1
|
Oliva EN, Cuzzola M, Porta MD, Candoni A, Salutari P, Palumbo GA, Reda G, Iannì G, Zampini M, D’Amico S, Tripepi G, Capelli D, Alati C, Cannatà MC, Niscola P, Serio B, Barillà S, Musto P, Vigna E, Melillo LMA, Tripepi R, Zannier ME, Nannya Y, Ogawa S, Mammì C. Translational Research on Azacitidine Post-Remission Therapy of Acute Myeloid Leukemia in Elderly Patients (QOL-ONE Trans-2). Int J Mol Sci 2024; 25:11646. [PMID: 39519198 PMCID: PMC11545844 DOI: 10.3390/ijms252111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The achievement of complete remission (CR) is crucial for acute myeloid leukemia (AML) patients undertaking curative therapy, but relapse often occurs within months, highlighting the need for strategies to prolong disease-free survival (DFS). Our phase III study compared the efficacy and safety of azacitidine (AZA) to best supportive care (BSC) in elderly AML patients who achieved CR following intensive induction and consolidation therapy. This ancillary study (QOL-ONE Trans-2) evaluated biological changes in bone marrow using Next-Generation Sequencing (NGS). We analyzed baseline, randomization, and 6-month post-remission samples from 24 patients (median age of 71 and 12 males). High-throughput NGS targeted 350 myeloid malignancy-related genes, considering variants with a variant allele frequency ≥ 4%. At diagnosis, all patients had 5 to 17 (median = 10) mutations, with DNMT3A (42%), NPM1 (33%), and TET2 (33%) being most frequent. FANCA mutations in four patients were linked to a higher relapse risk (HR = 4.96, p = 0.02) for DFS at both 2 and 5 years. Further HLA-specific NGS analyses are ongoing to confirm these results and their therapeutic implications.
Collapse
Affiliation(s)
- Esther Natalie Oliva
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy; (C.A.); (S.B.)
| | - Maria Cuzzola
- UOSD Tipizzazione Tissutale, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy;
| | - Matteo Della Porta
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (M.D.P.); (M.Z.); (S.D.)
| | - Anna Candoni
- Clinica Ematologica, ASUFC, University of Udine, 33100 Udine, Italy; (A.C.); (M.E.Z.)
| | - Prassede Salutari
- Dipartimento Oncologico-Ematologico Ospedale Civile Spirito Santo Pescara, 65124 Pescara, Italy;
| | - Giuseppe A. Palumbo
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Gianluigi Reda
- Hematology Department, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Giuseppe Iannì
- Dielnet SRL, CRO Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Matteo Zampini
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (M.D.P.); (M.Z.); (S.D.)
| | - Saverio D’Amico
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (M.D.P.); (M.Z.); (S.D.)
| | - Giovanni Tripepi
- IFC-CNR Institute of Clinical Physiology Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Debora Capelli
- Clinica di Ematologia Azienda Ospedaliera Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Caterina Alati
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy; (C.A.); (S.B.)
| | - Maria Concetta Cannatà
- UOSD Medical Genetics, Great Metropolitan Hospital, 89124 Reggio Calabria, Italy; (M.C.C.); (C.M.)
| | | | - Bianca Serio
- Dipartimento di Oncoematologia, AOU San Giovanni di Dio e Ruggi D’Aragona, 84125 Salerno, Italy;
| | - Santina Barillà
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy; (C.A.); (S.B.)
| | - Pellegrino Musto
- Department of Precision and Translational Medicine with Ionian Area, “Aldo Moro” University School of Medicine, 70121 Bari, Italy;
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| | - Ernesto Vigna
- UO di Ematologia, Ospedale L’Annunziata, 87100 Cosenza, Italy;
| | - Lorella Maria Antonia Melillo
- UOC Ematologia e Trapianto di Cellule Staminali Emopoietiche, Policlinico Foggia Ospedaliero-Universitario, 71122 Foggia, Italy;
| | - Rocco Tripepi
- Nephology, Dialysis and Transplantation Unit-GOM “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Maria Elena Zannier
- Clinica Ematologica, ASUFC, University of Udine, 33100 Udine, Italy; (A.C.); (M.E.Z.)
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan;
| | - Seishi Ogawa
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8303, Japan;
| | - Corrado Mammì
- UOSD Medical Genetics, Great Metropolitan Hospital, 89124 Reggio Calabria, Italy; (M.C.C.); (C.M.)
| |
Collapse
|
2
|
Piersma SR, Valles-Marti A, Rolfs F, Pham TV, Henneman AA, Jiménez CR. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications. MASS SPECTROMETRY REVIEWS 2024; 43:725-751. [PMID: 36156810 DOI: 10.1002/mas.21808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant cellular signaling pathways are a hallmark of cancer and other diseases. One of the most important signaling mechanisms involves protein phosphorylation/dephosphorylation. Protein phosphorylation is catalyzed by protein kinases, and over 530 protein kinases have been identified in the human genome. Aberrant kinase activity is one of the drivers of tumorigenesis and cancer progression and results in altered phosphorylation abundance of downstream substrates. Upstream kinase activity can be inferred from the global collection of phosphorylated substrates. Mass spectrometry-based phosphoproteomic experiments nowadays routinely allow identification and quantitation of >10k phosphosites per biological sample. This substrate phosphorylation footprint can be used to infer upstream kinase activities using tools like Kinase Substrate Enrichment Analysis (KSEA), Posttranslational Modification Substrate Enrichment Analysis (PTM-SEA), and Integrative Inferred Kinase Activity Analysis (INKA). Since the topic of kinase activity inference is very active with many new approaches reported in the past 3 years, we would like to give an overview of the field. In this review, an inventory of kinase activity inference tools, their underlying algorithms, statistical frameworks, kinase-substrate databases, and user-friendliness is presented. The most widely-used tools are compared in-depth. Subsequently, recent applications of the tools are described focusing on clinical tissues and hematological samples. Two main application areas for kinase activity inference tools can be discerned. (1) Maximal biological insights can be obtained from large data sets with group comparisons using multiple complementary tools (e.g., PTM-SEA and KSEA or INKA). (2) In the oncology context where personalized treatment requires analysis of single samples, INKA for example, has emerged as tool that can prioritize actionable kinases for targeted inhibition.
Collapse
Affiliation(s)
- Sander R Piersma
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andrea Valles-Marti
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frank Rolfs
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alex A Henneman
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Connie R Jiménez
- OncoProteomics Laboratory Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chiou JT, Chang LS. ONC212 enhances YM155 cytotoxicity by triggering SLC35F2 expression and NOXA-dependent MCL1 degradation in acute myeloid leukemia cells. Biochem Pharmacol 2024; 224:116242. [PMID: 38679209 DOI: 10.1016/j.bcp.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.
Collapse
MESH Headings
- Humans
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- U937 Cells
- Imidazoles/pharmacology
- Naphthoquinones/pharmacology
- HL-60 Cells
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Drug Synergism
- Benzyl Compounds
- Heterocyclic Compounds, 3-Ring
- Sulfonamides
- Bridged Bicyclo Compounds, Heterocyclic
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
4
|
Chiou JT, Chang LS. Synergistic cytotoxicity of decitabine and YM155 in leukemia cells through upregulation of SLC35F2 and suppression of MCL1 and survivin expression. Apoptosis 2024; 29:503-520. [PMID: 38066391 DOI: 10.1007/s10495-023-01918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of β-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
5
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
6
|
Zhai Y, Shen H, Wei H. A Comprehensive Metabolism-Related Gene Signature Predicts the Survival of Patients with Acute Myeloid Leukemia. Genes (Basel) 2023; 15:63. [PMID: 38254953 PMCID: PMC10815187 DOI: 10.3390/genes15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Acute myeloid leukemia (AML) is a clonal malignancy with heterogeneity in genomics and clinical outcome. Metabolism reprogramming has been increasingly recognized to play an important role in the leukemogenesis and prognosis in AML. A comprehensive prognostic model based on metabolism signatures has not yet been developed. (2) Methods: We applied Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) normalization to establish a metabolism-related prognostic gene signature based on glycolysis, fatty acid metabolism, and the tricarboxylic acid cycle gene signatures. The Cancer Genome Atlas-Acute Myeloid Leukemia-like (TCGA-LAML) cohort was set as the training dataset for model construction. Three independent AML cohorts (GSE37642, GSE10358, and GSE12417) combined from Gene Expression Omnibus (GEO) datasets and the Beat-AML dataset were retrieved as two validation sets to test the robustness of the model. The transcriptome data and clinic information of the cohorts were enrolled for the analysis. (3) Results: Divided by the median value of the metabolism risk score, the five-year overall survival (OS) of the high-risk and low-risk groups in the training set were 8.2% and 41.3% (p < 0.001), respectively. The five-year OS of the high-risk and low-risk groups in the combined GEO cohort were 25.5% and 37.3% (p = 0.002), respectively. In the Beat-AML cohort, the three-year OS of the high-risk and low-risk groups were 16.2% and 40.2% (p = 0.0035), respectively. The metabolism risk score showed a significantly negative association with the long-term survival of AML. Furthermore, this metabolism risk score was an independent unfavorable factor for OS by univariate analysis and multivariate analysis. (4) Conclusions: Our study constructed a comprehensive metabolism-related signature with twelve metabolism-related genes for the risk stratification and outcome prediction of AML. This novel signature might contribute to a better use of metabolism reprogramming factors as prognostic markers and provide novel insights into potential metabolism targets for AML treatment.
Collapse
Affiliation(s)
| | | | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; (Y.Z.); (H.S.)
| |
Collapse
|
7
|
Oliva EN, Candoni A, Salutari P, Palumbo GA, Reda G, Iannì G, Tripepi G, Cuzzola M, Capelli D, Mammì C, Alati C, Cannatà MC, Niscola P, Serio B, Musto P, Vigna E, Volpe A, Melillo LMA, Arcadi MT, Mannina D, Zannier ME, Latagliata R. Azacitidine Post-Remission Therapy for Elderly Patients with AML: A Randomized Phase-3 Trial (QoLESS AZA-AMLE). Cancers (Basel) 2023; 15:cancers15092441. [PMID: 37173908 PMCID: PMC10177242 DOI: 10.3390/cancers15092441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
This phase-3 randomized multicenter trial evaluated the efficacy of subcutaneous azacitidine (AZA) post-remission therapy vs. best supportive care (BSC) in elderly acute myeloid leukemia (AML) patients. The primary endpoint was the difference in disease-free survival (DFS) from complete remission (CR) to relapse/death. Patients with newly diagnosed AML aged ≥61 years received two courses of induction chemotherapy ("3+7" daunorubicin and cytarabine) followed by consolidation (cytarabine). At CR, 54 patients were randomized (1:1) to receive BSC (N = 27) or AZA (N = 27) at a dose of 50 mg/m2 for 7 days every 28 days and the dose increased after the 1st cycle to 75 mg/m2 for a further 5 cycles, followed by cycles every 56 days for 4.5 years. At 2 years, median DFS was 6.0 (95% CI: 0.2-11.7) months for patients receiving BSC vs. 10.8 months (95% CI: 1.9-19.6, p = 0.20) months for AZA. At 5 years, DFS was 6.0 (95% CI: 0.2-11.7) months in the BSC arm vs. 10.8 (95% CI: 1.9-19.6, p = 0.23) months in the AZA arm. Significant benefit was afforded by AZA on DFS at 2 and 5 years in patients aged >68 years (HR = 0.34, 95% CI: 0.13-0.90, p = 0.030 and HR = 0.37, 95% CI: 0.15-0.93, p = 0.034, respectively). No deaths occurred prior to leukemic relapse. Neutropenia was the most frequent adverse event. There were no differences in patient-reported outcome measures between study arms. In conclusion, AZA post-remission therapy was found to provide benefit in AML patients aged >68 years.
Collapse
Affiliation(s)
- Esther Natalie Oliva
- U.O.C. Ematologia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy
| | - Anna Candoni
- Divisione Ematologia, P.O. Santa Maria della Misericordia, A.S.U.F.C di Udine, 33100 Udine, Italy
| | - Prassede Salutari
- Dipartimento Oncologico-Ematologico Ospedale Civile Spirito Santo Pescara, 65124 Pescara, Italy
| | - Giuseppe A Palumbo
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Gianluigi Reda
- UOC Ematologia Università degli Studi di Milano, IRCCS Ospedale Maggiore Policlinico Milano, 20133 Milano, Italy
| | - Giuseppe Iannì
- Dielnet SRL, CRO Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Giovanni Tripepi
- IFC-CNR Institute of Clinical Physiology Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Maria Cuzzola
- UOSD Tipizzazione Tissutale, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy
| | - Debora Capelli
- Clinica di Ematologia Azienda Ospedaliera Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Corrado Mammì
- UOSD Medical Genetics, Great Metropolitan Hospital, 89124 Reggio Calabria, Italy
| | - Caterina Alati
- U.O.C. Ematologia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy
| | | | | | - Bianca Serio
- Dipartimento di Oncoematologia, AOU San Giovanni di Dio e Ruggi D'Aragona, 84125 Salerno, Italy
| | - Pellegrino Musto
- Department of Precision and Translational Medicine with Ionian Area, "Aldo Moro" University School of Medicine, 70121 Bari, Italy
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| | - Ernesto Vigna
- U.O. di Ematologia, Ospedale L'Annunziata, 87100 Cosenza, Italy
| | - Antonio Volpe
- U.O. di Ematologia, Azienda Ospedaliera San Giuseppe Moscato, 83100 Avellino, Italy
| | - Lorella Maria Antonia Melillo
- U.O.C. Ematologia e Trapianto di Cellule Staminali Emopoietiche, Policlinico Foggia Ospedaliero-Universitario, 71122 Foggia, Italy
| | - Maria Teresa Arcadi
- U.O. Farmacia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy
| | - Donato Mannina
- U.O.C. di Ematologia, Azienda Ospedaliera Papardo, 98158 Messina, Italy
| | - Maria Elena Zannier
- Divisione Ematologia, P.O. Santa Maria della Misericordia, A.S.U.F.C di Udine, 33100 Udine, Italy
| | | |
Collapse
|
8
|
Integrated single-cell transcriptome analysis of CD34 + enriched leukemic stem cells revealed intra- and inter-patient transcriptional heterogeneity in pediatric acute myeloid leukemia. Ann Hematol 2023; 102:73-87. [PMID: 36527458 DOI: 10.1007/s00277-022-05021-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
To gain insights into the idiosyncrasies of CD34 + enriched leukemic stem cells, we investigated the nature and extent of transcriptional heterogeneity by single-cell sequencing in pediatric AML. Whole transcriptome analysis of 28,029 AML single cells was performed using the nanowell cartridge-based barcoding technology. Integrated transcriptional analysis identified unique leukemic stem cell clusters of each patient and intra-patient heterogeneity was revealed by multiple LSC-enriched clusters differing in their cell cycle processes and BCL2 expression. All LSC-enriched clusters exhibited gene expression profile of dormancy and self-renewal. Upregulation of genes involved in non-coding RNA processing and ribonucleoprotein assembly were observed in LSC-enriched clusters relative to HSC. The genes involved in regulation of apoptotic processes, response to cytokine stimulus, and negative regulation of transcription were upregulated in LSC-enriched clusters as compared to the blasts. Validation of top altered genes in LSC-enriched clusters confirmed upregulation of TCF7L2, JUP, ARHGAP25, LPAR6, and PRDX1 genes, and serine/threonine kinases (STK24, STK26). Upregulation of LPAR6 showed trend towards MRD positive status (Odds ratio = 0.126; 95% CI = 0.0144-1.10; p = 0.067) and increased expression of STK26 significantly correlated with higher RFS (HR = 0.231; 95% CI = 0.0506-1.052; p = 0.04). Our findings addressed the inter- and intra-patient diversity within AML LSC and potential signaling and chemoresistance-associated targets that warrant investigation in larger cohort that may guide precision medicine in the near future.
Collapse
|
9
|
Hematopoiesis, Inflammation and Aging-The Biological Background and Clinical Impact of Anemia and Increased C-Reactive Protein Levels on Elderly Individuals. J Clin Med 2022; 11:jcm11030706. [PMID: 35160156 PMCID: PMC8836692 DOI: 10.3390/jcm11030706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Anemia and systemic signs of inflammation are common in elderly individuals and are associated with decreased survival. The common biological context for these two states is then the hallmarks of aging, i.e., genomic instability, telomere shortening, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Such aging-associated alterations of hematopoietic stem cells are probably caused by complex mechanisms and depend on both the aging of hematopoietic (stem) cells and on the supporting stromal cells. The function of inflammatory or immunocompetent cells is also altered by aging. The intracellular signaling initiated by soluble proinflammatory mediators (e.g., IL1, IL6 and TNFα) is altered during aging and contributes to the development of both the inhibition of erythropoiesis with anemia as well as to the development of the acute-phase reaction as a systemic sign of inflammation with increased CRP levels. Both anemia and increased CRP levels are associated with decreased overall survival and increased cardiovascular mortality. The handling of elderly patients with inflammation and/or anemia should in our opinion be individualized; all of them should have a limited evaluation with regard to the cause of the abnormalities, but the extent of additional and especially invasive diagnostic evaluation should be based on an overall clinical evaluation and the possible therapeutic consequences.
Collapse
|
10
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
11
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
12
|
Proteomic Studies of Primary Acute Myeloid Leukemia Cells Derived from Patients Before and during Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid and Valproic Acid. Cancers (Basel) 2021; 13:cancers13092143. [PMID: 33946813 PMCID: PMC8125016 DOI: 10.3390/cancers13092143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.
Collapse
|
13
|
Aasebø E, Brenner AK, Birkeland E, Tvedt THA, Selheim F, Berven FS, Bruserud Ø. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers (Basel) 2021; 13:cancers13071509. [PMID: 33806032 PMCID: PMC8037744 DOI: 10.3390/cancers13071509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The formation of normal blood cells in the bone marrow is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. These cell types support and regulate the growth of acute myeloid leukemia (AML) cells and communicate with leukemic cells through the release of proteins to their common extracellular microenvironment. One of the AML-supporting normal cell types is a subset of connective tissue cells called mesenchymal stem cells. In the present study, we observed that AML cells release a wide range of diverse proteins into their microenvironment, but patients differ both with regard to the number and amount of released proteins. Inhibition of this bidirectional communication through protein release between AML cells and leukemia-supporting normal cells may become a new strategy for cancer treatment. Abstract Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557–2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | | | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Øystein Bruserud
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: or
| |
Collapse
|
14
|
Characterization of NADPH Oxidase Expression and Activity in Acute Myeloid Leukemia Cell Lines: A Correlation with the Differentiation Status. Antioxidants (Basel) 2021; 10:antiox10030498. [PMID: 33807114 PMCID: PMC8004739 DOI: 10.3390/antiox10030498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
In acute myeloid leukemia (AML), a low level of reactive oxygen species (ROS) is associated with leukemic stem cell (LSC) quiescence, whereas a high level promotes blast proliferation. ROS homeostasis relies on a tightly-regulated balance between the antioxidant and oxidant systems. Among the oxidants, NADPH oxidases (NOX) generate ROS as a physiological function. Although it has been reported in AML initiation and development, the contribution of NOX to the ROS production in AML remains to be clarified. The aim of this study was to investigate the NOX expression and function in AML, and to examine the role of NOX in blast proliferation and differentiation. First, we interrogated the NOX expression in primary cells from public datasets, and investigated their association with prognostic markers. Next, we explored the NOX expression and activity in AML cell lines, and studied the impact of NOX knockdown on cell proliferation and differentiation. We found that NOX2 is ubiquitously expressed in AML blasts, and particularly in cells from the myelomonocytic (M4) and monocytic (M5) stages; however, it is less expressed in LSCs and in relapsed AML. This is consistent with an increased expression throughout normal hematopoietic differentiation, and is reflected in AML cell lines. Nevertheless, no endogenous NOX activity could be detected in the absence of PMA stimulation. Furthermore, CYBB knockdown, although hampering induced NOX2 activity, did not affect the proliferation and differentiation of THP-1 and HL-60 cells. In summary, our data suggest that NOX2 is a marker of AML blast differentiation, while AML cell lines lack any NOX2 endogenous activity.
Collapse
|