1
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
2
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
3
|
Jing L, Yang L, Jianbo C, Yuqiu W, Yehui Z. CircSETD2 inhibits YAP1 by interaction with HuR during breast cancer progression. Cancer Biol Ther 2023; 24:2246205. [PMID: 37606201 PMCID: PMC10446782 DOI: 10.1080/15384047.2023.2246205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/29/2022] [Accepted: 06/06/2023] [Indexed: 08/23/2023] Open
Abstract
CircRNAs have been proven to play a pivotal role in cancer progression. The present study aims to explore the roles and related mechanisms of circSETD2 in breast cancer proliferation, migration and invasion. The expression of circSETD2 in BC was assessed by the GEO database and qRT‒PCR. The biological function and underlying molecular mechanism of circSETD2 in BC were explored using in vitro and in vivo experiments, including CCK8, transwell, RIP, western blot, and xenograft mouse models. The expression of circSETD2 was downregulated in BC tumors, in accordance with the GEO database. Overexpression of circSETD2 significantly suppressed cell growth, cell migration and invasion. Mechanistically, circSETD2 reduced the stabilization of YAP1 by competitively binding with HuR, resulting in inactivation of downstream targets such as CTGF, myc and Slug. Our work suggests that the novel signaling axis circSETD2/HuR/YAP1 plays an important role in BC progression. The molecular mechanism underlying this signaling axis may provide a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Lan Jing
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Liu Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Cao Jianbo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Wan Yuqiu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zhou Yehui
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
4
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Ballout F, Lu H, Chen L, Sriramajayam K, Que J, Meng Z, Wang TC, Giordano S, Zaika A, McDonald O, Peng D, El-Rifai W. APE1 redox function is required for activation of Yes-associated protein 1 under reflux conditions in Barrett's-associated esophageal adenocarcinomas. J Exp Clin Cancer Res 2022; 41:264. [PMID: 36045416 PMCID: PMC9434868 DOI: 10.1186/s13046-022-02472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is characterized by poor prognosis and low survival rate. Chronic gastroesophageal reflux disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE), a preneoplastic metaplastic condition, and its progression to EAC. Yes-associated protein 1 (YAP1) activation mediates stem-like properties under cellular stress. The role of acidic bile salts (ABS) in promoting YAP1 activation under reflux conditions remains unexplored. METHODS A combination of EAC cell lines, transgenic mice, and patient-derived xenografts were utilized in this study. mRNA expression and protein levels of APE1 and YAP1 were evaluated by qRT-PCR, western blot, and immunohistochemistry. YAP1 activation was confirmed by immunofluorescence staining and luciferase transcriptional activity reporter assay. The functional role and mechanism of regulation of YAP1 by APE1 was determined by sphere formation assay, siRNA mediated knockdown, redox-specific inhibition, and co-immunoprecipitation assays. RESULTS We showed that YAP1 signaling is activated in BE and EAC cells following exposure to ABS, the mimicry of reflux conditions in patients with GERD. This induction was consistent with APE1 upregulation in response to ABS. YAP1 activation was confirmed by its nuclear accumulation with corresponding up-regulation of YAP1 target genes. APE1 silencing inhibited YAP1 protein induction and reduced its nuclear expression and transcriptional activity, following ABS treatment. Further investigation revealed that APE1-redox-specific inhibition (E3330) or APE1 redox-deficient mutant (C65A) abrogated ABS-mediated YAP1 activation, indicating an APE1 redox-dependent mechanism. APE1 silencing or E3330 treatment reduced YAP1 protein levels and diminished the number and size of EAC spheroids. Mechanistically, we demonstrated that APE1 regulated YAP1 stability through interaction with β-TrCP ubiquitinase, whereas APE1-redox-specific inhibition induced YAP1 poly-ubiquitination promoting its degradation. CONCLUSION Our findings established a novel function of APE1 in EAC progression elucidating druggable molecular vulnerabilities via targeting APE1 or YAP1 for the treatment of EAC.
Collapse
Affiliation(s)
- Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Kannappan Sriramajayam
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, 10027, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy C Wang
- Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Silvia Giordano
- Department of Oncology, University of Torino and Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Oliver McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA.
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Wu H, Liu Y, Liao Z, Mo J, Zhang Q, Zhang B, Zhang L. The role of YAP1 in liver cancer stem cells: proven and potential mechanisms. Biomark Res 2022; 10:42. [PMID: 35672802 PMCID: PMC9171972 DOI: 10.1186/s40364-022-00387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
YAP1 (Yes-associated protein 1) is one of the principal factors that mediates oncogenesis by acting as a driver of gene expression. It has been confirmed to play an important role in organ volume control, stem cell function, tissue regeneration, tumorigenesis and tumor metastasis. Recent research findings show that YAP1 is correlated with the stemness of liver cancer stem cells, and liver cancer stem cells are closely associated with YAP1-induced tumor initiation and progression. This article reviews the advancements made in research on the mechanisms by which YAP1 promotes liver cancer stem cells and discusses some potential mechanisms that require further study.
Collapse
Affiliation(s)
- Haofeng Wu
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Shanxi Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
7
|
Cigliano A, Zhang S, Ribback S, Steinmann S, Sini M, Ament CE, Utpatel K, Song X, Wang J, Pilo MG, Berger F, Wang H, Tao J, Li X, Pes GM, Mancarella S, Giannelli G, Dombrowski F, Evert M, Calvisi DF, Chen X, Evert K. The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:192. [PMID: 35655220 PMCID: PMC9164528 DOI: 10.1186/s13046-022-02394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022]
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive primary liver tumor with increasing incidence worldwide, dismal prognosis, and few therapeutic options. Mounting evidence underlines the role of the Hippo pathway in this disease; however, the molecular mechanisms whereby the Hippo cascade contributes to cholangiocarcinogenesis remain poorly defined. Methods We established novel iCCA mouse models via hydrodynamic transfection of an activated form of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo pathway downstream effector, either alone or combined with the myristoylated AKT (myr-AKT) protooncogene, in the mouse liver. Hematoxylin and eosin staining, immunohistochemistry, electron microscopy, and quantitative real-time RT-PCR were applied to characterize the models. In addition, in vitro cell line studies were conducted to address the growth-promoting roles of TAZ and its paralog YAP. Results Overexpression of TAZ in the mouse liver triggered iCCA development with very low incidence and long latency. In contrast, co-expression of TAZ and myr-AKT dramatically increased tumor frequency and accelerated cancer formation in mice, with 100% iCCA incidence and high tumor burden by 10 weeks post hydrodynamic injection. AKT/TAZ tumors faithfully recapitulated many of the histomolecular features of human iCCA. At the molecular level, the development of the cholangiocellular lesions depended on the binding of TAZ to TEAD transcription factors. In addition, inhibition of the Notch pathway did not hamper carcinogenesis but suppressed the cholangiocellular phenotype of AKT/TAZ tumors. Also, knockdown of YAP, the TAZ paralog, delayed cholangiocarcinogenesis in AKT/TAZ mice without affecting the tumor phenotype. Furthermore, human preinvasive and invasive iCCAs and mixed hepatocellular carcinoma/iCCA displayed widespread TAZ activation and downregulation of the mechanisms protecting TAZ from proteolysis. Conclusions Overall, the present data underscore the crucial role of TAZ in cholangiocarcinogenesis Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02394-2.
Collapse
Affiliation(s)
- Antonio Cigliano
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Shanshan Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sara Steinmann
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marcella Sini
- Experimental Pathology Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cindy E Ament
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Maria G Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Fabian Berger
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA, Jinan, 250031, China
| | - Giovanni M Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany.
| |
Collapse
|
8
|
García-Chávez JN, Vásquez-Garzón VR, López MG, Villa-Treviño S, Montiel R. Integration of chronological omics data reveals mitochondrial regulatory mechanisms during the development of hepatocellular carcinoma. PLoS One 2021; 16:e0256016. [PMID: 34383828 PMCID: PMC8360386 DOI: 10.1371/journal.pone.0256016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria participate in multiple functions in eukaryotic cells. Although disruption of mitochondrial function has been associated with energetic deregulation in cancer, the chronological changes in mitochondria during cancer development remain unclear. With the aim to assess the role of mitochondria throughout cancer development, we analyzed samples chronologically obtained from induced hepatocellular carcinoma (HCC) in rats. In our analyses, we integrated mitochondrial proteomic data, mitochondrial metabolomic data and nuclear genome transcriptomic data. We used pathway over-representation and weighted gene co-expression network analysis (WGCNA) to integrate expression profiles of genes, miRNAs, proteins and metabolite levels throughout HCC development. Our results show that mitochondria are dynamic organelles presenting specific modifications in different stages of HCC development. We also found that mitochondrial proteomic profiles from tissues adjacent to nodules or tumor are determined more by the stage of HCC development than by tissue type, and we evaluated two models to predict HCC stage of the samples using proteomic profiles. Finally, we propose an omics integration pipeline to massively identify molecular features that could be further evaluated as key regulators, biomarkers or therapeutic targets. As an example, we show a group of miRNAs and transcription factors as candidates, responsible for mitochondrial metabolic modification in HCC.
Collapse
Affiliation(s)
- J. Noé García-Chávez
- Langebio, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | | | - Mercedes G. López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rafael Montiel
- Langebio, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
9
|
LeBlanc L, Ramirez N, Kim J. Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cell Mol Life Sci 2021; 78:4201-4219. [PMID: 33582842 PMCID: PMC8164607 DOI: 10.1007/s00018-021-03781-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Hippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.
Collapse
Affiliation(s)
- Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
10
|
Iscan E, Ekin U, Yildiz G, Oz O, Keles U, Suner A, Cakan-Akdogan G, Ozhan G, Nekulova M, Vojtesek B, Uzuner H, Karakülah G, Alotaibi H, Ozturk M. TAp73β Can Promote Hepatocellular Carcinoma Dedifferentiation. Cancers (Basel) 2021; 13:cancers13040783. [PMID: 33668566 PMCID: PMC7918882 DOI: 10.3390/cancers13040783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a highly complex and heterogeneous type of cancer. Hepatocyte dedifferentiation is one of the important steps in the development of HCC. However, its molecular mechanisms are not well known. In this study, we report that transcriptionally active TAp73 isoforms are overexpressed in HCC. We also show that TAp73β suppresses the expression of the hepatocyte markers including CYP3A4, AFP, ALB, HNF4α, while increasing the expression of several cholangiocyte markers in HCC cell lines. In conclusion, this report reveals a pro-oncogenic role for TAp73β in liver cancer. Abstract Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73β (TAp73β) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73β-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73β caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73β had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73β upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73β may promote malignant dedifferentiation of HCC cells.
Collapse
Affiliation(s)
- Evin Iscan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61000, Turkey;
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
- Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir 35000, Turkey
| | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir 35000, Turkey;
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Marta Nekulova
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Correspondence:
| |
Collapse
|
11
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:E2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
12
|
Genomic Perspective on Mouse Liver Cancer Models. Cancers (Basel) 2019; 11:cancers11111648. [PMID: 31731480 PMCID: PMC6895968 DOI: 10.3390/cancers11111648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Selecting the most appropriate mouse model that best recapitulates human hepatocellular carcinoma (HCC) allows translation of preclinical mouse studies into clinical studies. In the era of cancer genomics, comprehensive and integrative analysis of the human HCC genome has allowed categorization of HCC according to molecular subtypes. Despite the variety of mouse models that are available for preclinical research, there is a lack of evidence for mouse models that closely resemble human HCC. Therefore, it is necessary to identify the accurate mouse models that represent human HCC based on molecular subtype as well as histologic aggressiveness. In this review, we summarize the mouse models integrated with human HCC genomic data to provide information regarding the models that recapitulates the distinct aspect of HCC biology and prognosis based on molecular subtypes.
Collapse
|
13
|
Cucci MA, Compagnone A, Daga M, Grattarola M, Ullio C, Roetto A, Palmieri A, Rosa AC, Argenziano M, Cavalli R, Simile MM, Pascale RM, Dianzani C, Barrera G, Pizzimenti S. Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med 2019; 141:205-219. [PMID: 31207288 DOI: 10.1016/j.freeradbiomed.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022]
Abstract
The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNE-induced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can post-translationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.
Collapse
Affiliation(s)
- Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Alessandra Compagnone
- Department of Oncology, University of Turin, Via Michelangelo 27, 10125, Turin, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Chiara Ullio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonietta Palmieri
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Maria Maddalena Simile
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa Maria Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
14
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
15
|
The Ambivalent Function of YAP in Apoptosis and Cancer. Int J Mol Sci 2018; 19:ijms19123770. [PMID: 30486435 PMCID: PMC6321280 DOI: 10.3390/ijms19123770] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein, a core regulator of the Hippo-YAP signaling pathway, plays a vital role in inhibiting apoptosis. Thus, several studies and reviews suggest that yes-associated protein is a good target for treating cancer. Unfortunately, more and more evidence demonstrates that this protein is also an essential contributor of p73-mediated apoptosis. This questions the concept that yes-associated protein is always a good target for developing novel anti-cancer drugs. Thus, the aim of this review was to evaluate the clinical relevance of yes-associated protein for cancer pathophysiology. This review also summarized the molecules, processes and drugs, which regulate Hippo-YAP signaling and discusses their effect on apoptosis. In addition, issues are defined, which should be addressed in the future in order to provide a solid basis for targeting the Hippo-YAP signaling pathway in clinical trials.
Collapse
|
16
|
Cao C, Huang Y, Tang Q, Zhang C, Shi L, Zhao J, Hu L, Hu Z, Liu Y, Chen L. Bidirectional juxtacrine ephrinB2/Ephs signaling promotes angiogenesis of ECs and maintains self-renewal of MSCs. Biomaterials 2018; 172:1-13. [PMID: 29709731 DOI: 10.1016/j.biomaterials.2018.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Abstract
Co-transplantation of endothelial cells (ECs) and mesenchymal stem cells (MSCs) is an important strategy for repairing complex and large bone defects. However, the ways in which ECs and MSCs interact remain to be fully clarified. We found that forward ephrinB2/Ephs signaling from hBMSCs to hUVECs promoted the tube formation of hUVECs by activating the PI3K/AKT/mTOR pathway. Reverse ephrinB2/Ephs signaling from hUVECs to hBMSCs promoted the proliferation and maintenance of hBMSCs self-renewal via upregulation of OCT4, SOX2, and YAP1. Subcutaneous co-transplantation of ECs and MSCs in nude mice confirmed that forward ephrinB2/Ephs signaling could increase the cross-sectional area of blood vessels in the transplanted area, and reverse ephrinB2/Ephs signaling could maintain the self-renewal of transplanted hBMSCs in vivo. Based on these results, ephrinB2/Ephs bidirectional juxtacrine regulation between ECs and MSCs plays a pivotal role in improving the healing of bone defects by promoting angiogenesis and achieving a sufficient number of MSCs.
Collapse
Affiliation(s)
- Cen Cao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenguang Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Shi
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewen Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yun Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Pascale RM, Feo CF, Calvisi DF, Feo F. Deregulation of methionine metabolism as determinant of progression and prognosis of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:36. [PMID: 30050996 DOI: 10.21037/tgh.2018.06.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
The under-regulation of liver-specific MAT1A gene codifying for S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and the up-regulation of widely expressed MAT2A, MATII isozyme occurs in hepatocellular carcinoma (HCC). MATα1:MATα2 switch strongly contributes to the fall in SAM liver content both in rodent and human liver carcinogenesis. SAM administration to carcinogen-treated animals inhibits hepatocarcinogenesis. The opposite occurs in Mat1a-KO mice, in which chronic SAM deficiency is followed by HCC development. This review focuses upon the changes, induced by the MATα1:MATα2 switch, involved in HCC development. In association with MATα1:MATα2 switch there occurs, in HCC, global DNA hypomethylation, decline of DNA repair, genomic instability, and deregulation of different signaling pathways such as overexpression of c-MYC (avian myelocytomatosis viral oncogene homolog), increase of polyamine (PA) synthesis and RAS/ERK (Harvey murine sarcoma virus oncogene homolog/extracellular signal-regulated kinase), IKK/NF-kB (I-k kinase beta/nuclear factor kB), PI3K/AKT, and LKB1/AMPK axes. Furthermore, a decrease in MATα1 expression and SAM level induces HCC cell proliferation and survival. SAM treatment in vivo and enforced MATα1 overexpression or MATα2 inhibition, in cultured HCC cells, prevent these changes. A negative correlation of MATα1:MATα2 and MATI/III:MATII ratios with cell proliferation and genomic instability and a positive correlation with apoptosis and global DNA methylation are present in human HCC. Altogether, these data suggest that the decrease of SAM level and the deregulation of MATs are potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
18
|
Lin Q, Ling YB, Chen JW, Zhou CR, Chen J, Li X, Huang MS. Circular RNA circCDK13 suppresses cell proliferation, migration and invasion by modulating the JAK/STAT and PI3K/AKT pathways in liver cancer. Int J Oncol 2018; 53:246-256. [PMID: 29658568 DOI: 10.3892/ijo.2018.4371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Circular RNAs have recently been disclosed as potential biomarkers for human cancers. This study aimed to characterize the expression and function of a novel circular RNA, circCDK13, in liver cancer progression, as well as to elucide the underlying mechanisms. For this purpose, circCDK13 expression was quantitatively analyzed by RT-PCR in various liver cancer cell lines and human cancerous tissues. The migration, cell cycle progression, proliferation and invasion of liver cancer cells with an enhanced circCDK13 expression were evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, flow cytometry and the Transwell culture system. Microarray and western blot analyses were performed to explore the underlying signaling mechanisms. The role of circCDK13 in liver cancer was finally examined by tumorigenicity assay using nude mice. The results revealed that circCDK13 expression was suppressed in various liver cancer lines and tissue samples from patients with liver cancer (hepatocellular carcinoma). The induced overexpression of circCDK13 in the liver cancer cells markedly inhibited their migration rates, altered cell cycle progression, and suppressed the cell migratory and invasive capacities. Microarray analysis also identified numerous downstream genes regulated by circCDK13, particularly those in the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. The results of the tumorigenicity assay revealed that circCDK13 overexpression significantly inhibited liver cancer progression in nude mice. On the whole, the findings of this study indicate that circCDK13 is a novel circular RNA that suppresses liver cancer progression, and that these suppressive effects are possibly mediated via the JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Qu Lin
- Department of Medical Oncology, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yun-Biao Ling
- Guangdong Key Laboratory of Liver Disease Research, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun-Wei Chen
- Guangdong Key Laboratory of Liver Disease Research, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chu-Ren Zhou
- Guangdong Key Laboratory of Liver Disease Research, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jie Chen
- Department of Medical Oncology, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xing Li
- Department of Medical Oncology, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ming-Sheng Huang
- Guangdong Key Laboratory of Liver Disease Research, Τhe Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
19
|
Furth N, Aylon Y, Oren M. p53 shades of Hippo. Cell Death Differ 2018; 25:81-92. [PMID: 28984872 PMCID: PMC5729527 DOI: 10.1038/cdd.2017.163] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
The three p53 family members, p53, p63 and p73, are structurally similar and share many biochemical activities. Yet, along with their common fundamental role in protecting genomic fidelity, each has acquired distinct functions related to diverse cell autonomous and non-autonomous processes. Similar to the p53 family, the Hippo signaling pathway impacts a multitude of cellular processes, spanning from cell cycle and metabolism to development and tumor suppression. The core Hippo module consists of the tumor-suppressive MST-LATS kinases and oncogenic transcriptional co-effectors YAP and TAZ. A wealth of accumulated data suggests a complex and delicate regulatory network connecting the p53 and Hippo pathways, in a highly context-specific manner. This generates multiple layers of interaction, ranging from interdependent and collaborative signaling to apparent antagonistic activity. Furthermore, genetic and epigenetic alterations can disrupt this homeostatic network, paving the way to genomic instability and cancer. This strengthens the need to better understand the nuances that control the molecular function of each component and the cross-talk between the different components. Here, we review interactions between the p53 and Hippo pathways within a subset of physiological contexts, focusing on normal stem cells and development, as well as regulation of apoptosis, senescence and metabolism in transformed cells.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| |
Collapse
|
20
|
Lin C, Hu Z, Lei B, Tang B, Yu H, Qiu X, He S. Overexpression of Yes-associated protein and its association with clinicopathological features of hepatocellular carcinoma: A meta-analysis. Liver Int 2017; 37:1675-1681. [PMID: 28345185 PMCID: PMC5697662 DOI: 10.1111/liv.13428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Yes-associated protein (YAP) overexpression is reported to be associated with risk of hepatocellular carcinoma (HCC) but current studies have not explored the relationship between YAP expression with HCC clinicopathological features. METHODS To assess these associations, a meta-analysis was performed which included four eligible studies including 391 HCC cases and 334 controls. There were eight eligible studies to investigate the association between YAP expression in HCC and clinicopathological features of liver cancer patients. Literature was obtained from PubMed, Embase, Wangfang and China National Knowledge Infrastructure. RESULTS Analysis indicated that YAP expression in HCC was greater than in adjacent non-tumour tissue (odds ratio [OR], 15.80, 95% confidence interval [CI], 10.53-23.70, P<.00001; heterogeneity=.30). YAP overexpression in HCC was significantly associated with vascular invasion (OR, 2.21, 95% CI, 11.64-2.97, P<.00001, heterogeneity=.10), less cellular differentiation (OR, 2.38, 95% CI, 1.61-3.51, P<.00001, heterogeneity=.333), tumours larger than 5 cm (OR, 2.52, 95% CI, 1.75-3.62, P<.00001; heterogeneity=.17) and TNM tumour stage I + II (OR, 0.44, 95% CI, 0.28-0.75, P=.00003, heterogeneity=.12). CONCLUSIONS Overexpression of YAP contributes to HCC formation, and its overexpression is associated with vascular invasion, low cellular differentiation tumours larger than 5 cm and TNM tumour stage III + IV.
Collapse
Affiliation(s)
- Chengjie Lin
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| | - Zhigao Hu
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| | - Biao Lei
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| | - Bo Tang
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hongping Yu
- Department of EpidemiologySchool of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiaoqiang Qiu
- Department of EpidemiologySchool of Public HealthGuangxi Medical UniversityNanningChina
| | - Songqing He
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| |
Collapse
|
21
|
Buuh ZY, Lyu Z, Wang RE. Interrogating the Roles of Post-Translational Modifications of Non-Histone Proteins. J Med Chem 2017; 61:3239-3252. [PMID: 28505447 DOI: 10.1021/acs.jmedchem.6b01817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) allot versatility to the biological functions of highly conserved proteins. Recently, modifications to non-histone proteins such as methylation, acetylation, phosphorylation, glycosylation, ubiquitination, and many more have been linked to the regulation of pivotal pathways related to cellular response and stability. Due to the roles these dynamic modifications assume, their dysregulation has been associated with cancer and many other important diseases such as inflammatory disorders and neurodegenerative diseases. For this reason, we present a review and perspective on important post-translational modifications on non-histone proteins, with emphasis on their roles in diseases and small molecule inhibitors developed to target PTM writers. Certain PTMs' contribution to epigenetics has been extensively expounded; yet more efforts will be needed to systematically dissect their roles on non-histone proteins, especially for their relationships with nononcological diseases. Finally, current research approaches for PTM study will be discussed and compared, including limitations and possible improvements.
Collapse
Affiliation(s)
- Zakey Yusuf Buuh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Zhigang Lyu
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Rongsheng E Wang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|