1
|
Liu Y, Fang B, Wuri G, Lan H, Wang R, Sun Y, Zhao W, Hung WL, Zhang M. From Biofilm to Breath: The Role of Lacticaseibacillus paracasei ET-22 Postbiotics in Combating Oral Malodor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27203-27214. [PMID: 39589428 DOI: 10.1021/acs.jafc.4c07381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Previous studies demonstrated that sufferers with halitosis can be significantly improved with Lacticaseibacillus paracasei ET-22 (ET-22) postbiotics intervention. The objectives of this investigation were to identify the primary components responsible for inhibiting oral malodor. This study demonstrated that cell-free supernatants (CFSs) were more effective in inhibiting production of volatile sulfur compounds (VSCs). Untargeted metabolomics identified CFSs as primarily consisting of organic acids, lipids, peptides, and nucleotides. Among the potential active components, phenyllactic acid (PLA) and peptide GP(Hyp)GAG significantly inhibited microbial-induced VSCs production, with VSC concentrations reduced by 42.7% and 44.6%, respectively. Given the correlation between biofilms and halitosis, microstructural changes in biofilms were examined. PLA suppressed the biomass of the biofilm by 41.7%, while the biofilm thickness was reduced from 202.3 to 70.0 μm. GP(Hyp)GAG intervention reduced the abundance of Fusobacterium nucleatum and Streptococcus mutans within the biofilm, and the expression of biofilm-forming genes FadA and Gtfb were also suppressed by 41.8% and 59.4%. Additionally, the VSC production capacities were reduced due to the decrease in VSC producing bacteria (F. nucleatum, Prevotella intermedia, and Solobacterium moorei) and down-regulation of Cdl and Mgl genes. Collectively, the current study proved that PLA and GP(Hyp)GAG may be the main contributors to halitosis inhibition by ET-22 postbiotics.
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Hanglian Lan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yuhang Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| |
Collapse
|
2
|
Layús BI, Gómez MA, Cazorla SI, Rodriguez AV. A Postbiotic Formulation of Lactiplantibacillus plantarum CRL 759 Attenuates Endotoxin Induced Uveitis. Ocul Immunol Inflamm 2024; 32:1973-1982. [PMID: 38335476 DOI: 10.1080/09273948.2024.2310173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To evaluate the anti-inflammatory activity of a cell-free supernatant from Lactiplantibacillus plantarum CRL 759, in phosphate buffer modified according to Sorensen called POF-759. METHODS The activity of POF-759 administered by means of eye drops was evaluated on animals subcutaneously injected with the lipopolysaccharide animals in which uveitis was induced by a subcutaneous injection of lipopolysaccharide (EIU). Clinical signs of ocular inflammation, cytokines and proteins were examined in the aqueous humor. Additionally, cellular infiltration was evaluated by histopathological analysis. RESULTS The new postbiotic administered locally decreases signs of ocular damage, the number of infiltrating cells in the anterior and posterior chambers, the proinflammatory mediators and the proteins in the aqueous humor on mice with EIU. CONCLUSIONS Our results provide an impetus to relieve ocular inflammation and to identify and develop preventive and therapeutic approaches, to avoid deterioration and to maintain healthy eyes on inflammatory processes.
Collapse
Affiliation(s)
- Bárbara Ivana Layús
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - María Alejandra Gómez
- Servicio de Oftalomolgía, Hospital Ángel C. Padilla, San Miguel de Tucumán, Argentina
| | - Silvia Inés Cazorla
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Ana Virginia Rodriguez
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
3
|
Kerstens R, Ng YZ, Pettersson S, Jayaraman A. Balancing the Oral-Gut-Brain Axis with Diet. Nutrients 2024; 16:3206. [PMID: 39339804 PMCID: PMC11435118 DOI: 10.3390/nu16183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The oral microbiota is the second largest microbial community in humans. It contributes considerably to microbial diversity and health effects, much like the gut microbiota. Despite physical and chemical barriers separating the oral cavity from the gastrointestinal tract, bidirectional microbial transmission occurs between the two regions, influencing overall host health. Method: This review explores the intricate interplay of the oral-gut-brain axis, highlighting the pivotal role of the oral microbiota in systemic health and ageing, and how it can be influenced by diet. Results: Recent research suggests a relationship between oral diseases, such as periodontitis, and gastrointestinal problems, highlighting the broader significance of the oral-gut axis in systemic diseases, as well as the oral-gut-brain axis in neurological disorders and mental health. Diet influences microbial diversity in the oral cavity and the gut. While certain diets/dietary components improve both gut and oral health, others, such as fermentable carbohydrates, can promote oral pathogens while boosting gut health. Conclusions: Understanding these dynamics is key for promoting a healthy oral-gut-brain axis through dietary interventions that support microbial diversity and mitigate age-related health risks.
Collapse
Affiliation(s)
- Rebecca Kerstens
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yong Zhi Ng
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Duke-NUS Medical School, 8 College Rd., Singapore 169857, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Faculty of Medical Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
4
|
Kumar A, Green KM, Rawat M. A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods 2024; 13:2937. [PMID: 39335866 PMCID: PMC11431132 DOI: 10.3390/foods13182937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing interest in postbiotics, a term gaining recognition alongside probiotics and prebiotics, aligns with a growing number of clinical trials demonstrating positive outcomes for specific conditions. Postbiotics present several advantages, including safety, extended shelf life, ease of administration, absence of risk, and patentability, making them more appealing than probiotics alone. This review covers various aspects, starting with an introduction, terminology, classification of postbiotics, and brief mechanisms of action. It emphasizes microbial metabolomics as the initial step in discovering novel postbiotics. Commonly employed techniques such as NMR, GC-MS, and LC-MS are briefly outlined, along with their application principles and limitations in microbial metabolomics. The review also examines existing research where these techniques were used to identify, isolate, and characterize postbiotics derived from different microbial sources. The discovery section concludes by highlighting challenges and future directions to enhance postbiotic discovery. In the second half of the review, we delve deeper into numerous published postbiotic clinical trials to date. We provide brief overviews of system-specific trial applications, their objectives, the postbiotics tested, and their outcomes. The review concludes by highlighting ongoing applications of postbiotics in extended clinical trials, offering a comprehensive overview of the current landscape in this evolving field.
Collapse
Affiliation(s)
- Anand Kumar
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA;
| | - Katelyn M. Green
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA;
| | - Manmeet Rawat
- Department of Medicine, The Penn State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
5
|
Pourhajibagher M, Ghafari HA, Bahador A. Postbiotic mediators derived from Lactobacillus species enhance riboflavin-mediated antimicrobial photodynamic therapy for eradication of Streptococcus mutans planktonic and biofilm growth. BMC Oral Health 2024; 24:836. [PMID: 39048998 PMCID: PMC11267908 DOI: 10.1186/s12903-024-04620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Streptococcus mutans has been implicated as a primary causative agent of dental caries and one of its important virulence properties is an ability to form biofilm on tooth surfaces. Thus, strategies to prevent and control S. mutans biofilms are requested. The present study aimed to examine the eradication of S. mutans planktonic and biofilm cells using riboflavin (Rib)-mediated antimicrobial photodynamic therapy (aPDT) enhanced by postbiotic mediators derived from Lactobacillus species. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Rib and postbiotic mediators were determined. The antimicrobial and anti-biofilm effects of Rib-mediated aPDT (Rib plus blue light), Rib-mediated aPDT in combination with postbiotic mediators derived from Lactobacillus casei (LC) (aPDT+ LC), and Rib-mediated aPDT in combination with postbiotic mediators derived from Lactobacillus plantarum (LP) (aPDT+ LP) were evaluated. The anti-virulence potential of Rib-mediated aPDT, aPDT+ LC, and aPDT+ LP were assessed by measuring the expression of the gtfB gene using quantitative real-time polymerase chain reaction (qRT-PCR) at the highest concentrations of Rib, LC, and LP, at which the S. mutans had proliferation as the same as in the control (non-treated) group. RESULTS According to the results, the MIC doses of LC, LP, and Rib were 64 µg/mL, 128 µg/mL, and 128 µg/mL, respectively, while the MBC values of LC, LP, and Rib were 128 µg/mL, 256 µg/mL, and 256 µg/mL, respectively. Rib-mediated aPDT, aPDT+ LP, and aPDT+ LC showed a significant reduction in Log10 CFU/mL of S. mutans compared to the control group (4.2, 4.9, and 5.2 Log10 CFU/mL, respectively; all P < 0.05). The most destruction of S. mutans biofilms was observed after treatment with aPDT+ LC followed by aPDT+ LP and Rib-mediated aPDT (77.5%, 73.3%, and 67.6%, respectively; all P < 0.05). The concentrations of 31.2 µg/mL, 62.5 µg/mL, and 62.5 µg/mL were considered as the highest concentrations of LC, LP, and Rib, respectively, at which S. mutans replicates as same as the control group and were used for gtfB gene expression assay using qRT-PCR during Rib-mediated aPDT, aPDT+ LP, and aPDT+ LC treatments. Gene expression results revealed that aPDT+ LP and aPDT+ LC could decrease the gene expression level of gtfB by 6.3- and 5.7-fold, respectively (P < 0.05), while only 5.1-fold reduction was observed after Rib-mediated aPDT (P < 0.05). CONCLUSION Our findings indicate that aPDT+ LP and aPDT+ LC hold promise for use as a treatment to combat S. mutans planktonic and biofilms growth as well as anti-virulence as a preventive strategy to inhibit biofilms development via reduction of gtfB gene expression.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan-Ali Ghafari
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
6
|
Beattie RE. Probiotics for oral health: a critical evaluation of bacterial strains. Front Microbiol 2024; 15:1430810. [PMID: 38979537 PMCID: PMC11228166 DOI: 10.3389/fmicb.2024.1430810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Oral health is critical for total body health and well-being; however, little improvement in oral health status has occurred in the U.S. over the past 20 years. Tooth decay and gum disease remain highly prevalent, with more than 90% and 50% of adults suffering from these conditions, respectively. To combat this lack of improvement, alternative approaches to dental care are now being suggested. One such alternative therapy is probiotics for oral care. In the oral cavity, probiotic strains have been shown to reduce levels of oral pathogens, inhibit the formation of dental caries, and reduce the levels of bacteria that cause halitosis. However, as the oral care probiotic market expands, many products contain bacterial species and strains with no documented health benefits leading to confusion and mistrust among consumers and clinicians. This confusion is enhanced by the regulatory status of probiotic products which puts the onus of safety and efficacy on the manufacturer rather than a central regulatory body. The overarching goal of this review is to provide consumers and clinicians with documented evidence supporting (or refuting) the health benefits of oral care probiotics marketed for sale in the United States. This includes defining what constitutes an oral care probiotic product and a strain level analysis of candidate probiotics from the genera Streptococcus, Lactobacillus, Bifidobacterium, and Bacillus. Additionally, prebiotics and postbiotics will be discussed. Finally, a set of considerations for consumers and clinicians is provided to empower probiotic product decision making. Together, this review will improve understanding of oral care probiotics marketed in the US for dental professionals and consumers.
Collapse
|
7
|
Hong GH, Lee SY, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG, Park KY. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2024; 16:1339. [PMID: 38732587 PMCID: PMC11085399 DOI: 10.3390/nu16091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 μg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.
Collapse
Affiliation(s)
- Geun-Hye Hong
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - So-Young Lee
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - In Ah Kim
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Jangmi Suk
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Chaemin Baeg
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Sehee Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Ki Tae Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Min Gee Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Kun-Young Park
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| |
Collapse
|
8
|
Xu X, Xu T, Wei J, Chen T. Gut microbiota: an ideal biomarker and intervention strategy for aging. MICROBIOME RESEARCH REPORTS 2024; 3:13. [PMID: 38841415 PMCID: PMC11149087 DOI: 10.20517/mrr.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 06/07/2024]
Abstract
Population aging is a substantial challenge for the global sanitation framework. Unhealthy aging tends to be accompanied by chronic diseases such as cardiovascular disease, diabetes, and cancer, which undermine the welfare of the elderly. Based on the fact that aging is inevitable but retarding aging is attainable, flexible aging characterization and efficient anti-aging become imperative for healthy aging. The gut microbiome, as the most dynamic component interacting with the organism, can affect the aging process through its own structure and metabolites, thus holding the potential to become both an ideal aging-related biomarker and an intervention strategy. This review summarizes the value of applying gut microbiota as aging-related microbial biomarkers in diagnosing aging state and monitoring the effect of anti-aging interventions, ultimately pointing to the future prospects of microbial intervention strategies in maintaining healthy aging.
Collapse
Affiliation(s)
- Xuan Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Tangchang Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jing Wei
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
9
|
Chen JF, Hsia KC, Kuo YW, Chen SH, Huang YY, Li CM, Hsu YC, Tsai SY, Ho HH. Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients 2023; 16:126. [PMID: 38201957 PMCID: PMC10780348 DOI: 10.3390/nu16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus paracasei ET-66, Lactobacillus plantarum LPL28, and Lactobacillus acidophilus TYCA06, isolated from healthy breast milk, miso, and the healthy human gut, were assessed for safety in this study. BLI-02, LPL28, TYCA06, and ET-66 exhibited no antibiotic resistance and mutagenic activity in the Ames test at the highest dosage (5000 μg/plate). No genotoxicity was observed in micronucleus and chromosomal aberration assays in rodent spermatogonia at the maximum dosage of 10 g/kg body weight (BW). No acute and sub-chronic toxicity occurred in mice and rats at the maximum tested dosage of 10 g/kg BW and 1.5 g/kg BW, respectively. The lyophilized powder of these strains survived a low pH and high bile salt environment, adhering strongly to Caco-2 cells. Unique antimicrobial activities were noted in these strains, with BLI-02 demonstrating the best growth inhibition against Vibrio parahaemolyticus, LPL28 exhibiting the best growth inhibition against Helicobacter pylori, and ET-66 showing the best growth inhibition against Aggregatibacter actinomycetemcomitans. Based on the present study, the lyophilized powder of these four strains appears to be a safe probiotic supplement at tested dosages. It should be applicable for clinical or healthcare applications.
Collapse
Affiliation(s)
- Jui-Fen Chen
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Ko-Chiang Hsia
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Yi-Wei Kuo
- Functional Investigation Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| | - Shu-Hui Chen
- Process Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| | - Yen-Yu Huang
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Ching-Min Li
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Yu-Chieh Hsu
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Shin-Yu Tsai
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Hsieh-Hsun Ho
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
- Functional Investigation Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
- Process Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| |
Collapse
|
10
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Yeh WL, Hsu YJ, Ho CS, Ho HH, Kuo YW, Tsai SY, Huang CC, Lee MC. Lactobacillus plantarum PL-02 Supplementation Combined With Resistance Training Improved Muscle Mass, Force, and Exercise Performance in Mice. Front Nutr 2022; 9:896503. [PMID: 35571912 PMCID: PMC9094439 DOI: 10.3389/fnut.2022.896503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing numbers of researchers are investigating the benefits of probiotics in enhancing exercise performance and verifying the role of the gut–muscle axis. In our previous study, Lactobacillus plantarum PL-02 improved exercise performance and muscle mass. Therefore, the purpose of this study was to investigate whether supplementation with PL-02 combined with resistance training has a synergistic effect on exercise performance and muscle mass. All the animals were assigned into four groups (n = 8/group): a sedentary control with normal distilled water group (vehicle, n = 8); PL-02 supplementation group (PL-02, 2.05 × 109 CFU, n = 8); resistance training group (RT, n = 8); PL-02 supplementation combined with resistance training group (PL-02 + RT, 2.05 × 109 CFU, n = 8). Supplementation with PL-02 for four consecutive weeks combined with resistance exercise training significantly improved the grip strength and the maximum number of crawls; increased the time of exhaustive exercise; significantly reduced the time required for a single climb; and reduced the lactate, blood ammonia, creatine kinase, and blood urea nitrogen produced after exercise (p < 0.05). In addition, it produced substantial benefits for increasing muscle mass without causing any physical damage. In summary, our findings confirmed that PL-02 or RT supplementation alone is effective in improving muscle mass and exercise performance and in reducing exercise fatigue, but the combination of the two can achieve increased benefits.
Collapse
Affiliation(s)
- Wen-Ling Yeh
- Department of Orthopedic Surgery, Lotung Poh-Ai Hospital, Luodong, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chin-Shen Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Basir L, Moghimipour E, Saadatzadeh A, Cheraghian B, Khanehmasjedi S. Effect of postbiotic-toothpaste on salivary levels of IgA in 6- to 12-year-old children: Study protocol for a randomized triple-blind placebo-controlled trial. Front Pediatr 2022; 10:1042973. [PMID: 36578663 PMCID: PMC9790979 DOI: 10.3389/fped.2022.1042973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Children in mixed dentition are highly at risk for dental caries, which is a major health issue worldwide. Despite their effect in controlling dental caries, using probiotics can be challenging. Therefore, it has been advised to use their inanimate forms, called postbiotics. We hypothesize that postbiotics can enhance the oral immunity. METHODS The aim of this triple-blind, randomized, placebo-controlled trial is to investigate the effect of postbiotic-toothpaste (Bifidobacterium animalis subsp. animalis) on salivary levels of Immunoglobulin A (IgA) and pH in children. Using comparing two means formula to calculate the sample size, for this trial 80 healthy 6- to 12-year-old children during mixed dentition with no cavitated dental caries will be selected by convenience sampling method and randomly allocated to two groups, postbiotic-toothpaste or placebo-toothpaste. Saliva samples will be gathered at baseline and four weeks after the intervention. The level of salivary IgA will be determined by ELISA and salivary pH will be measured using a pH meter. Data will be compared within and between groups using independent t-test and paired t-test, in case of normality, with a p < 0.05 as statistically significant. DISCUSSION If postbiotics-toothpaste prove to be effective in improving the oral immunity, they can be used to prevent dental caries and other oral diseases. The result of this study can help researchers who are working on the immunomodulatory effects of postbiotics in children. TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials (IRCT), IRCT20191016045128N2. Registered on 7 March 2022.
Collapse
Affiliation(s)
- Leila Basir
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Eskandar Moghimipour
- Department of Pharmaceutics, School of Pharmacy, Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afrooz Saadatzadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Khanehmasjedi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|