1
|
Benoit A, Lequeux A, Harter P, Berchem G, Janji B. Atypical chemokine receptor 2 expression is directly regulated by hypoxia inducible factor-1 alpha in cancer cells under hypoxia. Sci Rep 2024; 14:26589. [PMID: 39496762 PMCID: PMC11535233 DOI: 10.1038/s41598-024-77628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lack of significant and durable clinical benefit from anti-cancer immunotherapies is partly due to the failure of cytotoxic immune cells to infiltrate the tumor microenvironment. Immune infiltration is predominantly dependent on the chemokine network, which is regulated in part by chemokine and atypical chemokine receptors. We investigated the impact of hypoxia in the regulation of Atypical Chemokine Receptor 2 (ACKR2), which subsequently regulates major pro-inflammatory chemokines reported to drive cytotoxic immune cells into the tumor microenvironment. Our in silico analysis showed that both murine and human ACKR2 promoters contain hypoxia response element (HRE) motifs. Murine and human colorectal, melanoma, and breast cancer cells overexpressed ACKR2 under hypoxic conditions in a HIF-1α dependent manner; as such overexpression was abrogated in melanoma cells expressing non-functional deleted HIF-1α. We also showed that decreased expression of ACKR2 in HIF-1α-deleted cells under hypoxia was associated with increased CCL5 levels. Chromatin immunoprecipitation data confirmed that ACKR2 is directly regulated by HIF-1α at its promoter in B16-F10 melanoma cells. This study provides new key elements on how hypoxia can impair immune infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
| | - Audrey Lequeux
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
| | - Phillip Harter
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg, L- 1210, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg.
| |
Collapse
|
2
|
Samus M, Rot A. Atypical chemokine receptors in cancer. Cytokine 2024; 176:156504. [PMID: 38266462 DOI: 10.1016/j.cyto.2024.156504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Atypical chemokine receptors (ACKRs) are a group of seven-transmembrane spanning serpentine receptors that are structurally homologous to classical G-protein-coupled receptors and bind cognate chemokines with high affinities but do not signal via G-proteins or mediate cell migration. However, ACKRs efficiently modify the availability and function of chemokines in defined microanatomical environments, can signal via intracellular effectors other than G-proteins, and play complex roles in physiology and disease, including in cancer. In this review, we summarize the findings on the diverse contributions of individual ACKRs to cancer development, progression, and tumor-host interactions. We discuss how changes in ACKR expression within tumor affect cancer growth, tumor vascularization, leukocyte infiltration, and metastasis formation, ultimately resulting in differential disease outcomes. Across many studies, ACKR3 expression was shown to support tumor growth and dissemination, whereas ACKR1, ACKR2, and ACKR4 in tumors were more likely to contribute to tumor suppression. With few notable exceptions, the insights on molecular and cellular mechanisms of ACKRs activities in cancer remain sparse, and the intricacies of their involvement are not fully appreciated. This is particularly true for ACKR1, ACKR2 and ACKR4. A better understanding of how ACKR expression and functions impact cancer should pave the way for their future targeting by new and effective therapies.
Collapse
Affiliation(s)
- Maryna Samus
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich 80336, Germany.
| |
Collapse
|
3
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
4
|
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A, Gholizadeh Navashenaq J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front Immunol 2022; 13:861931. [PMID: 35677043 PMCID: PMC9168005 DOI: 10.3389/fimmu.2022.861931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chemokines exert crucial roles in inducing immune responses through ligation to their canonical receptors. Besides these receptors, there are other atypical chemokine receptors (ACKR1–4) that can bind to a wide range of chemokines and carry out various functions in the body. ACKR2, due to its ability to bind various CC chemokines, has attracted much attention during the past few years. ACKR2 has been shown to be expressed in different cells, including trophoblasts, myeloid cells, and especially lymphoid endothelial cells. In terms of molecular functions, ACKR2 scavenges various inflammatory chemokines and affects inflammatory microenvironments. In the period of pregnancy and fetal development, ACKR2 plays a pivotal role in maintaining the fetus from inflammatory reactions and inhibiting subsequent abortion. In adults, ACKR2 is thought to be a resolving agent in the body because it scavenges chemokines. This leads to the alleviation of inflammation in different situations, including cardiovascular diseases, autoimmune diseases, neurological disorders, and infections. In cancer, ACKR2 exerts conflicting roles, either tumor-promoting or tumor-suppressing. On the one hand, ACKR2 inhibits the recruitment of tumor-promoting cells and suppresses tumor-promoting inflammation to blockade inflammatory responses that are favorable for tumor growth. In contrast, scavenging chemokines in the tumor microenvironment might lead to disruption in NK cell recruitment to the tumor microenvironment. Other than its involvement in diseases, analyzing the expression of ACKR2 in body fluids and tissues can be used as a biomarker for diseases. In conclusion, this review study has tried to shed more light on the various effects of ACKR2 on different inflammatory conditions.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Oveisee
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Jahanara
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Jamshid Gholizadeh Navashenaq, ;
| |
Collapse
|
5
|
Tersigni C, Vatish M, D'Ippolito S, Scambia G, Di Simone N. Abnormal uterine inflammation in obstetric syndromes: molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3. Mol Hum Reprod 2021; 26:111-121. [PMID: 32030415 DOI: 10.1093/molehr/gaz067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The adaptation of the uterine environment into a favorable immunological and inflammatory milieu is a physiological process needed in normal pregnancy. A uterine hyperinflammatory state, whether idiopathic or secondary to hormonal or organic uterine disorders (polycystic ovary syndromes, endometriosis/adenomyosis and fibroids), negatively influences the interactions between decidua and trophoblast, early in gestation, and between chorion and decidua later in pregnancy. Abnormal activation of uterine inflammatory pathways not only contributes to the pathogenesis of the obstetric syndromes, i.e. recurrent pregnancy loss (RPL), pre-term delivery (PTD) and pre-eclampsia (PE), but also to correlates with severity. In this review, we summarize recent advances in the knowledge of uterine molecular mechanisms of inflammatory modulation in normal pregnancy and obstetric syndromes (RPL, PTD and PE). In particular, we focus on two regulators of uterine/placental inflammation: the NLRP3 inflammasome and the chemokines decoy receptor D6. We performed comprehensive review of the literature in PubMed and Google Scholar databases from 1994 to 2018. The available evidence suggests that: (i) the expression of inflammasome NLRP3 is increased in the endometrium of women with unexplained RPL, in the chorioamniotic membranes of women with PTL and in the placenta of women with PE; (ii) there is a role for abnormal expression and function of D6 decoy receptor at the feto-maternal interface in cases of RPL and PTD and (iii) the function of placental D6 decoy receptor is impaired in PE. A wider comprehension of the inflammatory molecular mechanisms involved in the pathogenesis of the obstetric syndromes might lead to the identification of new potential therapeutic targets.
Collapse
Affiliation(s)
- Chiara Tersigni
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy.,Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, OX3 9DU, Oxford, UK
| | - Silvia D'Ippolito
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy.,Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giovanni Scambia
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy.,Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
6
|
Yu Y, An X, Fan D. Histone Deacetylase Sirtuin 2 Enhances Viability of Trophoblasts Through p65-Mediated MicroRNA-146a/ACKR2 Axis. Reprod Sci 2021; 28:1370-1381. [PMID: 33409877 DOI: 10.1007/s43032-020-00398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
Reduced activity of trophoblast cells is well-recognized to lead to preeclampsia (PE) progression. This study aims to evaluate the roles of histone deacetylase sirtuin 2 (SIRT2) in activity of trophoblast cells and the molecules involved. Differentially expressed genes in placental tissues between PE patients and healthy individuals were screened using microarray analyses. SIRT2 and atypical chemokine receptor 2 (ACKR2) were downregulated while miR-146a was upregulated in PE patients. SIRT2 was localized in placental syncytiotrophoblasts. Upregulation of SIRT2 enhanced viability, migration and invasion, while reduced apoptosis of HTR-8/SVneo cells. SIRT2 was found to trigger p65 deacetylation level and suppress miR-146a expression according to the luciferase and ChIP assays, whereas miR-146a was found to target ACKR2. Downregulation of p65 promoted migration and invasion of cells. Overexpression of miR-146a inhibited cell viability and blocked the function of SIRT2. ACKR2 was downregulated in tissues from PE women and its upregulation blocked the role of miR-146a. To conclude, SIRT2 promotes p65 deacetylation to suppress miR-146a expression and upregulates ACKR2 expression, therefore enhancing proliferation, migration, and invasion of HTR-8/SVneo cells. This study may offer novel thoughts into the management of PE.
Collapse
Affiliation(s)
- Yingchun Yu
- Department of Obstetrics, Zibo Maternal and Child Health Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Xiaoqin An
- Department of Neurology, Jinan No.7 People's Hospital, Jinan, 251400, Shandong, People's Republic of China
| | - Dongmei Fan
- Department of Obstetrics, Qingdao Women and Children's Hospital, No. 6, Tongfu Road, Shibei District, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Sjöberg E, Meyrath M, Chevigné A, Östman A, Augsten M, Szpakowska M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv Cancer Res 2020; 145:99-138. [PMID: 32089166 DOI: 10.1016/bs.acr.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemokines regulate directed cell migration, proliferation and survival and are key components in cancer biology. They exert their functions by interacting with seven-transmembrane domain receptors that signal through G proteins (GPCRs). A subgroup of four chemokine receptors known as the atypical chemokine receptors (ACKRs) has emerged as essential regulators of the chemokine functions. ACKRs play diverse and complex roles in tumor biology from tumor initiation to metastasis, including cancer cell proliferation, adherence to endothelium, epithelial-mesenchymal transition (EMT), extravasation from blood vessels, tumor-associated angiogenesis or protection from immunological responses. This chapter gives an overview on the established and emerging roles that the atypical chemokine receptors ACKR1, ACKR2, ACKR3 and ACKR4 play in the different phases of cancer development and dissemination, their clinical relevance, as well as on the hurdles to overcome in ACKRs targeting as cancer therapy.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
8
|
Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front Immunol 2019; 10:379. [PMID: 30894861 PMCID: PMC6414456 DOI: 10.3389/fimmu.2019.00379] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is a clinically validated treatment for many cancers to boost the immune system against tumor growth and dissemination. Several strategies are used to harness immune cells: monoclonal antibodies against tumor antigens, immune checkpoint inhibitors, vaccination, adoptive cell therapies (e.g., CAR-T cells) and cytokine administration. In the last decades, it is emerging that the chemokine system represents a potential target for immunotherapy. Chemokines, a large family of cytokines with chemotactic activity, and their cognate receptors are expressed by both cancer and stromal cells. Their altered expression in malignancies dictates leukocyte recruitment and activation, angiogenesis, cancer cell proliferation, and metastasis in all the stages of the disease. Here, we review first attempts to inhibit the chemokine system in cancer as a monotherapy or in combination with canonical or immuno-mediated therapies. We also provide recent findings about the role in cancer of atypical chemokine receptors that could become future targets for immunotherapy.
Collapse
Affiliation(s)
- Valeria Mollica Poeta
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Matteo Massara
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Arianna Capucetti
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|