1
|
Wang ZY, Cheng J, Wang Y, Yuan HT, Bi SJ, Wang SX, Hou YM, Zhang X, Xu BH, Wang ZY, Zhang Y, Jiang WJ, Chen YG, Zhang MX. Macrophage ILF3 promotes abdominal aortic aneurysm by inducing inflammatory imbalance in male mice. Nat Commun 2024; 15:7249. [PMID: 39179537 PMCID: PMC11344041 DOI: 10.1038/s41467-024-51030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Imbalance of proinflammatory and anti-inflammatory responses plays a crucial role in the progression of abdominal aortic aneurysms. ILF3, a known modulator of the innate immune response, is involved in cardiovascular diseases. This study aims to investigate the role of ILF3 in abdominal aortic aneurysm formation. Here, we use multi-omics analyzes, transgenic male mice, and multiplex immunohistochemistry to unravel the underlying involvement of ILF3 in abdominal aortic aneurysms. The results show that macrophage ILF3 deficiency attenuates abdominal aortic aneurysm progression, while elevated macrophage ILF3 exacerbates abdominal aortic aneurysm lesions. Mechanistically, we reveal that macrophagic ILF3 increases NF-κB activity by hastening the decay of p105 mRNA, leading to amplified inflammation in macrophages. Meanwhile, ILF3 represses the anti-inflammatory action by inhibiting the Keap1-Nrf2 signaling pathway through facilitating the ILF3/eIF4A1 complex-mediated enhancement of Keap1 translational efficiency. Moreover, Bardoxolone Methyl treatment alleviates the severity of abdominal aortic aneurysm lesions in the context of elevated ILF3 expression. Together, our findings underscore the significance of macrophage ILF3 in abdominal aortic aneurysm development and suggest its potential as a promising therapeutic target for abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Tao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shao-Jie Bi
- Department of Cardiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo-Han Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ze-Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Wen-Jian Jiang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yu-Guo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Olson SR, Tang WHW, Liu CF. Non-Coding Ribonucleic Acids as Diagnostic and Therapeutic Targets in Cardiac Fibrosis. Curr Heart Fail Rep 2024; 21:262-275. [PMID: 38485860 PMCID: PMC11090942 DOI: 10.1007/s11897-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW Cardiac fibrosis is a crucial juncture following cardiac injury and a precursor for many clinical heart disease manifestations. Epigenetic modulators, particularly non-coding RNAs (ncRNAs), are gaining prominence as diagnostic and therapeutic tools. RECENT FINDINGS miRNAs are short linear RNA molecules involved in post-transcriptional regulation; lncRNAs and circRNAs are RNA sequences greater than 200 nucleotides that also play roles in regulating gene expression through a variety of mechanisms including miRNA sponging, direct interaction with mRNA, providing protein scaffolding, and encoding their own products. NcRNAs have the capacity to regulate one another and form sophisticated regulatory networks. The individual roles and disease relevance of miRNAs, lncRNAs, and circRNAs to cardiac fibrosis have been increasingly well described, though the complexity of their interrelationships, regulatory dynamics, and context-specific roles needs further elucidation. This review provides an overview of select ncRNAs relevant in cardiac fibrosis as a surrogate for many cardiac disease states with a focus on crosstalk and regulatory networks, variable actions among different disease states, and the clinical implications thereof. Further, the clinical feasibility of diagnostic and therapeutic applications as well as the strategies underway to advance ncRNA theranostics is explored.
Collapse
Affiliation(s)
- Samuel R Olson
- Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chia-Feng Liu
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
4
|
Hou YM, Xu BH, Zhang QT, Cheng J, Zhang X, Yang HR, Wang ZY, Wang P, Zhang MX. Deficiency of smooth muscle cell ILF3 alleviates intimal hyperplasia via HMGB1 mRNA degradation-mediated regulation of the STAT3/DUSP16 axis. J Mol Cell Cardiol 2024; 190:62-75. [PMID: 38583797 DOI: 10.1016/j.yjmcc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.
Collapse
Affiliation(s)
- Ya-Min Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo-Han Xu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiu-Ting Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Rui Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ze-Ying Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Xiang Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Chen LL, Li YQ, Kang ZH, Zhang X, Gu SY, Wang N, Shen XY. Blocking the interaction between circTNRC18 and LIN28A promotes trophoblast epithelial-mesenchymal transformation and alleviates preeclampsia. Mol Cell Endocrinol 2024; 579:112073. [PMID: 37774938 DOI: 10.1016/j.mce.2023.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Defects in migration and invasion caused by dysregulation of trophoblastic epithelial-mesenchymal transformation (EMT) play a vital role in preeclampsia (PE). We have previously shown that circTNRC18 inhibits the migration and EMT of trophoblasts; however, its role in PE remains unknown. Herein, we demonstrate that circTNRC18 interacts with an RNA-binding protein, lin-28 homolog A (LIN28A), and this interaction is enhanced in PE placental tissue. LIN28A overexpression suppresses circTNRC18-mediated inhibition of trophoblast migration, invasion, and EMT, whereas LIN28A knockdown promotes them. The intracellular distribution of LIN28A is regulated by circTNRC18, where it promotes the expression of insulin-like growth factor II by stabilizing its mRNA. circTNRC18 also promotes complex formation between GATA-binding factor 1 (GATA1) and sine oculis homeobox 1 (SIX1) by inhibiting LIN28A-GATA1 interaction. GATA1-SIX1 promotes transcription of grainyhead-like protein 2 homolog and circTNRC18-mediated regulation of cell migration and invasion. Moreover, blocking circTNRC18-LIN28A interaction with antisense nucleotides alleviates PE in a mouse model of reduced uterine perfusion pressure. Thus, targeting the circTNRC18-LIN28A regulatory axis may be a novel PE treatment method.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Ya-Qin Li
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Zhi-Hui Kang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Xuan Zhang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Su-Yan Gu
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Na Wang
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| | - Xue-Yan Shen
- Department of Obstetrics, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
6
|
Lin MJ, Hu SL, Tian Y, Zhang J, Liang N, Sun R, Gong SX, Wang AP. Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. J Cardiovasc Transl Res 2023; 16:1010-1020. [PMID: 36973566 DOI: 10.1007/s12265-023-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension. This review summarizes the important role of VSMC senescence and senescence-associated secretory phenotype (SASP) secreted by senescent VSMCs in the pathophysiological process of vascular diseases. Meanwhile, it concludes the progress of antisenescence therapy targeting VSMC senescence or SASP, which provides new strategies for the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shi-Liang Hu
- Department of Rheumatology, Shaoyang Central Hospital, Shaoyang, 422000, China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Na Liang
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Rong Sun
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| |
Collapse
|
7
|
Koh D, Bin Jeon H, Oh C, Noh JH, Kim KM. RNA-binding proteins in cellular senescence. Mech Ageing Dev 2023; 214:111853. [PMID: 37453659 DOI: 10.1016/j.mad.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that is triggered and controlled by various external and/or internal factors. Among them, the regulation of senescence-associated genes is an important molecular event that plays a role in senescence. The regulation of gene expression can be achieved by various types of modulating mechanisms, and RNA-binding proteins (RBPs) are commonly known as critical regulators targeting a global range of transcripts. RBPs bind to RNA-binding motifs of the target transcripts and are involved in post-transcriptional processes such as RNA transport, stabilization, splicing, and decay. These RBPs may also play critical roles in cellular senescence by regulating the expression of senescence-associated genes. The biological functions of RBPs in controlling cellular senescence are being actively studied. Herein, we summarized the RBPs that influence cellular senescence, particularly by regulating processes such as the senescence-associated secretory phenotype, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Dahyeon Koh
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Hyeong Bin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Ji Heon Noh
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
8
|
Zhao H, Tan Z, Zhou J, Wu Y, Hu Q, Ling Q, Ling J, Liu M, Ma J, Zhang D, Wang Y, Zhang J, Yu P, Jiang Y, Liu X. The regulation of circRNA and lncRNAprotein binding in cardiovascular diseases: Emerging therapeutic targets. Biomed Pharmacother 2023; 165:115067. [PMID: 37392655 DOI: 10.1016/j.biopha.2023.115067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Noncoding ribonucleic acids (ncRNAs) are a class of ribonucleic acids (RNAs) that carry cellular information and perform essential functions. This class encompasses various RNAs, such as small nuclear ribonucleic acids (snRNA), small interfering ribonucleic acids (siRNA) and many other kinds of RNA. Of these, circular ribonucleic acids (circRNAs) and long noncoding ribonucleic acids (lncRNAs) are two types of ncRNAs that regulate crucial physiological and pathological processes, including binding, in several organs through interactions with other RNAs or proteins. Recent studies indicate that these RNAs interact with various proteins, including protein 53, nuclear factor-kappa B, vascular endothelial growth factor, and fused in sarcoma/translocated in liposarcoma, to regulate both the histological and electrophysiological aspects of cardiac development as well as cardiovascular pathogenesis, ultimately leading to a variety of genetic heart diseases, coronary heart disease, myocardial infarction, rheumatic heart disease and cardiomyopathies. This paper presents a thorough review of recent studies on circRNA and lncRNAprotein binding within cardiac and vascular cells. It offers insight into the molecular mechanisms involved and emphasizes potential implications for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Huilei Zhao
- Department of Anesthesiology, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Ziqi Tan
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin Zhou
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Wu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingwen Hu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Ling
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Menglu Liu
- Department of Cardiology, Seventh People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yue Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| |
Collapse
|
9
|
Bai Y, Zhang L, Zheng B, Zhang X, Zhang H, Zhao A, Yu J, Yang Z, Wen J. circACTA2 inhibits NLRP3 inflammasome-mediated inflammation via interacting with NF-κB in vascular smooth muscle cells. Cell Mol Life Sci 2023; 80:229. [PMID: 37498354 PMCID: PMC10374705 DOI: 10.1007/s00018-023-04840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023]
Abstract
circACTA2 derived from the smooth muscle α-actin gene plays an important role in the regulation of vascular smooth muscle cell (VSMC) phenotype. The activation of NLRP3 inflammasome is involved in VSMC phenotypic switching. However, the mechanistic relationship between circACTA2 and NLRP3 inflammasome during vascular remodeling remains poorly understood. Here, we showed that circACTA2 was down-regulated in human intimal hyperplasia. circACTA2 overexpression in circACTA2 transgenic mice significantly decreased the neointimal hyperplasia induced by vascular injury, which is concomitant with a decrease in IL-18, IL-1β, TNF-α, and IL-6 levels. Gain- and loss-of-function studies revealed that circACTA2 alleviated VSMC inflammation by suppressing the activation of NLRP3 inflammasome. Mechanistically, circACTA2 inhibited the expression of NF-κB p65 and p50 subunits and interacted with p50, which impedes the formation of the p50/p65 heterodimer and nuclear translocation induced by TNF-α, thus resulting in the suppression of NLRP3 gene transcription and inflammasome activation. Furthermore, circACTA2 overexpression mitigated inflammation via repressing NLRP3 inflammasome-mediated VSMC pyroptosis. Importantly, employing a decoy oligonucleotide to compete with circACTA2 for binding to p50 could attenuate the expression of NLRP3, ASC, and caspase-1. These findings provide a novel insight into the functional roles of circACTA2 in VSMCs, and targeting the circACTA2-NF-κB-NLRP3 axis represents a promising therapeutic strategy for vascular remodeling.
Collapse
Affiliation(s)
- Yang Bai
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Long Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
- Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Hong Zhang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Anning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jing Yu
- Department of Respiratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| |
Collapse
|
10
|
Triska J, Mathew C, Zhao Y, Chen YE, Birnbaum Y. Circular RNA as Therapeutic Targets in Atherosclerosis: Are We Running in Circles? J Clin Med 2023; 12:4446. [PMID: 37445481 DOI: 10.3390/jcm12134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Much attention has been paid lately to harnessing the diagnostic and therapeutic potential of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs) for the prevention and treatment of cardiovascular diseases. The genetic environment that contributes to atherosclerosis pathophysiology is immensely complex. Any potential therapeutic application of circRNAs must be assessed for risks, benefits, and off-target effects in both the short and long term. A search of the online PubMed database for publications related to circRNA and atherosclerosis from 2016 to 2022 was conducted. These studies were reviewed for their design, including methods for developing atherosclerosis and the effects of the corresponding atherosclerotic environment on circRNA expression. Investigated mechanisms were recorded, including associated miRNA, genes, and ultimate effects on cell mechanics, and inflammatory markers. The most investigated circRNAs were then further analyzed for redundant, disparate, and/or contradictory findings. Many disparate, opposing, and contradictory effects were observed across experiments. These include levels of the expression of a particular circRNA in atherosclerotic environments, attempted ascertainment of the in toto effects of circRNA or miRNA silencing on atherosclerosis progression, and off-target, cell-specific, and disease-specific effects. The high potential for detrimental and unpredictable off-target effects downstream of circRNA manipulation will likely render the practice of therapeutic targeting of circRNA or miRNA molecules not only complicated but perilous.
Collapse
Affiliation(s)
- Jeffrey Triska
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christo Mathew
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Zhao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuqing E Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM. Circular RNAs as a Diagnostic and Therapeutic Target in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24032125. [PMID: 36768449 PMCID: PMC9916891 DOI: 10.3390/ijms24032125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Circular RNAs (circRNAs) are a family of noncoding RNAs (ncRNAs) that are endogenous and widely distributed in different species, performing several functions, mainly their association with microRNAs (miRNAs) and RNA-binding proteins. CVDs remain the leading cause of death worldwide; therefore, the development of new therapies and strategies, such as gene therapies or nonpharmacological therapies, with low cost, such as physical exercise, to alleviate these diseases is of extreme importance for society. With increasing evidence of ncRNA participating in the progression of CVDs, several studies have reported these RNAs as promising targets for diagnosis and treatment. There are several studies of CVDs and the role of miRNAs and lncRNAs; however, little is known about the new class of RNAs, called circRNAs, and CVDs. In this mini review, we focus on the mechanisms of circRNAs and CVDs.
Collapse
|
12
|
Yang Z, Wang YX, Wen JK, Gao HT, Han ZW, Qi JC, Gu JF, Zhao CM, Zhang H, Shi B, Wang DD, Wang XL, Qu CB. SF3B4 promotes Twist1 expression and clear cell renal cell carcinoma progression by facilitating the export of KLF 16 mRNA from the nucleus to the cytoplasm. Cell Death Dis 2023; 14:26. [PMID: 36639679 PMCID: PMC9839716 DOI: 10.1038/s41419-022-05534-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Splicing factor 3B subunit 4 (SF3B4) plays important functional roles not only in pre-mRNA splicing, but also in the regulation of transcription, translation, and cell signaling, and its dysregulation contributes to various diseases including Nager syndrome and tumorigenesis. However, the role of SF3B4 and underlying mechanisms in clear cell renal cell carcinoma (ccRCC) remain obscure. In the present study, we found that the expression of SF3B4 was significantly elevated in ccRCC tissues and negatively correlated with the overall survival of ccRCC patients. Upregulation of SF3B4 promotes migration and invasion of ccRCC cells in vitro and in vivo. The promoting effect of SF3B4 on cell migration and invasion is mediated by Twist1, a key transcription factor to mediate EMT. Interestingly, SF3B4, a component of the pre-mRNA spliceosome, is able to promote KLF16 expression by facilitating the transport of KLF16 mRNA into the cytoplasm. Mechanistically, SF3B4 promotes the export of KLF16 mRNA from the nucleus to the cytoplasm and thus enhances KLF16 expression, and in turn elevated KLF16 directly binds to the Twist1 promoter to activate its transcription, leading to EMT and ccRCC progression. Our findings provide evidence that the SF3B4-KLF16-Twist1 axis plays important functional roles in the development and progression of ccRCC, and manipulating this pathway may be a novel therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhang, China
| | - Ya-Xuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Hai-Tao Gao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Zhen-Wei Han
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jun-Fei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Chen-Ming Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
13
|
Wang J, Wang X, Cao M, Zhang L, Lin J. CircUSP39/miR-362-3p/TRAF3 Axis Mediates Hypoxia/Reoxygenation-Induced Cardiomyocyte Oxidative Stress, Inflammation, and Apoptosis. Int Heart J 2023; 64:263-273. [PMID: 37005320 DOI: 10.1536/ihj.22-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Accumulating evidence suggested that aberrantly regulated circular RNA (circRNA) is a critical contributor to cardiovascular diseases, including acute myocardial infarction (AMI). However, the role and molecular mechanism of circUSP39 in AMI development remain unclear.Candidate circRNAs were screened from the Gene Expression Omnibus (GEO) database (GSE160717) and analyzed using the GEO2R tool. Hypoxia/reoxygenation (H/R) -induced AC16 cells were used to investigate the function of circUSP39 in H/R injury of cardiomyocytes. Quantitative real-time PCR (qRT-PCR) was employed to test RNA levels in H/R-induced AC16 cells. Cell Counting Kit-8, enzyme-linked immunosorbent assay, flow cytometry, and western blot (WB) assay were used to determine cell viability, oxidative stress, inflammatory factor levels, and cell apoptosis. RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay were conducted to validate the interactions between circRNA ubiquitin-specific peptidase 39 (circUSP39), miR-362-3p, and tumor necrosis factor receptor-associated factor 3 (TRAF3).In H/R-induced AC16 cells, the expression levels of circUSP39 and TRAF3 were upregulated whereas miR-362-3p expression was downregulated. CircUSP39 silencing markedly enhanced cell viability and superoxide dismutase activity but mitigated malondialdehyde level, secretion of inflammatory factors (IL-6, TNF-α, IL-1β, and MCP-1), and cell apoptosis in H/R-induced AC16 cells. CircUSP39 expedited H/R-induced AC16 cell injury by sponging miR-362-3p to increase the expression of TRAF3.CircUSP39 could facilitate H/R-induced cardiomyocyte oxidative stress, inflammation, and apoptosis by the miR-362-3p/TRAF3 axis, elucidating that it might be a therapeutic target for AMI.
Collapse
Affiliation(s)
| | - Xuan Wang
- Department of International Medical Center, Tianjin Hospital
| | - Mingying Cao
- Department of Cardiology, Tianjin Union Medical Center
| | - Lingli Zhang
- Department of Cardiology, Tianjin Union Medical Center
| | - Jingna Lin
- Department of Endocrinology, Tianjin Union Medical Center
| |
Collapse
|
14
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
15
|
Zhao AN, Yang Z, Wang DD, Shi B, Zhang H, Bai Y, Yan BW, Zhang Y, Wen JK, Wang XL, Qu CB. Disturbing NLRP3 acetylation and inflammasome assembly inhibits androgen receptor-promoted inflammatory responses and prostate cancer progression. FASEB J 2022; 36:e22602. [PMID: 36250925 DOI: 10.1096/fj.202200673rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Chronic inflammation is one of the definite factors leading to the occurrence and development of tumors, including prostate cancer (PCa). The androgen receptor (AR) pathway is essential for PCa tumorigenesis and inflammatory response. However, little is known about the AR-regulated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome pathway in human PCa. In this study, we explored the expression of inflammatory cytokine and AR in high-grade PCa and observed that NLRP3 inflammasome-associated genes were upregulated in high-grade PCa compared with that in low-grade PCa and benign prostatic hyperplasia and were associated with AR expression. In addition, we identified circAR-3-a circRNA derived from the AR gene-which is involved in the AR-regulated inflammatory response and cell proliferation by activating the NLRP3 inflammatory pathway. While circAR-3 overexpression promoted cell proliferation and the inflammatory response, its depletion induced opposite effects. Mechanistically, we noted that circAR-3 mediated the acetylation modification of NLRP3 by KAT2B and then promoted NLRP3 inflammasome complex subcellular distribution and assembly. Disturbing NLRP3 acetylation or blocking inflammasome assembly with an inhibitor suppressed the progression of PCa xenograft tumors. Our findings provide the first evidence that targeting NLRP3 acetylation or inflammasome assembly may be effective in inhibiting PCa progression.
Collapse
Affiliation(s)
- An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Bai
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Yan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Zhang
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Liu L, Yang X, Liao Y, Wang C, Wang Y. Resveratrol alleviates Ang II-induced vascular smooth muscle cell senescence by upregulating E2F1/SOD2 axis. Toxicol Res (Camb) 2022; 11:831-840. [PMID: 36337239 PMCID: PMC9618109 DOI: 10.1093/toxres/tfac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 09/05/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) senescence is a crucial factor relevant to accelerate cardiovascular diseases. Resveratrol (RES) has been reported that could obstruct vascular senescence. However, the detailed molecular mechanisms of RES in VSMCs senescence are still indistinct and deserve further investigations. Methods and Results In this study, VSMCs were treated with 100 nM angiotensin II (Ang II) for 3 days and then followed with a range of different concentrations of RES (0.5, 5, 15, 25, 35, 50 μM), and 25 μM of RES was chose for following experiments. We found that the E2F1 and SOD2 expressions were reduced in Ang II-induced VSMCs. RES treatment impeded Ang II-induced oxidative stress and mitochondrial dysfunction through elevating E2F1 and SOD2 expression, thereby alleviating VSMCs senescence. Additionally, E2F1 knockdown reversed the protective effects of RES on VSMCs senescence caused by Ang II administration. Ch-IP assay and dual luciferase reporter gene assay validated that E2F1 could bind to the promoter region of SOD2. Furthermore, E2F1 or SOD2 overexpression blocked Ang II-induced on VSMCs senescence. Conclusion In conclusion, RES mitigated Ang II-induced VSMCs senescence by suppressing oxidative stress and mitochondrial dysfunction through activating E2F1/SOD2 axis. Our study disclosed that RES might be a potential drug and the axis of its regulatory mechanism might be therapeutic targets for postponing vascular senescence.
Collapse
Affiliation(s)
- Lei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Xiuhua Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Yiyang Liao
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Chuanhua Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
| |
Collapse
|
17
|
Yang H, Luo YY, Zhang LT, He KR, Lin XJ. Extracellular histones induce inflammation and senescence of vascular smooth muscle cells by activating the AMPK/FOXO4 signaling pathway. Inflamm Res 2022; 71:1055-1066. [PMID: 35913584 DOI: 10.1007/s00011-022-01618-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/25/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Sepsis is an abnormal immune-inflammatory response that is mainly caused by infection. It can lead to life-threatening organ dysfunction and death. Severely damaged tissue cells will release intracellular histones into the circulation as damage-related molecular patterns (DAMPs) to accelerate the systemic immune response. Although various histone-related cytotoxicity mechanisms have been explored, those that affect extracellular histones involved in vascular smooth muscle cell (VSMC) dysfunction are yet to be determined. METHODS Mouse aortic vascular smooth muscle cells (VSMCs) were stimulated with different concentrations of histones, and cell viability was detected by CCK-8 assay. Cellular senescence was assessed by SA β-gal staining. C57BL/6 mice were treated with histones with or without BML-275 treatment. RT-qPCR was performed to determine the expression of inflammatory cytokines. Western blotting was used to analyze the expression of NLRP3, ASC and caspase-1 inflammasome proteins. The interaction of NLRP3 and ASC was detected by CoIP and immunofluorescence staining. RESULTS In this study, we found that extracellular histones induced senescence and inflammatory response in a dose-dependent manner in cultured VSMCs. Histone treatment significantly promoted apoptosis-associated speck-like protein containing CARD (ASC) as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3) interaction of inflammasomes in VSMCs. Forkhead box protein O4 (FOXO4), which is a downstream effector molecule of extracellular histones, was found to be involved in histone-regulated VSMC inflammatory response and senescence. Furthermore, the 5'-AMP-activated protein kinase (AMPK) signaling pathway was confirmed to mediate extracellular histone-induced FOXO4 expression, and blocking this signaling pathway with an inhibitor can suppress vascular inflammation induced by extracellular histones in vivo and in vitro. CONCLUSION Extracellular histones induce inflammation and senescence in VSMCs, and blocking the AMPK/FOXO4 pathway is a potential target for the treatment of histonemediated organ injury.
Collapse
Affiliation(s)
- Hang Yang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China.
| | - Yong-Yan Luo
- Department of Emergency and Critical Care Medicine, Zhuhai Hospital of Guangdong Provincial People's Hospital, 2 Hongyang Road, Sanzao Town, Jinwan District, Zhuhai, China
| | - Lue-Tao Zhang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Kai-Ran He
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Xiao-Jun Lin
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
18
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
19
|
Yan X, Fan D, Pi Y, Zhang Y, Fu P, Zhang H. ERα/β/DMP1 axis promotes trans-differentiation of chondrocytes to bone cells through GSK-3β/β-catenin pathway. J Anat 2022; 240:1152-1161. [PMID: 35081258 PMCID: PMC9119614 DOI: 10.1111/joa.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen-induced premature closing of the growth plate in the long bones is a major cause of short stature after premature puberty. Recent studies have found that chondrocytes can directly trans-differentiate into osteoblasts in the process of endochondral bone formation, which indicates that cartilage formation and osteogenesis may be a continuous biological process. However, whether estrogen promotes the direct trans-differentiation of chondrocytes into osteoblasts remains largely unknown. Chondrocytes were treated with different concentrations of 17β-estradiol, and Alizarin Red staining and alkaline phosphatase activity assay were used to detected osteogenesis. Specific short hairpin RNA and tamoxifen were used to block the estrogen receptor (ER) pathway and osteogenic marker genes and downstream gene expression were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining. The findings showed that 17β-estradiol promoted the chondrocyte osteogenesis in vitro, even at high concentrations. In addition, blocking of the ERα/β pathway inhibited the trans-differentiation of chondrocytes into osteogenic cells. Furthermore, we found that dentin matrix protein 1 (DMP1), which is a direct downstream molecular of ER, was involved in 17β-estradiol/ER pathway-regulated osteogenesis. As well, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signal pathway also participates in ERα/β/DMP1-regulated chondrocyte osteogenesis. The GSK-3β/β-catenin signal pathway was involved in ERα/β/DMP1-regulated chondrocyte osteogenesis. These findings suggest that ER/DMP1/GSK-3β/β-catenin plays a vital role in estrogen regulation of chondrocyte osteogenesis and provide a therapeutic target for short stature caused by epiphyseal fusion.
Collapse
Affiliation(s)
- Xue Yan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Deng‐Yun Fan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Lei Pi
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Nan Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Peng‐Jiu Fu
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Hui‐Feng Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
20
|
Huang X, Zhao Y, Zhou H, Li Y. Circular RNAs in atherosclerosis. Clin Chim Acta 2022; 531:71-80. [PMID: 35339453 DOI: 10.1016/j.cca.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory lesion of the arterial vessel wall caused by a variety of complex factors. Furthermore, it is a major cause of cardiovascular disease and a leading cause of death. Circular RNAs (circRNAs) are a new family of endogenous non-coding RNAs with unique covalently closed loops that have sparked interest due to their unique characteristics and potential diagnostic and therapeutic applications in various diseases. A growing number of studies have shown that circRNAs can be used as biomarkers for the diagnosis and treatment of AS. In this article, we review the biogenesis, classification as well as functions of circRNA and summarize the research on circRNA as a diagnostic biomarker for AS. Finally, we describe the regulatory capacity of circRNA in AS pathogenesis through its pathogenesis and demonstrate the potential therapeutic role of circRNA for AS.
Collapse
Affiliation(s)
- Xiaoni Huang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yuwen Zhao
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Huijiao Zhou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China.
| |
Collapse
|
21
|
Circular RNAs: regulators of vascular smooth muscle cells in cardiovascular diseases. J Mol Med (Berl) 2022; 100:519-535. [DOI: 10.1007/s00109-022-02186-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
|
22
|
Liu KL, Yin YW, Lu BS, Niu YL, Wang DD, Shi B, Zhang H, Guo PY, Yang Z, Li W. E2F6/KDM5C promotes SF3A3 expression and bladder cancer progression through a specific hypomethylated DNA promoter. Cancer Cell Int 2022; 22:109. [PMID: 35248043 PMCID: PMC8897952 DOI: 10.1186/s12935-022-02475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 12/01/2022] Open
Abstract
Background Abnormal expression of splicing factor 3A subunit 3 (SF3A3), a component of the spliceosome, has been confirmed to be related to the occurrence and development of various cancers. However, the expression and function of SF3A3 in bladder cancer (BC) remains unclear. Methods The SF3A3 mRNA and protein level were measured in clinical samples and cell lines by quantitative real-time PCR, Western blot and immunofluorescence staining. Evaluate the clinical correlation between SF3A3 expression and clinicopathological characteristics through statistical analysis in BC patients. The function of SF3A3 in BC cells was determined in vitro using MTT and colony analysis. Co-immunoprecipitation (CoIP) assay was used to detected E2F6 and KDM5C interaction. Luciferase reporter and chromatin immunoprecipitation (ChIP) were used to examine the relationship between E2F6/KDM5C and SF3A3 expression. Results In the present study, we demonstrated that expression of SF3A3 was elevated in BC tissue compared to the normal bladder tissue. Importantly, the upregulation of SF3A3 in patients was correlated with poor prognosis. Additionally, overexpression of SF3A3 promoted while depletion of SF3A3 reduced the growth of BC cells in vivo and in vitro. Data from the TCGA database and clinical samples revealed that hypomethylation of the DNA promoter leads to high expression of SF3A3 in BC tissue. We found that upregulation of lysine-specific demethylase 5C (KDM5C) promotes SF3A3 expression via hypomethylation of the DNA promoter. The transcription factor E2F6 interacts with KDM5C, recruits KDM5C to the SF3A3 promoter, and demethylates the GpC island of H3K4me2, leading to high SF3A3 expression and BC progression. Conclusions The results demonstrated that depletion of the KDM5C/SF3A3 prevents the growth of BC in vivo and in vitro. The E2F6/KDM5C/SF3A3 pathway may be a potential therapeutic target for BC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02475-4.
Collapse
|
23
|
Riches-Suman K, Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166403. [DOI: 10.1016/j.bbadis.2022.166403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
24
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
25
|
Pu Z, Lu J, Yang X. Emerging Roles of Circular RNAs in Vascular Smooth Muscle Cell Dysfunction. Front Genet 2022; 12:749296. [PMID: 35126447 PMCID: PMC8807483 DOI: 10.3389/fgene.2021.749296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the major pathophysiological basis of cerebrovascular and cardiovascular diseases. Vascular smooth muscle cells (VSMCs) constitute the main structure of vasculature and play important roles in maintaining vascular tone and blood pressure. Many biological processes and cellular signaling events involved in atherosclerogenesis have been shown to converge on deregulating VSMC functions. However, the molecular mechanisms underlying dysfunctional VSMC in atherosclerosis are still poorly defined. Recent evidence revealed that circular RNAs (circRNAs) are closely related to diseases such as degenerative diseases, tumor, congenital diseases, endocrine diseases and cardiovascular diseases. Several studies demonstrated that circRNAs (e.g., circACTA2, Circ-SATB2, circDiaph3, circ_0020397, circTET3, circCCDC66) played critical roles in the regulation of VSMC proliferation, migration, invasion, and contractile-to-synthetic phenotype transformation by sponging microRNAs (e.g., miR-548f-5p, miR-939, miR-148a-5p, miR-138, miR-351-5p, miR-342-3p). This review describes recent progress in the profiling of circRNAs by transcriptome analysis in VSMCs and their molecular functions in regulating VSMC proliferation and migration.
Collapse
Affiliation(s)
| | - Jingbo Lu
- *Correspondence: Jingbo Lu, ; Xiaohan Yang,
| | | |
Collapse
|