1
|
Meng L, Hao D, Liu Y, Yu P, Luo J, Li C, Jiang T, Yu J, Zhang Q, Liu S, Shi L. LRRC8A drives NADPH oxidase-mediated mitochondrial dysfunction and inflammation in allergic rhinitis. J Transl Med 2024; 22:1034. [PMID: 39550567 PMCID: PMC11568585 DOI: 10.1186/s12967-024-05853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVES Allergic rhinitis (AR) is a complex disorder with variable pathogenesis. Increasing evidence suggests that the LRRC8A is involved in maintaining cellular stability, regulating immune cell activation and function, and playing significant roles in inflammation. However, the involvement of LRRC8A in AR inflammation and its underlying mechanisms remain unclear. METHODS LRRC8A expression in AR patients, confirmed by qRT-PCR and Western blotting, was analyzed to investigate its relationship with the clinical characteristics of AR patients. In vitro, IL-13 stimulated HNEpCs to establish a Th2 inflammation model, with subsequent LRRC8A knockout or overexpression. NOX1/NOX4 inhibitor (GKT137831) and chloride channel inhibitor (DCPIB) were utilized to investigate AR development mechanisms during LRRC8A overexpression. An OVA-induced AR model with nasal mucosa LRRC8A knockdown confirmed LRRC8A's regulatory role in AR inflammation. RESULTS LRRC8A mRNA and protein levels were significantly elevated in AR patients, positively correlating with NADPH oxidase subunits and Th2 inflammatory markers. In vitro, IL-13 stimulation of HNEpCs resulted in upregulation of LRRC8A and increased expression of NOX1, NOX4, and p22phox, along with mitochondrial dysfunction and NF-κB pathway activation. The knockout of LRRC8A reversed these effects. In nasal mucosal epithelial cells, DCPIB and GKT137831 completely blocked mitochondrial dysfunction caused by the overexpression of LRRC8A, which led to up-regulation of NOX1, NOX4, and p22phox. In vivo, knocking down LRRC8A reduced eosinophil infiltration, downregulated the expression of NOX1, NOX4, p22phox IL-4, IL-5, and IL-13, and decreased NF-κB pathway activation. CONCLUSION LRRC8A drives the upregulation of NOX1, NOX4, and p22phox, leading to ROS overproduction and mitochondrial dysfunction. It also activates NF-κB, ultimately leading to nasal mucosal epithelial inflammation. LRRC8A may be a potential target for the treatment of AR.
Collapse
Affiliation(s)
- Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Department of Otolaryngology Head & Neck Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Jinfeng Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Chunhao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - JinZhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Qian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China.
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China.
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
2
|
Cao G, Guo J, Yang K, Xu R, Jia X, Wang X. DCPIB Attenuates Ischemia-Reperfusion Injury by Regulating Microglial M1/M2 Polarization and Oxidative Stress. Neuroscience 2024; 551:119-131. [PMID: 38734301 DOI: 10.1016/j.neuroscience.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The inflammatory response plays an indispensable role in ischemia-reperfusion injury, the most significant of which is the inflammatory response caused by microglial polarization. Anti-inflammatory therapy is also an important remedial measure after failed vascular reconstruction. Maintaining the internal homeostasis of the brain is a crucial measure for suppressing the inflammatory response. The mechanism underlying the relationship between DCPIB, a selective blocker of volume-regulated anion channels (VRAC), and inflammation induced by cerebral ischemia-reperfusion injury is currently unclear. The purpose of this study was to investigate the relationship between DCPIB and microglial M1/M2 polarization-mediated inflammation after cerebral ischemia-reperfusion injury. C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO). DCPIB was administered by a lateral ventricular injection within 5 min after reperfusion. Behavioral assessments were conducted at 1, 3, and 7 days after tMCAO/R. Pathological injuries were evaluated using TTC assay, HE and Nissl staining, brain water content measurement, and immunofluorescence staining. The levels of inflammatory cytokines were analyzed using qPCR and ELISA. Additionally, the phenotypic variations of microglia were examined using immunofluorescence staining. In mouse tMCAO/R model, DCPIB administration markably reduced mortality, improved behavioral performance, and alleviated pathological injury. DCPIB treatment significantly inhibited the inflammatory response, promoted the conversion of M1 microglia to M2 microglia via the MAPK signaling pathway, and ultimately protected neurons from the microglia-mediated inflammatory response. In addition, DCPIB inhibited oxidative stress induced by cerebral ischemia-reperfusion injury. In conclusion, DCPIB attenuates cerebral ischemia-reperfusion injury by regulating microglial M1/M2 polarization and oxidative stress.
Collapse
Affiliation(s)
- Guihua Cao
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Guo
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release. J Physiol Sci 2024; 74:34. [PMID: 38877402 PMCID: PMC11177392 DOI: 10.1186/s12576-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
4
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
Adiponectin Protects Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Suppressing Autophagy. J Immunol Res 2022; 2022:8433464. [PMID: 36300016 PMCID: PMC9592213 DOI: 10.1155/2022/8433464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adiponectin is a cytokine produced by adipocytes and acts as a potential cardioprotective agent and plays an important role in myocardial ischemia/reperfusion injury. In a myocardial hypoxia/reoxygenation model using neonatal rat ventricular myocytes, we investigated the contribution of adiponectin-mediated autophagy to its cardioprotective effects. Cardiomyocytes were exposed to hypoxia/reoxygenation pretreated with or without adiponectin in the presence of absence of rapamycin. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Western blotting assay was used to determine the expression levels of microtubule-associated proteins 1A/1B light chain 3B (LC3B), adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), p62/sequestosome 1, unc-51 like autophagy activating kinase 1 (ULK1), and Beclin-1. Autophagosome formation was detected by monodansylcadaverine staining. We found that hypoxia induced a time dependent decline in cardiomyocyte viability, and increase in autophagy and reoxygenation further augmented hypoxia-induced autophagy induction and consequently reduced cell viability. Adiponectin treatment alleviated hypoxia/reoxygenation-induced cellular damage and autophagy in cardiomyocytes. Adiponectin treatment also attenuated hypoxia/reoxygenation-promoted cardiomyocyte autophagy even in the presence of another autophagy stimulator rapamycin in part by inhibiting vacuolar hydron-adenosine triphosphatase. Additionally, autophagy suppression by adiponectin during hypoxia/reoxygenation was associated with the attenuated phosphorylation of AMPK and ULK1, augmented phosphorylation of mTOR, and the reduced protein expression levels of Beclin-1 in cardiomyocytes. Taken together, these results suggest that adiponectin protects ischemia/reperfusion-induced cardiomyocytes by suppressing autophagy in part through AMPK/mTOR/ULK1/Beclin-1 signaling pathway.
Collapse
|
6
|
Turner DGP, Tyan L, DeGuire FC, Medvedev RY, Stroebel SJ, Lang D, Glukhov AV. Caveolin-3 prevents swelling-induced membrane damage via regulation of I Cl,swell activity. Biophys J 2022; 121:1643-1659. [PMID: 35378081 PMCID: PMC9117929 DOI: 10.1016/j.bpj.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Caveola membrane structures harbor mechanosensitive chloride channels (MCCs; including chloride channel 2, chloride channel 3, and SWELL1, also known as LRRC8A) that form a swelling-activated chloride current (ICl,swell) and play an important role in cell volume regulation and mechanoelectrical signal transduction. However, the role of the muscle-specific caveolar scaffolding protein caveolin-3 (Cav3) in regulation of MCC expression, activity, and contribution to membrane integrity in response to mechanical stress remains unclear. Here we showed that Cav3-transfected (Cav3-positive) HEK293 cells were significantly resistant to extreme (<20 milliosmole) hypotonic swelling compared with native (Cav3-negative) HEK293 cells; the percentage of cells with membrane damage decreased from 45% in Cav3-negative cells to 17% in Cav3-positive cells (p < 0.05). This mechanoprotection was significantly reduced (p < 0.05) when cells were exposed to the ICl,swell-selective inhibitor 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (10 μM). These results were recapitulated in isolated mouse ventricular myocytes, where the percentage of cardiomyocytes with membrane damage increased from 47% in control cells to 78% in 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid-treated cells (p < 0.05). A higher resistance to hypotonic swelling in Cav3-positive HEK293 cells was accompanied by a significant twofold increase of ICl,swell current density and SWELL1 protein expression, whereas ClC-2/3 protein levels remained unchanged. Förster resonance energy transfer analysis showed a less than 10-nm membrane and intracellular association between Cav3 and SWELL1. Cav3/SWELL1 membrane Förster resonance energy transfer efficiency was halved in mild (220 milliosmole) hypotonic solution as well as after disruption of caveola structures via cholesterol depletion by 1-h treatment with 10 mM methyl-β-cyclodextrin. A close association between Cav3 and SWELL1 was confirmed by co-immunoprecipitation analysis. Our findings indicate that, in the MCCs tested, SWELL1 abundance and activity are regulated by Cav3 and that their association relies on membrane tension and caveola integrity. This study highlights the mechanoprotective role of Cav3, which is facilitated by complimentary SWELL1 expression and activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Leonid Tyan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Frank C DeGuire
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Sami J Stroebel
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Total ceramide levels in cardiac tissue relate to cardiac dysfunction in animal models. However, emerging evidence suggests that the fatty acyl chain length of ceramides also impacts their relationship to cardiac function. This review explores evidence regarding the relationship between ceramides and left ventricular dysfunction and heart failure. It further explores possible mechanisms underlying these relationships. RECENT FINDINGS In large, community-based cohorts, a higher ratio of specific plasma ceramides, C16 : 0/C24 : 0, related to worse left ventricular dysfunction. Increased left ventricular mass correlated with plasma C16 : 0/C24 : 0, but this relationship became nonsignificant after adjustment for multiple comparisons. Decreased left atrial function and increased left atrial size also related to C16 : 0/C24 : 0. Furthermore, increased incident heart failure, overall cardiovascular disease (CVD) mortality and all-cause mortality were associated with higher C16 : 0/C24 : 0 (or lower C24 : 0/C16 : 0). Finally, a number of possible biological mechanisms are outlined supporting the link between C16 : 0/C24 : 0 ceramides, ceramide signalling and CVD. SUMMARY High cardiac levels of total ceramides are noted in heart failure. In the plasma, C16 : 0/C24 : 0 ceramides may be a valuable biomarker of preclinical left ventricular dysfunction, remodelling, heart failure and mortality. Continued exploration of the mechanisms underlying these profound relationships may help develop specific lipid modulators to combat cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Valene Garr-Barry
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan Hong
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - John Heebink
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Rajan Sah
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Linda R. Peterson
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
8
|
Zuccolini P, Ferrera L, Remigante A, Picco C, Barbieri R, Bertelli S, Moran O, Gavazzo P, Pusch M. The VRAC blocker DCPIB directly gates the BK channels and increases intracellular Ca 2+ in Melanoma and Pancreatic Duct Adenocarcinoma (PDAC) cell lines. Br J Pharmacol 2022; 179:3452-3469. [PMID: 35102550 DOI: 10.1111/bph.15810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The Volume Regulated Anion Channel (VRAC) is known to be involved in different aspects of cancer cell behavior and response to therapies. For this reason, we investigated the effect of DCPIB, a presumably specific blocker of VRAC, in two types of cancer: pancreatic duct adenocarcinoma (PDAC) and melanoma. EXPERIMENTAL APPROACH For this investigation, we used patch-clamp electrophysiology, supported by Ca2+ imaging, gene expression analysis, docking simulation and mutagenesis. We employed two PDAC lines (Panc-1 and MiaPaCa-2), as well as a primary (IGR39) and a metastatic (IGR37) melanoma line. KEY RESULTS Surprisingly, DCPIB induced a dramatic increase of whole-cell currents in Panc-1, MiaPaca2 and IGR39, but not in IGR37 cells. The currents were mostly mediated by the KCa1.1 channel, commonly known as BK. We verified DCPIB activation of BK also in HEK293 cells transfected with the α subunit of the channel. Further experiments showed that in IGR39, and to a smaller degree also in Panc-1 cells, DCPIB induces a rapid Ca2+ influx. This, in turn, indirectly potentiates BK and, in IGR39 cells, additionally activates other Ca2+ -dependent channels. However, the Ca2+ influx is not required for BK activation by DCPIB: indeed, we found that the activation of BK by DCPIB involves the extracellular part of the protein and identified two residues crucial for binding. CONCLUSION AND IMPLICATIONS DCPIB directly targets BK channels and, in addition, can acutely increase intracellular Ca2+ . Our findings elongate the list of DCPIB effects that have to be taken into consideration for future development of DCPIB-based modulators of ion channels and other membrane proteins.
Collapse
Affiliation(s)
- Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Loretta Ferrera
- Institute of Biophysics, National Research Council, Genova, Italy.,U.O.C. Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | | | - Cristiana Picco
- Institute of Biophysics, National Research Council, Genova, Italy
| | | | - Sara Bertelli
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Oscar Moran
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| |
Collapse
|
9
|
Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Front Physiol 2022; 12:805148. [PMID: 35002778 PMCID: PMC8733619 DOI: 10.3389/fphys.2021.805148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
10
|
Choi H, Rohrbough JC, Nguyen HN, Dikalova A, Lamb FS. Oxidant-resistant LRRC8A/C anion channels support superoxide production by NADPH oxidase 1. J Physiol 2021; 599:3013-3036. [PMID: 33932953 DOI: 10.1113/jp281577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS LRRC8A-containing anion channels associate with NADPH oxidase 1 (Nox1) and regulate superoxide production and tumour necrosis factor-α (TNFα) signalling. Here we show that LRRC8C and 8D also co-immunoprecipitate with Nox1 in vascular smooth muscle cells. LRRC8C knockdown inhibited TNFα-induced O2 •- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation while LRRC8D knockdown enhanced NF-κB activation. Significant changes in LRRC8 isoform expression in human atherosclerosis and psoriasis suggest compensation for increased inflammation. The oxidant chloramine-T (ChlorT, 1 mM) weakly (∼25%) inhibited LRRC8C currents but potently (∼80%) inhibited LRRC8D currents. Substitution of the extracellular loop (EL1, EL2) domains of 8D into 8C conferred significantly stronger (69%) ChlorT-dependent inhibition. ChlorT exposure impaired subsequent current block by DCPIB, which occurs through interaction with EL1, further implicating external oxidation sites. LRRC8A/C channels most effectively sustain Nox1 activity at the plasma membrane. This may result from their ability to remain active in an oxidized microenvironment. ABSTRACT Tumour necrosis factor-α (TNFα) activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs), producing superoxide (O2 •- ) required for subsequent signalling. LRRC8 family proteins A-E comprise volume-regulated anion channels (VRACs). The required subunit LRRC8A physically associates with Nox1, and VRAC activity is required for Nox activity and the inflammatory response to TNFα. VRAC currents are modulated by oxidants, suggesting that channel oxidant sensitivity and proximity to Nox1 may play a physiologically relevant role. In VSMCs, LRRC8C knockdown (siRNA) recapitulated the effects of siLRRC8A, inhibiting TNFα-induced extracellular and endosomal O2 •- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation. In contrast, siLRRC8D potentiated NF-κB activation. Nox1 co-immunoprecipitated with 8C and 8D, and colocalized with 8D at the plasma membrane and in vesicles. We compared VRAC currents mediated by homomeric and heteromeric LRRC8C and LRRC8D channels expressed in HEK293 cells. The oxidant chloramine T (ChlorT, 1 mM) weakly inhibited 8C, but potently inhibited 8D currents. ChlorT exposure also impaired subsequent current block by the VRAC blocker DCPIB, implicating external sites of oxidation. Substitution of the 8D extracellular loop domains (EL1, EL2) into 8C conferred significantly stronger ChlorT-mediated inhibition of 8C currents. Our results suggest that LRRC8A/C channel activity can be effectively maintained in the oxidized microenvironment expected to result from Nox1 activation at the plasma membrane. Increased ratios of 8D:8C expression may potentially depress inflammatory responses to TNFα. LRRC8A/C channel downregulation represents a novel strategy to reduce TNFα-induced inflammation.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Qiu Z, Wang Y, Liu W, Li C, Zhao R, Long X, Rong J, Deng W, Shen C, Yuan J, Chen W, Shi B. CircHIPK3 regulates the autophagy and apoptosis of hypoxia/reoxygenation-stimulated cardiomyocytes via the miR-20b-5p/ATG7 axis. Cell Death Discov 2021; 7:64. [PMID: 33824287 PMCID: PMC8024346 DOI: 10.1038/s41420-021-00448-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
Autophagy and apoptosis are involved in myocardial ischemia/reperfusion (I/R) injury. Research indicates that circular RNA HIPK3 (circHIPK3) is crucial to cell autophagy and apoptosis in various cancer types. However, the role of circHIPK3 in the regulation of cardiomyocyte autophagy and apoptosis during I/R remains unknown. Our study aimed to examine the regulatory effect of circHIPK3 during myocardial I/R and investigate its mechanism in cardiomyocyte autophagy and apoptosis. Methods and results. The expression of circHIPK3 was upregulated during myocardial I/R injury and hypoxia/reoxygenation (H/R) injury of cardiomyocytes. To study the potential role of circHIPK3 in myocardial H/R injury, we performed gain-of-function and loss-of-function analyses of circHIPK3 in cardiomyocytes. Overexpression of circHIPK3 significantly promoted H/R-induced cardiomyocyte autophagy and cell injury (increased intracellular reactive oxygen species (ROS) and apoptosis) compared to those in the control group, while silencing of circHIPK3 showed the opposite effect. Further research found that circHIPK3 acted as an endogenous miR-20b-5p sponge to sequester and inhibit miR-20b-5p activity, resulting in increased ATG7 expression. In addition, miR-20b-5p inhibitors reversed the decrease in ATG7 induced by silencing circHIPK3. Conclusions. CircHIPK3 can accelerate cardiomyocyte autophagy and apoptosis during myocardial I/R injury through the miR-20b-5p/ATG7 axis. These data suggest that circHIPK3 may serve as a potential therapeutic target for I/R.
Collapse
Affiliation(s)
- Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jidong Rong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Wengweng Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Changyin Shen
- Department of Cardiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jinson Yuan
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Wengming Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
12
|
Abstract
Ion exchange between intracellular and extracellular spaces is the basic mechanism for controlling cell metabolism and signal transduction. This process is mediated by ion channels and transporters on the plasma membrane, or intracellular membranes that surround various organelles, in response to environmental stimuli. Macroautophagy (hereafter referred to as autophagy) is one of the lysosomal-dependent degradation pathways that maintains homeostasis through the degradation and recycling of cellular components (e.g., dysfunctional proteins and damaged organelles). Although autophagy-related (ATG) proteins play a central role in regulating the formation of autophagy-related member structures (e.g., phagophores, autophagosomes, and autolysosomes), the autophagic process also involves changes in expression and function of ion channels and transporters. Here we discuss current knowledge of the mechanisms that regulate autophagy in mammalian cells, with special attention to the ion channels and transporters. We also highlight prospects for the development of drugs targeting ion channels and transporters in autophagy.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Huo C, Liu Y, Li X, Xu R, Jia X, Hou L, Wang X. LRRC8A contributes to angiotensin II-induced cardiac hypertrophy by interacting with NADPH oxidases via the C-terminal leucine-rich repeat domain. Free Radic Biol Med 2021; 165:191-202. [PMID: 33515753 DOI: 10.1016/j.freeradbiomed.2021.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022]
Abstract
Cardiac hypertrophy, an important cause of heart failure, is characterized by an increase in heart weight, the ventricular wall, and cardiomyocyte volume. The volume regulatory anion channel (VRAC) is an important regulator of cell volume. However, its role in cardiac hypertrophy remains unclear. The purpose of this study was to investigate the effect of leucine-rich repeat-containing 8A (LRRC8A), an essential component of the VRAC, on angiotensin II (AngII)-induced cardiac hypertrophy. Our results showed that LRRC8A expression, NADPH oxidase activity, and reactive oxygen species (ROS) production were increased in AngII-induced hypertrophic neonatal mouse cardiomyocytes and the myocardium of C57/BL/6 mice. In addition, AngII activated VRAC currents in cardiomyocytes. The delivery of adeno-associated viral (AAV9) bearing siRNA against mouse LRRC8A into the left ventricular wall inhibited AngII-induced cardiac hypertrophy and fibrosis. Accordingly, the knockdown of LRRC8A attenuated AngII-induced cardiomyocyte hypertrophy and VRAC currents in vitro. Furthermore, knockdown of LRRC8A suppressed AngII-induced ROS production, NADPH oxidase activity, the expression of NADPH oxidase membrane-bound subunits Nox2, Nox4, and p22phox, and the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox. Immunofluorescent staining showed that LRRC8A co-localized with NADPH oxidase membrane subunits Nox2, Nox4, and p22phox. Co-immunoprecipitation and analysis of a C-terminal leucine-rich repeat domain (LRRD) mutant showed that LRRC8A physically interacts with Nox2, Nox4, and p22phox via the LRRD. Taken together, the results of this study suggested that LRRC8A might play an important role in promoting AngII-induced cardiac hypertrophy by interacting with NADPH oxidases via the LRRD.
Collapse
Affiliation(s)
- Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
14
|
Electroacupuncture Pretreatment as a Novel Avenue to Protect Heart against Ischemia and Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9786482. [PMID: 32508960 PMCID: PMC7254080 DOI: 10.1155/2020/9786482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
In recent years, the efficacy of electroacupuncture (EA) pretreatment generating ischemic tolerance mimicking ischemic pretreatment (IP) has been continuously confirmed, which was first found in the brain and then in the heart. Furthermore, researchers have observed the intensive cardioprotection impact of EA pretreatment on patients undergoing percutaneous coronary intervention (PCI) and heart valve replacement, indicating that EA pretreatment tends to be a valuable and advantageous avenue for preventing acute myocardial ischemia/reperfusion (I/R) injury or treatment of ischemic heart disease (IHD). In reality, the heart protection mechanism of EA pretreatment is robust and pleiotropic, of which the regulatory molecular pathways are involved in multichannel, multilevel, and multitarget, including energy metabolism, inflammatory response, calcium overload, oxidative stress, autophagy, and apoptosis. Through a growing number of clinical tests and basic experiments with animal models, researchers progressively explored the optimal acupoints and parameters, where EA pretreatment induced acute and delayed ischemic tolerance for myocardial protection. Thereby, this article aims to collect the relevant evidence on EA pretreatment against myocardial ischemia/reperfusion injury (MIRI) and summarize the mechanism of cardioprotection of EA pretreatment to provide ideas and methods for further clinical applications.
Collapse
|
15
|
LRRC8/VRAC channels exhibit a noncanonical permeability to glutathione, which modulates epithelial-to-mesenchymal transition (EMT). Cell Death Dis 2019; 10:925. [PMID: 31804464 PMCID: PMC6895240 DOI: 10.1038/s41419-019-2167-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
Volume-regulated anion channels (VRAC) are chloride channels activated in response to osmotic stress to regulate cellular volume and also participate in other cellular processes, including cell division and cell death. Recently, members of the LRRC8 family have been identified as the main contributors of VRAC conductance. LRRC8/VRAC is permeable to chloride ions but also exhibits significant permeability to various substrates that vary strongly in charge and size. In this study, we explored the intriguing ability of LRRC8/VRAC to transport glutathione (GSH), the major cellular reactive oxygen species (ROS) scavenger, and its involvement in epithelial-to-mesenchymal transition (EMT), a cellular process in which cellular oxidative status is a crucial step. First, in HEK293-WT cells, we showed that a hypotonic condition induced LRRC8/VRAC-dependent GSH conductance (PGSH/PCl of ~0.1) and a marked decrease in intracellular GSH content. GSH currents and GSH intracellular decrease were both inhibited by DCPIB, an inhibitor of LRRC8/VRAC, and were not observed in HEK293-LRRC8A KO cells. Then, we induced EMT by exposing renal proximal tubule epithelial cells to the pleiotropic growth factor TGFβ1, and we measured the contribution of LRRC8/VRAC in this process by measuring (i) EMT marker expression (assessed both at the gene and protein levels), (ii) cell morphology and (iii) the increase in migration ability. Interestingly, pharmacologic targeting of LRRC8/VRAC (DCPIB) or RNA interference-mediated inhibition (LRRC8A siRNA) attenuated the TGFβ1-induced EMT response by controlling GSH and ROS levels. Interestingly, TGFβ1 exposure triggered DCPIB-sensitive chloride conductance. These results suggest that LRRC8/VRAC, due to its native permeability to GSH and thus its ability to modulate ROS levels, plays a critical role in EMT and might contribute to other physiological and pathophysiological processes associated with oxidative stress.
Collapse
|
16
|
Chen L, König B, Liu T, Pervaiz S, Razzaque YS, Stauber T. More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels. Biol Chem 2019; 400:1481-1496. [DOI: 10.1515/hsz-2019-0189] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Abstract
The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.
Collapse
Affiliation(s)
- Lingye Chen
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Benjamin König
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tianbao Liu
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Sumaira Pervaiz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Yasmin S. Razzaque
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tobias Stauber
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| |
Collapse
|
17
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
18
|
Xu R, Xiao Y, Liu Y, Wang B, Li X, Huo C, Jia X, Hou L, Wang X. Fluorescence-Based High Throughput Screening Technologies for Natural Chloride Ion Channel Blockers. Chem Res Toxicol 2018; 31:1332-1338. [PMID: 30456946 DOI: 10.1021/acs.chemrestox.8b00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chloride channels represent a group of potential drug targets; their blockers showed significant protecting effect on impaired cells by modulating apoptosis, autophagy, and other cell signals. However, clinical drugs with chloride channel inhibitory properties have not yet been developed. Natural product extract becomes an underlying candidate satisfied the clinical requirements for its low toxicity, low cost, and abundant sources. Here, a fluorescence-based EYFP-H148Q/I153L-HeLa cell line model was constructed by molecular cloning and verified by real-time polymerase chain reaction and Western blotting assay. By using this chloride channel blocker screening model, seven hit compounds chosen from 6988 natural compounds showed the channel blocking activity. Then the hit compounds were further validated by electrophysiological patch-clamp analysis. Our study preliminarily identified PC-4 as a new chloride channel inhibitor and demonstrated the reliability and sensitivity of fluorescence-based high throughput screening technologies for discovery of biologically active compounds from natural herbal compounds.
Collapse
Affiliation(s)
| | - Yuan Xiao
- Hong-Hui Hospital, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang Z, Liu Y, Huang X. Formononetin may protect aged hearts from ischemia/reperfusion damage by enhancing autophagic degradation. Mol Med Rep 2018; 18:4821-4830. [PMID: 30320398 PMCID: PMC6236296 DOI: 10.3892/mmr.2018.9544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myocardial infarction is a leading cause of mortality worldwide, and timely blood/oxygen reperfusion may substantially improve the outcome of infarction. However, ischemia/reperfusion (I/R) may cause severe side effects through excess reactive oxygen species generation. To develop novel methods to relieve I/R induced cell damage, the present study used a component of traditional Chinese medicine. In the present study, isolated heart tissue from aged mice and H9C2 cells with chemically‑induced aging were used as experimental subjects, and it was demonstrated that formononetin was able to alleviate I/R‑induced cell or tissue apoptosis. By applying formononetin to I/R‑damaged tissue or cells, it was demonstrated that formononetin was able to enhance autophagy and thus alleviate I/R‑induced cell damage. Furthermore, it was observed that I/R was able to inhibit lysosomal degradation processes in aged tissues or cells by impairing the lysosome acidification level, and formononetin was able to reverse this process via the re‑acidification of lysosomes. In conclusion, the present study demonstrated that formononetin was able to alleviate I/R‑induced cellular apoptosis in aged cells by facilitating autophagy.
Collapse
Affiliation(s)
- Zhengxin Huang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yingfeng Liu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xianping Huang
- Laboratory of Biochemistry, Hunan University of Chinese Medicine, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
20
|
Yan L, Guo N, Cao Y, Zeng S, Wang J, Lv F, Wang Y, Cao X. miRNA‑145 inhibits myocardial infarction‑induced apoptosis through autophagy via Akt3/mTOR signaling pathway in vitro and in vivo. Int J Mol Med 2018; 42:1537-1547. [PMID: 29956747 PMCID: PMC6089768 DOI: 10.3892/ijmm.2018.3748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effects of micro (mi)RNA‑145 on acute myocardial infarction (AMI) and the potential underlying mechanism. A total of 6 AMI and 6 normal rat tissues were investigated for the present study. It was demonstrated that miRNA‑145 expression was downregulated in the AMI rat model, compared with the control group. Downregulation of miRNA‑145 increased cardiac cell apoptosis, suppressed phosphorylated (p)‑RAC‑γ serine/threonine‑protein kinase (Akt3) and p‑mechanistic target of rapamycin (mTOR) protein expression levels and suppressed autophagy in an in vitro model of AMI. However, overexpression of miRNA‑145 decreased cardiac cell apoptosis, induced p‑Akt3 and p‑mTOR protein expression and promoted autophagy in the in vitro model of AMI. The inhibition of Akt3 (GSK2110183, 1 nM) decreased the effect of the miRNA‑145 upregulation on cell apoptosis in the in vitro model of AMI. Chloroquine diphosphate (5 µM) inhibited the regulatory effect of miRNA‑145 upregulation on autophagy to adjust cell apoptosis, in the in vitro model of AMI. The results of the present study demonstrate that miRNA‑145 inhibits myocardial infarction‑induced apoptosis via autophagy associated with the Akt3/mTOR signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Liqiu Yan
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Nan Guo
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yanchao Cao
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Saitian Zeng
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jiawang Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Fengfeng Lv
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunfei Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
21
|
The Impact of Moderate Chronic Hypoxia and Hyperoxia on the Level of Apoptotic and Autophagic Proteins in Myocardial Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5786742. [PMID: 30186545 PMCID: PMC6116398 DOI: 10.1155/2018/5786742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The redox imbalance and the consequent oxidative stress have been implicated in many pathological conditions, including cardiovascular diseases. The lack or the excess of O2 supply can alter the redox balance. The aim of the present study was to understand the heart responses to prolonged hypoxia or hyperoxia and how such situations may activate survival mechanisms or trigger cell death. Seven-week-old Foxn1 mice were exposed to hypoxia (10% O2), normoxia (21% O2), or hyperoxia (30% O2) for 28 days, then the heart tissue was excised and analyzed. The alterations in redox balance, housekeeping protein levels, and autophagic and apoptotic process regulation were studied. The D-ROM test demonstrated an increased oxidative stress in the hypoxic group compared to the hyperoxic group. The level of hypoxia inducible factor-1 (HIF-1α) was increased by hypoxia while HIF-2α was not affected by treatments. Chronic hypoxia activated the biochemical markers of autophagy, and we observed elevated levels of Beclin-1 while LC3B-II and p62 were constant. Nevertheless, we measured significantly enhanced number of TUNEL-positive cells and higher Bax/Bcl2 ratio in hyperoxia with respect to hypoxia. Surprisingly, our results revealed alterations in the level of housekeeping proteins. The expression of α-tubulin, total-actin, and GAPDH was increased in the hypoxic group while decreased in the hyperoxic group. These findings suggest that autophagy is induced in the heart under hypoxia, which may serve as a protective mechanism in response to enhanced oxidative stress. While prolonged hypoxia-induced autophagy leads to reduced heart apoptosis, low autophagic level in hyperoxia failed to prevent the excessive DNA fragmentation.
Collapse
|
22
|
Feng Y, Madungwe NB, da Cruz Junho CV, Bopassa JC. Activation of G protein-coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy. Br J Pharmacol 2017; 174:4329-4344. [PMID: 28906548 PMCID: PMC5715577 DOI: 10.1111/bph.14033] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Recent evidence indicates that GPER (G protein‐coupled oestrogen receptor 1) mediates acute pre‐ischaemic oestrogen‐induced protection of the myocardium from ischaemia/reperfusion injury via a signalling cascade that includes PKC translocation, ERK1/2/ GSK‐3β phosphorylation and inhibition of the mitochondrial permeability transition pore (mPTP) opening. Here, we investigated the impact and mechanism involved in post‐ischaemic GPER activation in ischaemia/reperfusion injury. We determined whether GPER activation at the onset of reperfusion confers cardioprotective effects by protecting against mitochondrial impairment and mitophagy. Experimental Approach In vivo rat hearts were subjected to ischaemia followed by reperfusion with oestrogen (17β‐oestradiol, E2), E2 + G15, a GPER antagonist, or vehicle. Myocardial infarct size, the threshold for the opening of mPTP, mitophagy, mitochondrial membrane potential, ROS production, proteins ubiquitinated including cyclophilin D, and phosphorylation levels of ERK and GSK‐3β were measured. Results We found that post‐ischaemic E2 administration to both male and female ovariectomized‐rats reduced myocardial infarct size. Post‐ischaemic E2 administration preserved mitochondrial structural integrity and this was associated with a decrease in ROS production and increased mitochondrial membrane potential, as well as an increase in the mitochondrial Ca2+ load required to induce mPTP opening via activation of the MEK/ERK/GSK‐3β axis. Moreover, E2 reduced mitophagy via the PINK1/Parkin pathway involving LC3I, LC3II and p62 proteins. All these post‐ischaemic effects of E2 were abolished by G15 suggesting a GPER‐dependent mechanism. Conclusion These results indicate that post‐ischaemic GPER activation induces cardioprotective effects against ischaemia/reperfusion injury in males and females by protecting mitochondrial structural integrity and function and reducing mitophagy.
Collapse
Affiliation(s)
- Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carolina Victoria da Cruz Junho
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Center of Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
23
|
Gradogna A, Gavazzo P, Boccaccio A, Pusch M. Subunit-dependent oxidative stress sensitivity of LRRC8 volume-regulated anion channels. J Physiol 2017; 595:6719-6733. [PMID: 28841766 DOI: 10.1113/jp274795] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Swelling-activated anion currents are modulated by oxidative conditions, but it is unknown if oxidation acts directly on the LRRC8 channel-forming proteins or on regulatory factors. We found that LRRC8A-LRRC8E heteromeric channels are dramatically activated by oxidation of intracellular cysteines, whereas LRRC8A-LRRC8C and LRRC8A-LRRC8D heteromers are inhibited by oxidation. Volume-regulated anion currents in Jurkat T lymphocytes were inhibited by oxidation, in agreement with a low expression of the LRRC8E subunit in these cells. Our results show that LRRC8 channel proteins are directly modulated by oxidation in a subunit-specific manner. ABSTRACT The volume-regulated anion channel (VRAC) is formed by heteromers of LRRC8 proteins containing the essential LRRC8A subunit and at least one among the LRRC8B-E subunits. Reactive oxygen species (ROS) play physiological and pathophysiological roles and VRAC channels are highly ROS sensitive. However, it is unclear if ROS act directly on the channels or on molecules involved in the activation pathway. We used fluorescently tagged LRRC8 proteins that yield large constitutive currents to test direct effects of oxidation. We found that 8A/8E heteromers are dramatically potentiated (more than 10-fold) by oxidation of intracellular cysteine residues by chloramine-T or tert-butyl hydroperoxide. Oxidation was, however, not necessary for hypotonicity-induced activation. In contrast, 8A/8C and 8A/8D heteromers were strongly inhibited by oxidation. Endogenous VRAC currents in Jurkat T lymphocytes were similarly inhibited by oxidation, in agreement with the finding that LRRC8C and LRRC8D subunits were more abundantly expressed than LRRC8E in Jurkat cells. Our results show that LRRC8 channels are directly modulated by oxidation in a subunit-dependent manner.
Collapse
Affiliation(s)
- Antonella Gradogna
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, I-16149, Genova, Italy
| | - Paola Gavazzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, I-16149, Genova, Italy
| | - Anna Boccaccio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, I-16149, Genova, Italy
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, I-16149, Genova, Italy
| |
Collapse
|