1
|
Zhao Y, Hou W, Yang L, Chen K, Lang Q, Sun W, Gao L. Higher mitochondrial protein-Succinylation detected in lung tissues of idiopathic pulmonary fibrosis patients. J Proteomics 2025; 314:105400. [PMID: 39938635 DOI: 10.1016/j.jprot.2025.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
A new pathogenic role for mitochondrial dysfunction has been associated with the development of idiopathic pulmonary fibrosis (IPF). Lysine succinylation (Ksucc) is involved in many energy metabolism pathways in mitochondria, making Ksucc highly valuable for studying IPF. We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to perform the first global profiling of Ksucc in fibrotic lung tissues from IPF patients, providing a proof of concept for the alteration of Ksucc in IPF and highlighting its potential as a therapeutic target. Selected candidate proteins were further verified by targeted proteomics using parallel reaction monitoring (PRM). In this study, we identified 1964 Ksucc sites on 628 modified proteins, with675 of these Ksucc sites on 124 modified proteins closely related to mitochondrial metabolism. 117 succinylated proteins were associated with energy metabolism in mitochondria by comparing these proteins with those previously reported in normal lung tissues. The Ksucc levels in KYAT3, HSD17B8, GRHPR, and IDH2 were different between control and IPF groups by Using PRM. This study provides insight into Ksucc profile alterations in IPF pathogenesis and Ksucc sites in proteins associated with mitochondrial energy metabolism can also serve as candidate molecules for future mechanism exploration and drug target selection in IPF.
Collapse
Affiliation(s)
- Yunmulan Zhao
- Medical College, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyu Hou
- Medical College, University of Electronic Science and Technology of China, Chengdu, China
| | - Liqing Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Kangyin Chen
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjing 300211, China
| | - Qin Lang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Wei Sun
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjing 300211, China.
| | - Lingyun Gao
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Ziyang People's Hospital, Ziyang, China.
| |
Collapse
|
2
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Ding C, Guo Z, Liao Q, Zuo R, He J, Ye Z, Chen W. Network Pharmacology and Machine Learning Reveal Salidroside's Mechanisms in Idiopathic Pulmonary Fibrosis Treatment. J Inflamm Res 2024; 17:9453-9467. [PMID: 39600682 PMCID: PMC11590657 DOI: 10.2147/jir.s493171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is an irreversible respiratory disease. In this study, we evaluated the efficacy of salidroside (SAL), the main component of Rhodiola rosea, in treating IPF. Methods The pharmacological effects of SAL against epithelial-mesenchymal transition (EMT) and IPF were assessed through in vivo and in vitro experiments. Targets for SAL in treating IPF were identified from various databases and a PPI network was constructed. Functional analyses of target genes were performed using GO, KEGG, DO, and GSEA. Core target genes were identified using LASSO logistic regression and support vector machine (SVM) analysis, followed by molecular docking simulations. Predicted targets and pathways were validated through Western blotting, qRT-PCR, and IHC. Results Our results demonstrated that SAL ameliorated alveolar epithelial cells (AECs) EMT and mitigated bleomycin -induced pulmonary fibrosis. Through network pharmacology, we identified 74 targets for SAL in the treatment of IPF (PFDR<0.05) and analyzed their biological functions. Based on these findings, we further applied machine learning techniques to narrow down 9 core targets (PFDR<0.05). Integrating the results from molecular docking, KEGG, and GSEA analyses, we selected three key targets-IGF1, hypoxia-inducible factor 1-alpha (HIF-1α), and MAPK (PFDR<0.05)-for further investigation. Our study revealed that SAL inhibits the IGF1 signaling pathway, thereby improving AECs senescence and cell cycle arrest. By inhibiting the HIF-1α pathway, SAL alleviates endoplasmic reticulum stress and reduces intracellular ROS accumulation. Moreover, SAL suppresses the activation of the MAPK signaling pathway, leading to a decrease in inflammation markers in AECs and lung tissue. Conclusion Experimental results suggest that SAL effectively ameliorates BLM-induced EMT and IPF, likely through the inhibition of IGF1, HIF-1α, and MAPK signaling pathways. This study holds potential translational prospects and may provide new perspectives and insights for the use of traditional Chinese medicine in the treatment of IPF.
Collapse
Affiliation(s)
- Chenchun Ding
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Quan Liao
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Renjie Zuo
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Junjie He
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Ziwei Ye
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Weibin Chen
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| |
Collapse
|
4
|
Taniguchi N, Ohkawa Y, Kuribara T, Abe J, Harada Y, Takahashi M. Roles of Glyco-Redox in Epithelial Mesenchymal Transition and Mesenchymal Epithelial Transition, Cancer, and Various Diseases. Antioxid Redox Signal 2024; 41:910-926. [PMID: 39345141 DOI: 10.1089/ars.2024.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Significance: Reduction-oxidation (redox) regulation is an important biological phenomenon that provides a balance between antioxidants and the generation of reactive oxygen species and reactive nitrogen species under pathophysiological conditions. Structural and functional changes in glycans are also important as post-translational modifications of proteins. The integration of glycobiology and redox biology, called glyco-redox has provided new insights into the mechanisms of epithelial-mesenchymal transition (EMT)/mesenchymal-epithelial transition (MET), cancer, and various diseases including Alzheimer's disease, chronic obstructive lung disease, type 2 diabetes, interstitial pneumonitis, and ulcerative colitis. Recent Advances: Glycans are biosynthesized by specific glycosyltransferases and each glycosyltransferase is either directly or indirectly regulated by oxidative stress and redox regulation. A typical example of glyco-redox is the role of N-glycan referred to as core fucose in superoxide dismutase 3. This glycan was found to be involved in the growth inhibition of cancer cell lines. Critical Issues: The significance of glyco-redox in EMT/MET, cancer, and various diseases was found in major N-glycan branching glycosyltransferases β1,4N-acetylglucosaminyltransferase III, β1,4N-acetylglucosaminyltransferase IV, β1,6N-acetylglucosaminyltransferase V, β1,4-acetylglucosaminyltransfearfse VI, β1,6-acetylglucosaminyltransferase IX, α-1,6 fucosyltransferase, and β-galactoside α-2,6-sialyltransferase 1. Herein, we summarize previous reports on target proteins and how this relates to oxidative stress. We also discuss the products of these processes and their significance to cancer and various diseases. Future Direction: A clear-cut understanding of the significance of glyco-redox in relation to prevention, diagnosis, and therapeutics is required. These studies will open a new road toward glycobiology and redox biology. Antioxid. Redox Signal. 41, 910-926.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Taiki Kuribara
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Junpei Abe
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Zhu W, Tan C, Zhang J. Aging of alveolar type 2 cells induced by Lonp1 deficiency exacerbates pulmonary fibrosis. BIOMOLECULES & BIOMEDICINE 2024; 24:1258-1272. [PMID: 38625722 PMCID: PMC11378998 DOI: 10.17305/bb.2024.10429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic disease that significantly impacts patient quality of life, and its incidence is on the rise. The pathogenesis of IPF remains poorly understood. Alveolar type 2 (AT2) cells are crucial in the onset and progression of IPF, yet the specific mechanisms involved are not well defined. Lon protease 1 (LONP1), known for its critical roles in various diseases, has an unclear function in IPF. Our research investigated the impact of Lonp1 gene deletion on AT2 cell functionality and its subsequent effect on IPF development. We generated a bleomycin-induced pulmonary fibrosis mouse model with a targeted Lonp1 knockout in AT2 cells and assessed the consequences on AT2 cell function and fibrosis progression. Additionally, we constructed the MLE12 cells with stable Lonp1 knockdown and utilized transcriptome sequencing to identify pathways altered by the Lonp1 knockdown. Our results indicated that mice with AT2 cell-specific Lonp1 knockout exhibited more severe fibrosis compared to controls. These mice exhibited a reduction in AT2 and AT1 cell populations, along with an increase in p53- and p21-positive AT2 cells. Lonp1 knockdown in MLE12 cells led to the upregulation of aging-associated pathways, with fibroblast growth factor 2 (Fgf2) gene emerging as a central gene interconnecting these pathways. Therefore, loss of Lonp1 appears to promote AT2 cell aging and exacerbate bleomycin-induced pulmonary fibrosis. Fgf2 emerges as a pivotal downstream gene associated with cellular senescence. This study uncovers the role of the Lonp1 gene in pulmonary fibrosis, presenting a novel target for investigating the pathological mechanisms and potential therapeutic approaches for IPF.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Guan Q, Zhang Z, Zhao P, Huang L, Lu R, Liu C, Zhao Y, Shao X, Tian Y, Li J. Identification of idiopathic pulmonary fibrosis hub genes and exploration of the mechanisms of action of Jinshui Huanxian formula. Int Immunopharmacol 2024; 132:112048. [PMID: 38593509 DOI: 10.1016/j.intimp.2024.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common and heterogeneous chronic disease, and the mechanism of Jinshui Huanxian formula (JHF) on IPF remains unclear. For a total of 385 lung normal tissue samples from the Gene Expression Omnibus database, 37,777,639 gene pairs were identified through microarray and RNA-seq platforms. Using the individualized differentially expressed gene (DEG) analysis algorithm RankComp (FDR < 0.01), we identified 344 genes as DEGs in at least 95 % (n = 81) of the IPF samples. Of these genes, IGF1, IFNGR1, GLI2, HMGCR, DNM1, KIF4A, and TNFRSF11A were identified as hub genes. These genes were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice with pulmonary fibrosis (PF) and MRC-5 cells, and they were highly effective at classifying IPF samples in the independent dataset GSE134692 (AUC = 0.587-0.788) and mice with PF (AUC = 0.806-1.000). Moreover, JHF ameliorated the pathological changes in mice with PF and significantly reversed the changes in hub gene expression (KIF4A, IFNGR1, and HMGCR). In conclusion, a series of IPF hub genes was identified, and validated in an independent dataset, mice with PF, and MRC-5 cells. Moreover, the abnormal gene expression was normalized by JHF. These findings provide guidance for further exploration of the pathogenesis and treatment of IPF.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yakun Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuejie Shao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
7
|
Muthumalage T, Goracci C, Rahman I. Club cell-specific telomere protection protein 1 (TPP1) protects against tobacco smoke-induced lung inflammation, xenobiotic metabolic dysregulation, and injurious responses. FASEB Bioadv 2024; 6:53-71. [PMID: 38344410 PMCID: PMC10853660 DOI: 10.1096/fba.2023-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 07/09/2024] Open
Abstract
Inhaling xenobiotics, such as tobacco smoke is a major risk factor for pulmonary diseases, e.g., COPD/emphysema, interstitial lung disease, and pre-invasive diseases. Shelterin complex or telosome provides telomeric end protection during replication. Telomere protection protein 1 (TPP1) is one of the main six subunits of the shelterin complex supporting the telomere stability and genomic integrity. Dysfunctional telomeres and shelterin complex are associated as a disease mechanism of tobacco smoke-induced pulmonary damage and disease processes. The airway epithelium is critical to maintaining respiratory homeostasis and is implicated in lung diseases. Club cells (also known as clara cells) play an essential role in the immune response, surfactant production, and metabolism. Disrupted shelterin complex may lead to dysregulated cellular function, DNA damage, and disease progression. However, it is unknown if the conditional removal of TPP1 from Club cells can induce lung disease pathogenesis caused by tobacco smoke exposure. In this study, conditional knockout of Club-cell specific TPP1 demonstrated the instability of other shelterin protein subunits, such as TRF1, dysregulation of cell cycle checkpoint proteins, p53 and downstream targets, and dysregulation of telomeric genes. This was associated with age-dependent senescence-associated genes, increased DNA damage, and upregulated RANTES/IL13/IL33 mediated lung inflammation and injury network by cigarette smoke (CS). These phenomena are also associated with alterations in cytochrome P450 and glutathione transferases, upregulated molecular pathways promoting lung lesions, bronchial neoplasms, and adenocarcinomas. These findings suggest a pivotal role of TPP1 in maintaining lung homeostasis and injurious responses in response to CS. Thus, these data TPP1 may have therapeutic value in alleviating telomere-related chronic lung diseases.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Chiara Goracci
- Department of Environmental Medicine, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
8
|
Punzon-Jimenez P, Machado-Lopez A, Perez-Moraga R, Llera-Oyola J, Grases D, Galvez-Viedma M, Sibai M, Satorres-Perez E, Lopez-Agullo S, Badenes R, Ferrer-Gomez C, Porta-Pardo E, Roson B, Simon C, Mas A. Effect of aging on the human myometrium at single-cell resolution. Nat Commun 2024; 15:945. [PMID: 38296945 PMCID: PMC10830479 DOI: 10.1038/s41467-024-45143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Age-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women. We identify 23 myometrial cell subpopulations, including contractile and venous capillary cells as well as immune-modulated fibroblasts. Myometrial aging leads to fewer contractile capillary cells, a reduced level of ion channel expression in smooth muscle cells, and impaired gene expression in endothelial, smooth muscle, fibroblast, perivascular, and immune cells. We observe altered myometrial cell-to-cell communication as an aging hallmark, which associated with the loss of 25 signaling pathways, including those related to angiogenesis, tissue repair, contractility, immunity, and nervous system regulation. These insights may contribute to a better understanding of the complications faced by older individuals during pregnancy and labor.
Collapse
Affiliation(s)
- Paula Punzon-Jimenez
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Alba Machado-Lopez
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Raul Perez-Moraga
- Carlos Simon Foundation, Valencia, Spain
- R&D Department, Igenomix, Valencia, Spain
| | | | - Daniela Grases
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | | - Mustafa Sibai
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | | | | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Hospital Clinico Universitario, Valencia, Spain
| | | | | | - Beatriz Roson
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA.
| | - Aymara Mas
- Carlos Simon Foundation, Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
| |
Collapse
|
9
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Sun W, Yang X, Chen L, Guo L, Huang H, Liu X, Yang Y, Xu Z. FSTL1 promotes alveolar epithelial cell aging and worsens pulmonary fibrosis by affecting SENP1-mediated DeSUMOylation. Cell Biol Int 2023; 47:1716-1727. [PMID: 37369969 DOI: 10.1002/cbin.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Alveolar epithelial cell (AEC) senescence-induced changes of lung mesenchymal cells are key to starting the progress of pulmonary fibrosis. Follistatin-like 1 (FSTL1) plays a central regulatory role in the complex process of senescence and pulmonary fibrosis by enhancing transforming growth factor-β1 (TGF-β1) signal pathway activity. Activation of Smad4 and Ras relies on SUMO-specific peptidase 1 (SENP1)-mediated deSUMOylation during TGF-β signaling pathway activation. We hypothesized that SENP1-mediated deSUMOylation may be a potential therapeutic target by modulating FSTL1-regulated cellular senescence in pulmonary fibrosis. In verifying this hypothesis, we found that FSTL1 expression was upregulated in the lung tissues of patients with idiopathic pulmonary fibrosis and that SENP1 was overexpressed in senescent AECs. TGF-β1-induced FSTL1 not only promoted AEC senescence but also upregulated SENP1 expression. Interfering with SENP1 expression inhibited FSTL1-dependent promotion of AEC senescence and improved pulmonary fibrosis in mouse lungs. FSTL1 enhancement of TGF-β1 signaling pathway activation was dependent on SENP1 in senescent AEC. Our work identifies a novel mechanism by which FSTL1 is involved in AEC senescence. Inhibition of SENP1 in epithelial cells alleviated pulmonary fibrosis by blocking FSTL1-enhanced TGF signaling.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lu Guo
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Jiang Y, Wang Z, Hu J, Wang W, Zhang N, Gao L. Core fucosylation regulates alveolar epithelial cells senescence through activating of transforming growth factor-β pathway in pulmonary fibrosis. Aging (Albany NY) 2023; 15:9572-9589. [PMID: 37724903 PMCID: PMC10564423 DOI: 10.18632/aging.205036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a fatal disorder associated with aging, has a terrible prognosis. However, the potential causes of IPF remain a riddle. In this study, we designed to explore whether the modification of the core fucosylation (CF) can ameliorate pulmonary fibrosis by targeting alveolar epithelial cells (AECs) senescence. First, we verified that cellular senescence occurs in the bleomycin-induced lung fibrosis mice models and CF modifications accompanying senescent AECs in pulmonary fibrosis. Next, both gain- and loss- of function research on CF were performed to elucidate its role in promoting AECs senescence and triggering pulmonary fibrosis in vitro. Notably, using alveolar epithelial cell-specific FUT8 conditional knockout mouse models, however, inhibition of cellular senescence by deleting the FUT8 gene could attenuate pulmonary fibrosis in vivo. Finally, blocking the CF modification of transforming growth factor -β type I receptor (TGF-βR I) could reduce the activation of downstream transforming growth factor -β (TGF-β) pathways in AECs senescence both in vivo and in vitro. This study reveals that CF is a crucial interventional target for the treatment of pulmonary fibrosis. Blocking CF modification contributes importantly to inhibiting AECs senescence resulting in pulmonary fibrosis lessen.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Nephrology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
| | - Na Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Guo H, Sun J, Zhang S, Nie Y, Zhou S, Zeng Y. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol 2023; 14:1205948. [PMID: 37608885 PMCID: PMC10440605 DOI: 10.3389/fphar.2023.1205948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-lasting, continuously advancing, and irrevocable interstitial lung disorder with an obscure origin and inadequately comprehended pathological mechanisms. Despite the intricate and uncharted causes and pathways of IPF, the scholarly consensus upholds that the transformation of fibroblasts into myofibroblasts-instigated by injury to the alveolar epithelial cells-and the disproportionate accumulation of extracellular matrix (ECM) components, such as collagen, are integral to IPF's progression. The introduction of two novel anti-fibrotic medications, pirfenidone and nintedanib, have exhibited efficacy in decelerating the ongoing degradation of lung function, lessening hospitalization risk, and postponing exacerbations among IPF patients. Nonetheless, these pharmacological interventions do not present a definitive solution to IPF, positioning lung transplantation as the solitary potential curative measure in contemporary medical practice. A host of innovative therapeutic strategies are presently under rigorous scrutiny. This comprehensive review encapsulates the recent advancements in IPF research, spanning from diagnosis and etiology to pathological mechanisms, and introduces a discussion on nascent therapeutic methodologies currently in the pipeline.
Collapse
Affiliation(s)
| | | | | | | | | | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
15
|
Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol 2023; 14:1168023. [PMID: 37256139 PMCID: PMC10225578 DOI: 10.3389/fimmu.2023.1168023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Protein glycosylation is a widespread posttranslational modification that can impact the function of proteins. Dysregulated protein glycosylation has been linked to several diseases, including chronic respiratory diseases (CRDs). CRDs pose a significant public health threat globally, affecting the airways and other lung structures. Emerging researches suggest that glycosylation plays a significant role in regulating inflammation associated with CRDs. This review offers an overview of the abnormal glycoenzyme activity and corresponding glycosylation changes involved in various CRDs, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung cancer. Additionally, this review summarizes recent advances in glycomics and glycoproteomics-based protein glycosylation analysis of CRDs. The potential of glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment of CRDs is also discussed.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiqian Cao
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Luo J, Mao K, Zhu Z, Ye J, Li L, Wang D, Zhou J, Lin F, Li J, Ye J. FUT1-mediated terminal fucosylation acts as a new target to attenuate renal fibrosis. Mol Med 2023; 29:55. [PMID: 37085770 PMCID: PMC10122342 DOI: 10.1186/s10020-023-00639-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/19/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUNDS Renal fibrosis is a common pathologic process of most chronic kidney diseases (CKDs), becoming one of the major public health problems worldwide. Terminal fucosylation plays an important role in physiological homeostasis and pathological development. The present study aimed to explore the role of terminal fucosylation during kidney fibrogenesis and propose a possible anti-fibrosis treatment via suppressing aberrant terminal fucosylation. METHODS We investigated the expression level of fucosyltransferase1 (FUT1) in CKD patients by using public database. Then, we further confirmed the level of terminal fucosylation by UEA-I staining and FUT1 expression in unilateral ureteral obstruction (UUO)-induced renal fibrosis mice. Immunostaining, qPCR, western blotting and wound healing assay were applied to reveal the effect of FUT1 overexpression in human kidney proximal tubular epithelial cell (HK-2). What's more, we applied terminal fucosylation inhibitor, 2-Deoxy-D-galactose (2-D-gal), to determine whether suppressing terminal fucosylation ameliorates renal fibrosis progression in vitro and in vivo. RESULTS Here, we found that the expression of FUT1 significantly increased during renal fibrosis. In vitro experiments showed upregulation of epithelial-mesenchymal transition (EMT) after over-expression of FUT1 in HK-2. Furthermore, in vivo and in vitro experiments indicated that suppression of terminal fucosylation, especially on TGF-βR I and II, could alleviate fibrogenesis via inhibiting transforming growth factor-β (TGF-β)/Smad signaling. CONCLUSIONS The development of kidney fibrosis is attributed to FUT1-mediated terminal fucosylation, shedding light on the inhibition of terminal fucosylation as a potential therapeutic treatment against renal fibrosis.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China.
| | - Kaifeng Mao
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Juan Li
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510900, China.
| | - Junsheng Ye
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
17
|
Chin C, Ravichandran R, Sanborn K, Fleming T, Wheatcroft SB, Kearney MT, Tokman S, Walia R, Smith MA, Flint DJ, Mohanakumar T, Bremner RM, Sureshbabu A. Loss of IGFBP2 mediates alveolar type 2 cell senescence and promotes lung fibrosis. Cell Rep Med 2023; 4:100945. [PMID: 36787736 PMCID: PMC10040381 DOI: 10.1016/j.xcrm.2023.100945] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Accumulation of senescent cells contributes to age-related diseases including idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding proteins (IGFBPs) regulate many biological processes; however, the functional contributions of IGFBP2 in lung fibrosis remain largely unclear. Here, we report that intranasal delivery of recombinant IGFBP2 protects aged mice from weight loss and demonstrated antifibrotic effects after bleomycin lung injury. Notably, aged human-Igfbp2 transgenic mice reveal reduced senescence and senescent-associated secretory phenotype factors in alveolar epithelial type 2 (AEC2) cells and they ameliorated bleomycin-induced lung fibrosis. Finally, we demonstrate that IGFBP2 expression is significantly suppressed in AEC2 cells isolated from fibrotic lung regions of patients with IPF and/or pulmonary hypertension compared with patients with hypersensitivity pneumonitis and/or chronic obstructive pulmonary disease. Altogether, our study provides insights into how IGFBP2 regulates AEC2-cell-specific senescence and that restoring IGFBP2 levels in fibrotic lungs can prove effective for patients with IPF.
Collapse
Affiliation(s)
- Chiahsuan Chin
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ranjithkumar Ravichandran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Kristina Sanborn
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - David J Flint
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thalachallour Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA.
| |
Collapse
|
18
|
Yang C, Han Z, Zhan W, Wang Y, Feng J. Predictive investigation of idiopathic pulmonary fibrosis subtypes based on cellular senescence-related genes for disease treatment and management. Front Genet 2023; 14:1157258. [PMID: 37035748 PMCID: PMC10079953 DOI: 10.3389/fgene.2023.1157258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF), a chronic, progressive lung disease characterized by interstitial remodeling and tissue destruction, affects people worldwide and places a great burden on society. Cellular senescence is thought to be involved in the mechanisms and development of IPF. The aim of this study was to predictively investigate subtypes of IPF according to cellular senescence-related genes and their correlation with the outcome of patients with IPF, providing possible treatment and management options for disease control. Methods: Gene expression profiles and follow-up data were obtained from the GEO database. Senescence-related genes were obtained from the CSGene database and analyzed their correlation with the outcome of IPF. A consensus cluster was constructed to classify the samples based on correlated genes. The GSVA and WGCNA packages in R were used to calculate the immune-related enriched fractions and construct gene expression modules, respectively. Metascape and the clusterProfiler package in R were used to enrich gene functions. The ConnectivityMap was used to probe suitable drugs for potential treatment. Results: A total of 99 cellular senescence-related genes were associated with IPF prognosis. Patients with IPF were divided into two subtypes with significant prognostic differences. Subtype S2 was characterized by enhanced fibrotic progression and infection, leading to acute exacerbation of IPF and poor prognosis. Finally, five cellular senescence-related genes, TYMS, HJURP, UBE2C, BIRC5, and KIF2C, were identified as potential biomarkers in poor prognostic patients with IPF. Conclusion: The study findings indicate that cellular senescence-related genes can be used to distinguish the prognosis of patients with IPF. Among them, five genes can be used as candidate biomarkers to predict patients with a poor prognostic subtype for which anti-fibrosis and anti-infection treatments could be suitable.
Collapse
Affiliation(s)
| | | | | | - Yubao Wang
- *Correspondence: Yubao Wang, ; Jing Feng,
| | - Jing Feng
- *Correspondence: Yubao Wang, ; Jing Feng,
| |
Collapse
|
19
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
20
|
Sun W, Liu X, Yang X, Jing X, Duan C, Yang G, Wu C, Huang H, Luo Q, Xia S, Zhang Q, Yang Y, Xu Z. SENP1 regulates the transformation of lung resident mesenchymal stem cells and is associated with idiopathic pulmonary fibrosis progression. Cell Commun Signal 2022; 20:104. [PMID: 35836260 PMCID: PMC9281027 DOI: 10.1186/s12964-022-00921-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung resident mesenchymal stem cells (LR-MSCs) play an important role in idiopathic pulmonary fibrosis (IPF) by transforming into myofibroblasts, thereby losing their repair ability. Evidence suggests that key proteins of multiple signaling pathways are involved in myofibroblast differentiation of LR-MSCs, such as β-Catenin and GLI family zinc finger 1 (GLI1). These proteins are regulated by SUMO (small ubiquitin-like modifier) modification, which is a post-translational modification that promotes protein degradation, while Sumo specific protein 1 (SENP1)-mediated deSUMOylation produces the opposite biological effects. Therefore, we speculated that SENP1 might be a potential target for treating pulmonary fibrosis by preventing the myofibroblast differentiation of LR-MSCs. METHODS LR-MSCs were isolated from mice by using immunomagnetic beads. The extracted LR-MSCs were identified by flow cytometric analysis and multilineage differentiation assays. Lentivirus packaged shRNA silenced the expression of SENP1 in vitro and vivo. The silencing efficacy of SENP1 was verified by real-time quantitative PCR. The effect of down-regulated SENP1 on the myofibroblast differentiation of LR-MSCs was assessed by Immunofluorescence and Western blot. Immunoprecipitation was used to clarify that SENP1 was a key target for regulating the activity of multiple signaling pathways in the direction of LR-MSCs differentiation. LR-MSCs resident in the lung was analyzed with in vivo imaging system. HE and Masson staining was used to evaluate the therapeutic effect of LR-MSCs with SENP1 down-regulation on the lung of BLM mice. RESULTS In this study, we found that the myofibroblast differentiation of LR-MSCs in IPF lung tissue was accompanied by enhanced SENP1-mediated deSUMOylation. The expression of SENP1 increased in LR-MSCs transition of bleomycin (BLM)-induced lung fibrosis. Interfering with expression of SENP1 inhibited the transformation of LR-MSCs into myofibroblasts in vitro and in vivo and restored their therapeutic effect in BLM lung fibrosis. In addition, activation of the WNT/β-Catenin and Hedgehog/GLI signaling pathways depends on SENP1-mediated deSUMOylation. CONCLUSIONS SENP1 might be a potential target to restore the repair function of LR-MSCs and treat pulmonary fibrosis. Video Abstract.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Chunyan Duan
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Ganghao Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Chi Wu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China.
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Savin IA, Markov AV, Zenkova MA, Sen’kova AV. Asthma and Post-Asthmatic Fibrosis: A Search for New Promising Molecular Markers of Transition from Acute Inflammation to Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10051017. [PMID: 35625754 PMCID: PMC9138542 DOI: 10.3390/biomedicines10051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Asthma is a heterogeneous pulmonary disorder, the progression and chronization of which leads to airway remodeling and fibrogenesis. To understand the molecular mechanisms of pulmonary fibrosis development, key genes forming the asthma-specific regulome and involved in lung fibrosis formation were revealed using a comprehensive bioinformatics analysis. The bioinformatics data were validated using a murine model of ovalbumin (OVA)-induced asthma and post-asthmatic fibrosis. The performed analysis revealed a range of well-known pro-fibrotic markers (Cat, Ccl2, Ccl4, Ccr2, Col1a1, Cxcl12, Igf1, Muc5ac/Muc5b, Spp1, Timp1) and a set of novel genes (C3, C3ar1, Col4a1, Col4a2, Cyp2e1, Fn1, Thbs1, Tyrobp) mediating fibrotic changes in lungs already at the stage of acute/subacute asthma-driven inflammation. The validation of genes related to non-allergic bleomycin-induced pulmonary fibrosis on asthmatic/fibrotic lungs allowed us to identify new universal genes (Col4a1 and Col4a2) associated with the development of lung fibrosis regardless of its etiology. The similarities revealed in the expression profiles of nodal fibrotic genes between asthma-driven fibrosis in mice and nascent idiopathic pulmonary fibrosis in humans suggest a tight association of identified genes with the early stages of airway remodeling and can be considered as promising predictors and early markers of pulmonary fibrosis.
Collapse
|
22
|
He J, Li X. Identification and Validation of Aging-Related Genes in Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:780010. [PMID: 35211155 PMCID: PMC8863089 DOI: 10.3389/fgene.2022.780010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aging plays a significant role in the occurrence and development of idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify and verify potential aging-associated genes involved in IPF using bioinformatic analysis. The mRNA expression profile dataset GSE150910 available in the Gene Expression Omnibus (GEO) database and R software were used to identify the differentially expressed aging-related genes involved in IPF. Hub gene expression was validated by other GEO datasets. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed aging-related genes. Subsequently, aging-related genes were further screened using three techniques (least absolute shrinkage and selection operator (LASSO) regression, support vector machine, and random forest), and the receiver operating characteristic curves were plotted based on screening results. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was performed to verify the RNA expression of the six differentially expressed aging-related genes using the blood samples of patients with IPF and healthy individuals. Sixteen differentially expressed aging-related genes were detected, of which the expression of 12 were upregulated and four were downregulated. GO and KEGG enrichment analyses indicated the presence of several enriched terms related to senescence and apoptotic mitochondrial changes. Further screening by LASSO regression, support vector machine, and random forest identified six genes (IGF1, RET, IGFBP2, CDKN2A, JUN, and TFAP2A) that could serve as potential diagnostic biomarkers for IPF. Furthermore, qRT-PCR analysis indicated that among the above-mentioned six aging-related genes, only the expression levels of IGF1, RET, and IGFBP2 in patients with IPF and healthy individuals were consistent with the results of bioinformatic analysis. In conclusion, bioinformatics analysis identified 16 potential aging-related genes associated with IPF, and clinical sample validation suggested that among these, IGF1, RET, and IGFBP2 might play a role in the incidence and prognosis of IPF. Our findings may help understand the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
23
|
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol 2022; 12:797292. [PMID: 35126134 PMCID: PMC8807692 DOI: 10.3389/fphar.2021.797292] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
| | | | | | | | - Jing Qu
- *Correspondence: Zhenhua Yang, ; Jing Qu,
| |
Collapse
|
24
|
Conroy LR, Chang JE, Sun Q, Clarke HA, Buoncristiani MD, Young LEA, McDonald RJ, Liu J, Gentry MS, Allison DB, Sun RC. High-dimensionality reduction clustering of complex carbohydrates to study lung cancer metabolic heterogeneity. Adv Cancer Res 2022; 154:227-251. [PMID: 35459471 PMCID: PMC9273336 DOI: 10.1016/bs.acr.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tumor microenvironment contains a heterogeneous population of stromal and cancer cells that engage in metabolic crosstalk to ultimately promote tumor growth and contribute to progression. Due to heterogeneity within solid tumors, pooled mass spectrometry workflows are less sensitive at delineating unique metabolic perturbations between stromal and immune cell populations. Two critical, but understudied, facets of glucose metabolism are anabolic pathways for glycogen and N-linked glycan biosynthesis. Together, these complex carbohydrates modulate bioenergetics and protein-structure function, and create functional microanatomy in distinct cell populations within the tumor heterogeneity. Herein, we combine high-dimensionality reduction and clustering (HDRC) analysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and demonstrate its ability for the comprehensive assessment of tissue histopathology and metabolic heterogeneity in human FFPE sections. In human lung adenocarcinoma (LUAD) tumor tissues, HDRC accurately clusters distinct regions and cell populations within the tumor microenvironment, including tumor cells, tumor-infiltrating lymphocytes, cancer-associated fibroblasts, and necrotic regions. In-depth pathway enrichment analyses revealed unique metabolic pathways are associated with each distinct pathological region. Further, we highlight the potential of HDRC analysis to study complex carbohydrate metabolism in a case study of lung cancer disparity. Collectively, our results demonstrate the promising potentials of HDRC of pixel-based carbohydrate analysis to study cell-type and regional-specific stromal signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Markey Cancer Center, Lexington, KY, United States
| | - Josephine E Chang
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qi Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Department of Computer Science, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Buoncristiani
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jinze Liu
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew S Gentry
- Markey Cancer Center, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, Lexington, KY, United States; Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, United States.
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Markey Cancer Center, Lexington, KY, United States.
| |
Collapse
|