1
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
2
|
Pengjie Y, Rong J, Pengfei N. miR-378a-5p exerts tumor-suppressive effects on esophageal squamous cell carcinoma after neoadjuvant immunotherapy by downregulating APOC1/CEP55. Sci Rep 2024; 14:305. [PMID: 38172247 PMCID: PMC10764758 DOI: 10.1038/s41598-023-50938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic assessment of tumors following neoadjuvant immunotherapy helps identifying targets that mediate anti-tumor immunity. In this study, we explored dysregulated RNAs in esophageal squamous cell carcinoma samples after neoadjuvant immunotherapy using deep sequencing and high-throughput screening. We identified 584 differentially expressed messenger RNAs (mRNAs), 67 differentially expressed microRNAs (miRNAs), and 1,047 differentially expressed long non-coding RNAs (lncRNAs) using differential expression analysis. Competing endogenous RNAs closely related to esophageal squamous cell carcinoma were selected via a combined Pearson's correlation test and weighted correlation network analysis. After validation using survival analysis and dry-lab and wet-lab-based studies, we identified the I-miR-378-5p-APOC1/CEP55 as a critical pathway for esophageal squamous cell carcinoma progression after neoadjuvant immunotherapy. Tumor immune infiltration analysis showed that APOC1 and CEP55 expression is associated with immune regulatory pathways and the function of multiple infiltrating immune cells. We investigated the mechanism of esophageal squamous carcinoma progression after neoadjuvant immunotherapy from the perspective of the mRNA-miRNA-lncRNA network. Furthermore, we identified accurate novel therapeutic targets and prognostic biomarkers, introduced novel perspectives to immunotherapy studies, and laid the foundation for the clinical treatment of patients with esophageal squamous carcinoma.
Collapse
Affiliation(s)
- Yang Pengjie
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China
- Thoracic Surgery Department, Peking University Cancer Hospital Inner Mongolia Hospital (Cancer Hospital Affiliated to Inner Mongolia Medical University), Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Jia Rong
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ning Pengfei
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
3
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
4
|
Noncoding RNAs in esophageal cancer: A glimpse into implications for therapy resistance. Pharmacol Res 2023; 188:106678. [PMID: 36709789 DOI: 10.1016/j.phrs.2023.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Esophageal cancer (EC) is one of the most common malignancies of the digestive system and has a high morbidity and mortality worldwide. Chemotherapy in combination with radiotherapy is one of the most important treatment modalities for EC. Chemoradiotherapy is currently acknowledged worldwide as being the standard treatment for locally advanced or unresectable disease. Unfortunately, due to the existence of therapy resistance, a number of EC patients fail to benefit from drug or irradiation treatment, which ultimately leads to poor outcomes. Considerable efforts have been made to explore the mechanisms underlying the therapy resistance of EC. Notably, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are current research areas for the modulation of therapy responses and may serve as new targets to overcome treatment resistance in EC. Herein, we summarized the mechanisms by which ncRNAs are involved in drug and radiation resistance in EC and highlighted their role in promoting or repressing treatment resistance. Additionally, we discussed the clinical relevance of ncRNAs, which may serve as potential therapeutic targets and predictive biomarkers for EC.
Collapse
|
5
|
Khalilian S, Abedinlou H, Hussen BM, Imani SZH, Ghafouri-Fard S. The emerging role of miR-20b in human cancer and other disorders: Pathophysiology and therapeutic implications. Front Oncol 2022; 12:985457. [PMID: 36582800 PMCID: PMC9792503 DOI: 10.3389/fonc.2022.985457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
miR-20b is a microRNA with diverse and somehow contradictory roles in the pathogenesis of human disorders, especially cancers. It has been known to be a tumor suppressor in colon cancer, renal cell carcinoma, prostate cancer, osteosarcoma and papillary thyroid cancer. In lung cancer and breast cancers, both tumor suppressor and oncogenic effects have been identified for this miRNA. Finally, in T cell leukemia, hepatocellular carcinoma, esophageal squamous cell carcinoma and cervical and gastric cancers, miR-20b is regarded as an oncogenic miRNA. In several types of cancer, dysregulation of miR-20b has been recognized as a predictive marker for patients' survival. Dysregulation of miR-20b has also been recognized in Alzheimer's disease, diabetic retinopathy, myocardial ischemia/infarction, chronic hepatitis B and multiple sclerosis. In the current review, we have summarized the miR-20b targets and related cellular processes. We have also provided a review of participation of this miRNA in different human disorders.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Abedinlou
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University, Erbil, Kurdistan Region, Iraq,Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Seyedeh Zahra Hosseini Imani
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
6
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:biomedicines10051088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|
7
|
Alamilla-Presuel JC, Burgos-Molina AM, González-Vidal A, Sendra-Portero F, Ruiz-Gómez MJ. Factors and molecular mechanisms of radiation resistance in cancer cells. Int J Radiat Biol 2022; 98:1301-1315. [PMID: 35225732 DOI: 10.1080/09553002.2022.2047825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this work is to review the published studies on radiation resistance mechanisms and molecular markers involved in different tumors. The revision has been focused in the last 5 years (2016-2021). CONCLUSIONS Radioresistance is a cause of concern as it causes failure of radiation therapy and subsequent tumor relapse. Combination chemotherapy and radiation therapy are clinically successful in treating many types of tumors. Despite continued improvements in cancer treatment, locoregional recurrence or metastatic spread continues to occur in a high proportion of patients after being treated with radiation therapy or combination treatments. There is strong evidence that cancer stem cells contribute to radiation resistance, contributing to treatment failure. The mechanisms of radiation resistance in different tumors are not fully understood. A better understanding of cancer stem cells and the associated signaling pathways that regulate radiation resistance will open up new strategies for treating cancer by radiation therapy. Radiation can damage malignant cells mainly by the induction of DNA double strand breaks. However, in some tumors appear resistant cells that repopulate the tumor following therapy leading over time to the failure of the treatment. Native mechanisms and induced pathways, are the cause of radiation resistance. It has been described that numerous molecular markers acting through numerous mechanisms of action involved in radiation resistance, such as apoptosis resistance, alterations of cell growth, proliferation and DNA repair, hypoxia, increase in invasiveness and migration capacity, cell cycle alterations and expression of heat shock proteins, among others. Therefore, resistance to radiation is a multifactorial phenomenon that, in different cell types, it occurs through different regulatory mechanisms in which different molecules intervene. Resistance can be acquired by altering different regulatory pathways in different tumors. The knowledge of radiation resistance markers could help in the classification and treatment of patients with more aggressive tumors.
Collapse
Affiliation(s)
- Juan C Alamilla-Presuel
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|