome (WFS), due to the loss of wolframin function, there is increased ER stress and, as a result, progressive neurodegenerative disorders, accompanied by insulin-dependent diabetes. The aim of the study was to evaluate the oral microbiome and metabolome in WFS patients compared with patients with type 1 diabetes mellitus (T1DM) and controls. The buccal and gingival samples were collected from 12 WFS patients, 29 HbA1c-matched T1DM patients (p = 0.23), and 17 healthy individuals matched by age (p = 0.09) and gender (p = 0.91). The abundance of oral microbiota components was obtained by Illumina sequencing the 16S rRNA gene, and metabolite levels were measured by gas chromatography–mass spectrometry. Streptococcus (22.2%), Veillonella (12.1%), and Haemophilus (10.8%) were the most common bacteria in the WFS patients, while comparisons between groups showed significantly higher abundance of Olsenella, Dialister, Staphylococcus, Campylobacter, and Actinomyces in the WFS group (p < 0.001). An ROC curve (AUC = 0.861) was constructed for the three metabolites that best discriminated WFS from T1DM and controls (acetic acid, benzoic acid, and lactic acid). Selected oral microorganisms and metabolites that distinguish WFS patients from T1DM patients and healthy individuals may suggest their possible role in modulating neurodegeneration and serve as potential biomarkers and indicators of future therapeutic strategies.
Collapse
Affiliation(s)
| | - T. Płoszaj
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland
| | - S. Skoczylas
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland
| | - P. Mojsak
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - M. Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - A. Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | | | - A. Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, 92-213 Lodz, Poland
| | - W. Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 92-213 Lodz, Poland
| | - A. Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: ; Tel./Fax: +48-42-272-57-67
| |
Collapse
|
17
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Lorenzo-Betancor O, Galosi L, Bonfili L, Eleuteri AM, Cecarini V, Verin R, Dini F, Attili AR, Berardi S, Biagini L, Robino P, Stella MC, Yearout D, Dorschner MO, Tsuang DW, Rossi G, Zabetian CP. Homozygous CADPS2 Mutations Cause Neurodegenerative Disease with Lewy Body-like Pathology in Parrots. Mov Disord 2022; 37:2345-2354. [PMID: 36086934 PMCID: PMC9772200 DOI: 10.1002/mds.29211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Several genetic models that recapitulate neurodegenerative features of Parkinson's disease (PD) exist, which have been largely based on genes discovered in monogenic PD families. However, spontaneous genetic mutations have not been linked to the pathological hallmarks of PD in non-human vertebrates. OBJECTIVE To describe the genetic and pathological findings of three Yellow-crowned parrot (Amazona ochrocepahala) siblings with a severe and rapidly progressive neurological phenotype. METHODS The phenotype of the three parrots included severe ataxia, rigidity, and tremor, while their parents were phenotypically normal. Tests to identify avian viral infections and brain imaging studies were all negative. Due to their severe impairment, they were all euthanized at age 3 months and their brains underwent neuropathological examination and proteasome activity assays. Whole genome sequencing (WGS) was performed on the three affected parrots and their parents. RESULTS The brains of affected parrots exhibited neuronal loss, spongiosis, and widespread Lewy body-like inclusions in many regions including the midbrain, basal ganglia, and neocortex. Proteasome activity was significantly reduced in these animals compared to a control (P < 0.05). WGS identified a single homozygous missense mutation (p.V559L) in a highly conserved amino acid within the pleckstrin homology (PH) domain of the calcium-dependent secretion activator 2 (CADPS2) gene. CONCLUSIONS Our data suggest that a homozygous mutation in the CADPS2 gene causes a severe neurodegenerative phenotype with Lewy body-like pathology in parrots. Although CADPS2 variants have not been reported to cause PD, further investigation of the gene might provide important insights into the pathophysiology of Lewy body disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Oswaldo Lorenzo-Betancor
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Neurology, University of Washington School of
Medicine, Seattle, Washington, USA
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science,
University of Padova “Agripolis”, Legnaro, Italy
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino,
Torino, Italy
| | | | - Dora Yearout
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA
| | - Michael O. Dorschner
- Department of Pathology, Center for Precision Diagnostics,
University of Washington, Seattle, Washington, USA
| | - Debby W. Tsuang
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Psychiatry, University of Washington School
of Medicine, Seattle, Washington, USA,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University
of Camerino, Matelica, Italy,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| | - Cyrus P. Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle,
Washington, USA,Department of Neurology, University of Washington School of
Medicine, Seattle, Washington, USA,Correspondence to: Dr. Cyrus P.
Zabetian, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
98108, USA; ; Dr. Giacomo Rossi, School of
Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy;
; Dr. Debby W. Tsuang, Veterans
Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA;
| |
Collapse
|
19
|
Liu J, Wu A, Cai J, She ZG, Li H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Front Immunol 2022; 13:968799. [PMID: 36119048 PMCID: PMC9471422 DOI: 10.3389/fimmu.2022.968799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of metabolic syndrome and is the most common chronic liver disease in the world. The pathogenesis of NAFLD has not been fully clarified; it involves metabolic disturbances, inflammation, oxidative stress, and various forms of cell death. The “intestinal-liver axis” theory, developed in recent years, holds that there is a certain relationship between liver disease and the intestinal tract, and changes in intestinal flora are closely involved in the development of NAFLD. Many studies have found that the intestinal flora regulates the pathogenesis of NAFLD by affecting energy metabolism, inducing endotoxemia, producing endogenous ethanol, and regulating bile acid and choline metabolism. In this review, we highlighted the updated discoveries in intestinal flora dysregulation and their link to the pathogenesis mechanism of NAFLD and summarized potential treatments of NAFLD related to the gut microbiome.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Anding Wu
- Department of general surgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translation Medicine, Huanggang, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Gang She, ; Hongliang Li,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Gang She, ; Hongliang Li,
| |
Collapse
|
20
|
Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Adv Drug Deliv Rev 2022; 188:114418. [PMID: 35787390 DOI: 10.1016/j.addr.2022.114418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota came into focus within the last years regarding being associated with or even underlying neuropsychiatric diseases. The existence of the gut-brain-axis makes it highly plausible that bacterial metabolites or toxins that escape the intestinal environment or approach the vagal connections towards the brain, exert devastating effects on the central nervous system. In Alzheimer's disease (AD), growing evidence for dysbiotic changes in the gut microbiota is obtained, even though the question for cause or consequence remains open. Nevertheless, using modulation of microbiota to address inflammatory processes seems an attractive therapeutic approach as certain microbial products such as short chain fatty acids have been proven to exert beneficial cognitive effects. In this review, we summarize, contemporary knowledge on neuroinflammation and inflammatory processes within the brain and even more detailed in the gut in AD, try to conclude whom to target regarding human microbial commensals and report on current interventional trials.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany.
| |
Collapse
|
21
|
Modulation of Gut Microbiota and Neuroprotective Effect of a Yeast-Enriched Beer. Nutrients 2022; 14:nu14122380. [PMID: 35745108 PMCID: PMC9228237 DOI: 10.3390/nu14122380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Beer is the most consumed alcoholic beverage worldwide. It is rich in nutrients, and with its microbial component it could play a role in gut microbiota modulation. Conflicting data are currently available regarding the consequences of alcohol and alcohol-containing beverages on dementia and age-associated disorders including Alzheimer’s disease (AD), a neurodegeneration characterized by protein aggregation, inflammatory processes and alterations of components of the gut–brain axis. The effects of an unfiltered and unpasteurized craft beer on AD molecular hallmarks, levels of gut hormones and composition of micro/mycobiota were dissected using 3xTg-AD mice. In addition, to better assess the role of yeasts, beer was enriched with the same Saccharomyces cerevisiae strain used for brewing. The treatment with the yeast-enriched beer ameliorated cognition and favored the reduction of Aβ(1-42) and pro-inflammatory molecules, also contributing to an increase in the concentration of anti-inflammatory cytokines. A significant improvement in the richness and presence of beneficial taxa in the gut bacterial population of the 3xTg-AD animals was observed. In addition, the fungal order, Sordariomycetes, associated with gut inflammatory conditions, noticeably decreased with beer treatments. These data demonstrate, for the first time, the beneficial effects of a yeast-enriched beer on AD signs, suggesting gut microbiota modulation as a mechanism of action.
Collapse
|
22
|
Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38:223-244. [PMID: 35572407 PMCID: PMC9091761 DOI: 10.1016/j.jare.2021.09.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent research on the implications of gut microbiota on brain functions has helped to gather important information on the relationship between them. Pathogenesis of neurological disorders is found to be associated with dysregulation of gut-brain axis. Some gut bacteria metabolites are found to be directly associated with the increase in reactive oxygen species levels, one of the most important risk factors of neurodegeneration. Besides their morbid association, gut bacteria metabolites are also found to play a significant role in reducing the onset of these life-threatening brain disorders. Aim of Review Studies done in the recent past raises two most important link between gut microbiota and the brain: "gut microbiota-oxidative stress-neurodegeneration" and gut microbiota-antioxidant-neuroprotection. This review aims to gives a deep insight to our readers, of the collective studies done, focusing on the gut microbiota mediated oxidative stress involved in neurodegeneration along with a focus on those studies showing the involvement of gut microbiota and their metabolites in neuroprotection. Key Scientific Concepts of Review This review is focused on three main key concepts. Firstly, the mounting evidences from clinical and preclinical arenas shows the influence of gut microbiota mediated oxidative stress resulting in dysfunctional neurological processes. Therefore, we describe the potential role of gut microbiota influencing the vulnerability of brain to oxidative stress, and a budding causative in Alzheimer's and Parkinson's disease. Secondly, contributing roles of gut microbiota has been observed in attenuating oxidative stress and inflammation via its own metabolites or by producing secondary metabolites and, also modulation in gut microbiota population with antioxidative and anti-inflammatory probiotics have shown promising neuro resilience. Thirdly, high throughput in silico tools and databases also gives a correlation of gut microbiome, their metabolites and brain health, thus providing fascinating perspective and promising new avenues for therapeutic options.
Collapse
Affiliation(s)
- Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Sandeep Kumar
- Department of Biochemistry, International Institute of Veterinary Education and Research, Haryana, India
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, Helsinki 00180, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, India
| | | | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| |
Collapse
|
23
|
Dong W, Cui MC, Hu WZ, Zeng Q, Wang YL, Zhang W, Huang Y. Genetic and Molecular Evaluation of SQSTM1/p62 on the Neuropathologies of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:829232. [PMID: 35296031 PMCID: PMC8919032 DOI: 10.3389/fnagi.2022.829232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Sequestosome 1 (SQSTM1)/p62 is a multifunctional scaffolding protein and plays a major role in the cellular processes of autophagy, upregulation of which has been shown in several neurodegenerative disorders, including Alzheimer’s disease (AD). To investigate its genetic effects and relationship with AD pathologies, we analyzed the genetic associations of SQSTM1 rs4935 with the risk of AD and the levels of AD biomarkers using the AD Neuroimaging Initiative (ADNI) Database. We further analyzed the distribution pattern of p62 immunoreactivity in relation to AD pathologies in the postmortem human brain tissues from AD and non-AD controls. We found that SQSTM1 rs4935 was not associated with the risk of AD, but its T allele was significantly associated with decreased β-amyloid (1–42) (Aβ42) levels in the cerebral spinal fluid (CSF) of patients with AD (β = −9.336, p = 0.022). In addition, p62 immunoreactivity in AD is increased, but it shows an inverse relationship to Aβ deposition. A small proportion of senile plaques show p62 positive neurites. Our results suggest that SQSTM1/p62 may play an important role in the progression of AD via associations with Aβ42 levels in CSF and Aβ deposition in the brain of patients with AD.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng-Chao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Wen-Zheng Hu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yi-Long Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Pharmacology, Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Yue Huang,
| |
Collapse
|
24
|
de Rijke TJ, Doting MHE, van Hemert S, De Deyn PP, van Munster BC, Harmsen HJM, Sommer IEC. A Systematic Review on the Effects of Different Types of Probiotics in Animal Alzheimer's Disease Studies. Front Psychiatry 2022; 13:879491. [PMID: 35573324 PMCID: PMC9094066 DOI: 10.3389/fpsyt.2022.879491] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a global public health priority as with aging populations, its prevalence is expected to rise even further in the future. The brain and gut are in close communication through immunological, nervous and hormonal routes, and therefore, probiotics are examined as an option to influence AD hallmarks, such as plaques, tangles, and low grade inflammation. This study aimed to provide an overview of the available animal evidence on the effect of different probiotics on gut microbiota composition, short chain fatty acids (SCFAs), inflammatory markers, Amyloid-β (Aβ), and cognitive functioning in AD animal models. A systematic literature search was performed in PubMed, SCOPUS, and APA PsychInfo. Articles were included up to May 2021. Inclusion criteria included a controlled animal study on probiotic supplementation and at least one of the abovementioned outcome variables. Of the eighteen studies, most were conducted in AD male mice models (n = 9). Probiotics of the genera Lactobacillus and Bifidobacterium were used most frequently. Probiotic administration increased species richness and/or bacterial richness in the gut microbiota, increased SCFAs levels, reduced inflammatory markers, and improved cognitive functioning in AD models in multiple studies. The effect of probiotic administration on Aβ remains ambiguous. B. longum (NK46), C. butyricum, and the mixture SLAB51 are the most promising probiotics, as positive improvements were found on almost all outcomes. The results of this animal review underline the potential of probiotic therapy as a treatment option in AD.
Collapse
Affiliation(s)
- Tanja J de Rijke
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| | - M H Edwina Doting
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| | | | - Peter P De Deyn
- Alzheimer Center Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Neurology, University Medical Center Groningen, Groningen, Netherlands
| | - Barbara C van Munster
- Alzheimer Center Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Ebrahimi V, Tarhriz V, Talebi M, Rasouli A, Farjami A, Razi Soofiyani S, Soleimanian A, Forouhandeh H. A new insight on feasibility of pre-, pro-, and synbiotics-based therapies in Alzheimer’s disease. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_170_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Liu J, Ye T, Zhang Y, Zhang R, Kong Y, Zhang Y, Sun J. Protective Effect of Ginkgolide B against Cognitive Impairment in Mice via Regulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12230-12240. [PMID: 34633804 DOI: 10.1021/acs.jafc.1c05038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ginkgolide B (GB) is one of the main bioactive components of Ginkgo biloba leaf extracts with neuroprotective activity. However, the neuroprotective mechanism link between the anti-Alzheimer's disease (AD) efficiency of GB and gut microbiota have remained elusive. Here, we elucidated the effect and possible mechanism of GB against cognitive impairment in mice. Male mice were induced with d-galactose and aluminum chloride to establish an AD animal model, and then intragastrically treated with GB. Cognitive function was assessed by an object recognition test and an open-field test. Amyloid deposition and neuropathological change were detected. The levels of receptor for advanced glycation end products (RAGE), Bcl-2, and Bax were detected. Moreover, microbial compositions were measured by 16s rRNA sequencing. Our results showed that GB significantly alleviated cognitive dysfunction, neurodegeneration, and neuropathological changes in AD model mice. Moreover, GB treatment remarkably reduced the levels of RAGE and Bax and increased the level of Bcl-2 in AD model mice. GB treatment reversed the decreased abundance of Lactobacillus and the increased abundance of Bacteroidales, Muribaculaceae, and Alloprevotella, which led to reconstruction of gut microbiota. These findings demonstrated the neuroprotective effects of GB in AD mice, which were partly mediated by modulating gut dysbiosis, indicating that GB might be a potentially active supplement to alleviate AD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Ye
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
27
|
Ji HF, Shen L. Probiotics as potential therapeutic options for Alzheimer's disease. Appl Microbiol Biotechnol 2021; 105:7721-7730. [PMID: 34596721 DOI: 10.1007/s00253-021-11607-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
The steadily increasing prevalence of Alzheimer's disease (AD) worldwide and the lack of effective therapeutic agent attract novel therapeutic approach in recent years. In view of the close relationships between gut microbiota and AD, probiotics have been suggested as potential therapeutic options for AD in recent years. The present review discussed the research progresses concerning the effects of probiotics administration to combat AD. A total of 35 studies, including 26 animal model studies and 9 human studies, were included herein. Among the 26 animal model studies, 24 used mice model, and 2 used Caenorhabditis elegans and Drosophila melanogaster AD models, respectively. As for probiotics, a total of 13 studies employed single-strain probiotic, and the rest studies used multi-strain probiotics (ranged from 2 to 9 probiotic strains), 4 used probiotic-fermented milk or probiotic-fermented soybean, 2 studies used engineered probiotic strain, and 4 studies focused on the combined effect of probiotics with AD drug memantine, selenium, or exercise. Bifidobacterium and Lactobacillus species were the most frequently used probiotics in the included studies. Overall, currently available studies showed that probiotic administration conferred neuroprotective benefits and could attenuate cognitive deficits and modulate gut microbiota dysbiosis, which may be related to oxidative and inflammatory pathways. Several perspectives on future studies on this topic are proposed. Thus, probiotics seem to be an attractive approach to combat AD, which deserves to be further studied by well-designed large-scale clinical studies. KEY POINTS: •We discussed the recent progresses concerning the effects of probiotics administration to combat AD. •A total of 35 associated studies consisted of 26 animal model studies and 9 human studies were included. •Most studies found that probiotic administration conferred neuroprotective benefits and could attenuate cognitive deficits.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Cecarini V, Cuccioloni M, Zheng Y, Bonfili L, Gong C, Angeletti M, Mena P, Del Rio D, Eleuteri AM. Flavan-3-ol Microbial Metabolites Modulate Proteolysis in Neuronal Cells Reducing Amyloid-beta (1-42) Levels. Mol Nutr Food Res 2021; 65:e2100380. [PMID: 34318994 PMCID: PMC9285603 DOI: 10.1002/mnfr.202100380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegeneration characterized by extensive protein aggregation and deposition in the brain, associated with defective proteasomal and autophagic-lysosomal proteolytic pathways. Since current drugs can only reduce specific symptoms, the identification of novel treatments is a major concern in AD research. Among natural compounds, (poly)phenols and their derivatives/metabolites are emerging as candidates in AD prevention due to their multiple beneficial effects. This study aims to investigate the ability of a selection of phenyl-γ-valerolactones, gut microbiota-derived metabolites of flavan-3-ols, to modulate the functionality of cellular proteolytic pathways. METHODS AND RESULTS Neuronal SH-SY5Y cells transfected with either the wild-type or the 717 valine-to-glycine amyloid precursor protein mutated gene are used as an AD model and treated with 5-(4'-hydroxyphenyl)-γ-valerolactone, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone and 5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate. Combining in vitro and in silico studies, it is observed that the phenyl-γ-valerolactones of interest modulated cellular proteolysis via proteasome inhibition and consequent autophagy upregulation and inhibited cathepsin B activity, eventually reducing the amount of intra- and extracellular amyloid-beta (1-42) peptides. CONCLUSION The findings of this study establish, for the first time, that these metabolites exert a neuroprotective activity by regulating intracellular proteolysis and confirm the role of autophagy and cathepsin B as possible targets of AD preventive/therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | | | - Yadong Zheng
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Laura Bonfili
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Chunmei Gong
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Mauro Angeletti
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Pedro Mena
- Human Nutrition UnitDepartment of Food and DrugsUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Daniele Del Rio
- Human Nutrition UnitDepartment of Food and DrugsUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| |
Collapse
|
29
|
Li D, He C, Ye F, Ye E, He H, Chen G, Zhang J. p62 Overexpression Promotes Bone Metastasis of Lung Adenocarcinoma out of LC3-Dependent Autophagy. Front Oncol 2021; 11:609548. [PMID: 34094898 PMCID: PMC8175982 DOI: 10.3389/fonc.2021.609548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
p62 protein has been implicated in bone metastasis and is a multifunctional adaptor protein usually correlated with autophagy. Herein, we investigated p62 expression and its prognostic significance in bone metastasis of lung adenocarcinoma, and analyzed whether the mechanism involved depends on autophagy. mRNA and protein expression of p62, LC3B and Beclin 1 were detected by reverse transcription-quantitative PCR and western blotting, respectively, in fresh bone metastasis tissues (n=6 cases) and normal cancellous bone tissues (n=3 cases). The association between p62 and LC3B expression and patient prognosis was subsequently analyzed in 62 paraffin-embedded bone metastasis specimens by immunohistochemistry assay. Small interfering RNA (siRNA) was employed to downregulate p62 expression in SPC-A-1 and A549 cells. Cell proliferation and migration ability were tested by CCK8, CCF and Transwell assays respectively. Autophagy was induced by Rapamycin or inhibited by Atg 7 knockout/Chloroquine in A549 cells and p62 and LC3II/I expression were analyzed. After subcutaneous inoculation or intracardial injection of A549 cells into nude mice, the effect of p62 downregulation in vivo was analyzed by histopathological examination. The results showed that p62, LC3B and Beclin 1 mRNA and protein were all overexpressed in bone metastasis tissues (all P<0.01). Patient samples with high p62 expression levels were significantly associated with more bone lesions (>3), shorter overall survival rates and shorter progression free survival rates compared with patients having lower p62 expression (P=0.014, P=0.003, P=0.048, respectively). Cox regression analysis identified p62 expression as an independent prognostic indicator of overall survival of patients with bone metastasis (P=0.007). In vitro p62 downregulation inhibited SPC-A-1 and A549 cells migration but had no effect on cell proliferation. After autophagy induction or inhibition, p62 expression involved in autophagy flux and changed inconsistently according to the switch of LC3I to LC3II in different autophagy conditions. In vivo p62 downregulation had no effect on growth of subcutaneous tumor. Lung or bone metastasis lesion was not found in all mice model. These findings suggested that p62 overexpression promotes tumor cell invasion out of LC3-dependent autophagy, which could be used a potential prognostic biomarker and therapeutic target for bone metastasis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Chuanchun He
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Fan Ye
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - En Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Hao He
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Gong Chen
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Jing Zhang
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
30
|
Cao J, Amakye WK, Qi C, Liu X, Ma J, Ren J. Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer's disease in the APP/PS1 mouse model. Eur J Nutr 2021; 60:3757-3769. [PMID: 33796919 DOI: 10.1007/s00394-021-02543-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Studies have shown that Alzheimer's disease is associated with significant alterations in the gut microbiota. But the effect of probiotics and/or prebiotics on Alzheimer's disease still remains to be explored. The aim of this study was to determine whether Bifidobacterium Lactis Probio-M8 could alleviate Alzheimer's disease pathophysiologies in the APP/PS1 transgenic mouse model. METHODS 4-month old APP/PS1 mice were randomly put into two groups and fed with either Probio-M8 or saline water for 45 days. Fecal samples of mice were collected at the beginning and the end of the treatment period to determine the composition of the gut microbiota via 16S ribosomal RNA sequencing technology. The number and size of Aβ plaques in the brain were quantified. In addition, Y maze, novel object recognition and nest building were employed to access cognitive function in the 8-months old APP/PS1 mice at the end of the treatment period. CONCLUSION Our results demonstrated that Probio-M8 reduced Aβ plaque burden in the whole brain and protected against gut microbiota dysbiosis. Furthermore, Probio-M8 could alleviate cognitive impairment in the APP/PS1 mouse.
Collapse
Affiliation(s)
- Jianing Cao
- School of Food Science and Engineering, South China University of Technology, 381 Wu Shan Road, Guangzhou, 510641, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, 381 Wu Shan Road, Guangzhou, 510641, China
| | - Chunli Qi
- School of Food Science and Engineering, South China University of Technology, 381 Wu Shan Road, Guangzhou, 510641, China
| | - Xiaojun Liu
- Beijing Scitop Bio-Tech Co. Ltd., Beijing, China
| | - Jie Ma
- Beijing Scitop Bio-Tech Co. Ltd., Beijing, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, 381 Wu Shan Road, Guangzhou, 510641, China.
| |
Collapse
|
31
|
Shabbir U, Arshad MS, Sameen A, Oh DH. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients 2021; 13:690. [PMID: 33669988 PMCID: PMC7924846 DOI: 10.3390/nu13020690] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota-gut-brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer's disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood-brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Aysha Sameen
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|