1
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601261. [PMID: 39005381 PMCID: PMC11244921 DOI: 10.1101/2024.06.28.601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
|
2
|
Lu X, Mei Y, Fan C, Chen P, Li X, Zeng Z, Li G, Xiong W, Xiang B, Yi M. Silencing AHNAK promotes nasopharyngeal carcinoma progression by upregulating the ANXA2 protein. Cell Oncol (Dordr) 2024; 47:833-850. [PMID: 37962808 DOI: 10.1007/s13402-023-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.
Collapse
Affiliation(s)
- Xingxing Lu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yan Mei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
4
|
Rajeev Kumar S, Sakthiswary R, Lokanathan Y. Potential Therapeutic Application and Mechanism of Action of Stem Cell-Derived Extracellular Vesicles (EVs) in Systemic Lupus Erythematosus (SLE). Int J Mol Sci 2024; 25:2444. [PMID: 38397121 PMCID: PMC10889333 DOI: 10.3390/ijms25042444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease that affects nearly 3.41 million people globally, with 90% of the cases affecting women of childbearing age. SLE is a complex disease due to the interplay of various immunological pathways and mechanisms. This scoping review aims to highlight the latest research findings on the therapeutic mechanisms of action of EVs in SLE. Relevant research articles were identified using the PRISMA framework from databases such as PubMed/MEDLINE (National Library of Medicine), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate Analytics) from July 2023 to October 2023. Eleven studies met the inclusion criteria and thus were included in this scoping review. The findings showed that EVs have therapeutic effects on ameliorating the disease progression of SLE. EVs can reduce the pro-inflammatory cytokines and increase the anti-inflammatory cytokines. Moreover, EVs can increase the levels of regulatory T cells, thus reducing inflammation. EVs also have the potential to regulate B cells to alleviate SLE and reduce its adverse effects. The scoping review has successfully analysed the therapeutic potential in ameliorating the disease progression of SLE. The review also includes prospects to improve the effects of EVs further to increase the therapeutic effects on SLE.
Collapse
Affiliation(s)
- Sushmitha Rajeev Kumar
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Rajalingham Sakthiswary
- Department of Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
5
|
Teles RHG, Engelmayr D, Meybohm P, Burek M. Isolation of Extracellular Vesicles Using Formulas to Adapt Centrifugation to Different Centrifuges. Methods Mol Biol 2024; 2761:39-48. [PMID: 38427227 DOI: 10.1007/978-1-0716-3662-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer vesicles released by cells to facilitate cell-to-cell communication. To study their biological roles and functions, they need to be isolated and purified, which can be achieved through a variety of methods. Here, we describe different methods for isolating and purifying EVs, with a focus on calculating the required g-force and centrifugation time with different centrifuges and rotors. We have compiled key formulas and tested predicted parameters for EV acquisitions to provide a comprehensive guide for EV isolation.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, Sao Paulo, Brazil
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Daniela Engelmayr
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Silva SV, Lima MA, Hodgson L, Freitas VM, Rodríguez-Manzaneque JC. ADAMTS-1 has nuclear localization in cells with epithelial origin and leads to decreased cell migration. Exp Cell Res 2023; 433:113852. [PMID: 37951335 PMCID: PMC10841765 DOI: 10.1016/j.yexcr.2023.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
In the study of tumorigenesis, the involvement of molecules within the extracellular matrix (ECM) is crucial. ADAMTSs (A Disintegrin and Metalloproteinase with Thrombospondin motifs), a group of secreted proteases known for their role in ECM remodeling, were primarily considered to be extracellular proteases. However, our research specifically detected ADAMTS-1, a member of this family, predominantly within the nucleus of mammary cells. Our main objective was to understand the mechanism of ADAMTS-1 translocation to the nucleus and its functional significance in this cellular compartment. Our investigation uncovered that nuclear ADAMTS-1 was present in cells exhibiting an epithelial phenotype, while cells of mesenchymal origin contained the protease in the cytoplasm. Moreover, disruption of ADAMTS-1 secretion, induced by Monensin treatment, resulted in its accumulation in the cytoplasm. Notably, our research indicated that alterations in the secretory pathways could influence the protease's compartmentalization. Additionally, experiments with conditioned medium from cells containing nuclear ADAMTS-1 demonstrated its internalization into the nucleus by HT-1080 cells and fibroblasts. Furthermore, heightened levels of ADAMTS-1 within the ECM reduced the migratory potential of mesenchymal cells. This highlights the potential significance of nuclear ADAMTS-1 as a critical component within the tumor microenvironment due to its functional activity in this specific cellular compartment.
Collapse
Affiliation(s)
- Suély V Silva
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Maíra A Lima
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
7
|
Zelanis A, Barcick U, Racorti NDV, Salardani M. Heterotypic communication as the promoter of phenotypic plasticity of cancer cells: The role of cancer secretomes. Proteomics 2023; 23:e2200243. [PMID: 37474490 DOI: 10.1002/pmic.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of "signatures" of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.
Collapse
Affiliation(s)
- André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Nathália de Vasconcellos Racorti
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Murilo Salardani
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
8
|
Dumontel B, Jiménez-Jiménez C, Vallet-Regí M, Manzano M. Bioinspired extracellular vesicle-coated silica nanoparticles as selective delivery systems. Mater Today Bio 2023; 23:100850. [PMID: 38024844 PMCID: PMC10643352 DOI: 10.1016/j.mtbio.2023.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In recent years, there has been a breakthrough in the integration of artificial nanoplatforms with natural biomaterials for the development of more efficient drug delivery systems. The formulation of bioinspired nanosystems, combining the benefits of synthetic nanoparticles with the natural features of biological materials, provides an efficient strategy to improve nanoparticle circulation time, biocompatibility and specificity toward targeted tissues. Among others biological materials, extracellular vesicles (EVs), membranous structures secreted by many types of cells composed by a protein rich lipid bilayer, have shown a great potential as drug delivery systems themselves and in combination with artificial nanoparticles. The reason for such interest relays on their natural properties, such as overcoming several biological barriers or migration towards specific tissues. Here, we propose the use of mesoporous silica nanoparticles (MSNs) as efficient and versatile nanocarriers in combination with tumor derived extracellular vesicles (EVs) for the development of selective drug delivery systems. The hybrid nanosystems demonstrated selective cellular internalization in parent cells, indicating that the EV targeting capabilities were efficiently transferred to MSNs by the developed coating strategy. As a result, EVs-coated MSNs provided an enhanced and selective intracellular accumulation of doxorubicin and a specific cytotoxic activity against targeted cancer cells, revealing these hybrid nanosystems as promising candidates for the development of targeted treatments.
Collapse
Affiliation(s)
- Bianca Dumontel
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid, 28040, Spain
| | - Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid, 28040, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid, 28040, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid, 28040, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
9
|
Zhang S, Cai Z, Li H. AHNAKs roles in physiology and malignant tumors. Front Oncol 2023; 13:1258951. [PMID: 38033502 PMCID: PMC10682155 DOI: 10.3389/fonc.2023.1258951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The AHNAK family currently consists of two members, namely AHNAK and AHNAK2, both of which have a molecular weight exceeding 600 kDa. Homologous sequences account for approximately 90% of their composition, indicating a certain degree of similarity in terms of molecular structure and biological functions. AHNAK family members are involved in the regulation of various biological functions, such as calcium channel modulation and membrane repair. Furthermore, with advancements in biological and bioinformatics technologies, research on the relationship between the AHNAK family and tumors has rapidly increased in recent years, and its regulatory role in tumor progression has gradually been discovered. This article briefly describes the physiological functions of the AHNAK family, and reviews and analyzes the expression and molecular regulatory mechanisms of the AHNAK family in malignant tumors using Pubmed and TCGA databases. In summary, AHNAK participates in various physiological and pathological processes in the human body. In multiple types of cancers, abnormal expression of AHNAK and AHNAK2 is associated with prognosis, and they play a key regulatory role in tumor progression by activating signaling pathways such as ERK, MAPK, Wnt, and MEK, as well as promoting epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Shusen Zhang
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai, China
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhigang Cai
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Li
- Department of surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| |
Collapse
|
10
|
Liu YJ, Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023; 21:77. [PMID: 37055761 PMCID: PMC10100201 DOI: 10.1186/s12964-023-01103-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound structures that are released from cells into the surrounding environment. These structures can be categorized as exosomes, microvesicles, or apoptotic vesicles, and they play an essential role in intercellular communication. These vesicles are attracting significant clinical interest as they offer the potential for drug delivery, disease diagnosis, and therapeutic intervention. To fully understand the regulation of intercellular communication through EVs, it is essential to investigate the underlying mechanisms. This review aims to provide a summary of the current knowledge on the intercellular communications involved in EV targeting, binding, and uptake, as well as the factors that influence these interactions. These factors include the properties of the EVs, the cellular environment, and the recipient cell. As the field of EV-related intercellular communication continues to expand and techniques improve, we can expect to uncover more information about this complex area, despite the current limitations in our knowledge.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 VF25, Ireland.
| |
Collapse
|
11
|
Sharaf BM, Giddey AD, Al-Hroub HM, Menon V, Okendo J, El-Awady R, Mousa M, Almehdi A, Semreen MH, Soares NC. Mass spectroscopy-based proteomics and metabolomics analysis of triple-positive breast cancer cells treated with tamoxifen and/or trastuzumab. Cancer Chemother Pharmacol 2022; 90:467-488. [PMID: 36264351 DOI: 10.1007/s00280-022-04478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE HER2-enriched breast cancer with high levels of hormone receptor expression, known as "triple positive" breast cancer, may represent a new entity with a relatively favourable prognosis against which the combination of chemotherapy, HER-2 inhibition, and endocrine treatment may be considered overtreatment. We explored the effect of the anticancer drugs tamoxifen and trastuzumab, both separately and in combination, on the integrated proteomic and metabolic profile of "triple positive" breast cancer cells (BT-474). METHOD We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry using a Bruker timsTOF to investigate changes in BT-474 cell line treated with either tamoxifen, trastuzumab or a combination. Differentially abundant metabolites were identified using the Bruker Human Metabolome Database metabolite library and proteins using the Uniprot proteome for Homo sapiens using MetaboScape and MaxQuant, respectively, for identification and quantitation. RESULTS A total of 77 proteins and 85 metabolites were found to significantly differ in abundance in BT-474 treated cells with tamoxifen 5 μM/and or trastuzumab 2.5 μM. Findings suggest that by targeting important cellular signalling pathways which regulate cell growth, apoptosis, proliferation, and chemoresistance, these medicines have a considerable anti-growth effect in BT-474 cells. Pathways enriched for dysregulation include RNA splicing, neutrophil degranulation and activation, cellular redox homeostasis, mitochondrial transmembrane transport, ferroptosis and necroptosis, ABC transporters and central carbon metabolism. CONCLUSION Our findings in protein and metabolite level research revealed that anti-cancer drug therapy had a significant impact on the key signalling pathways and molecular processes in triple positive BT-474 cell lines.
Collapse
Affiliation(s)
- Basma M Sharaf
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates.,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Alexander D Giddey
- Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Hamza M Al-Hroub
- Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town, 7925, South Africa
| | - Raafat El-Awady
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates.,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Almehdi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates. .,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates.
| | - Nelson C Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates. .,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Neville MC, Webb PG, Baumgartner HK, Bitler BG. Claudin-4 localization in epithelial ovarian cancer. Heliyon 2022; 8:e10862. [PMID: 36237976 PMCID: PMC9552118 DOI: 10.1016/j.heliyon.2022.e10862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Claudin-4, a protein with the structure of classic claudins most often found in cell-cell junctions, is frequently overexpressed in epithelial cancers where its localization has not been studied. In this study we aimed to find out where this membrane protein is localized in an ovarian tumor model, OVCAR3 cells, that express high levels of the protein. Immunohistochemical studies showed claudin-4 staining in a perinuclear region, at most plasma membranes and in cytoplasmic puncta. Native claudin-4 did not overlap with phosphorylated claudin-4, which was partially located in focal adhesions. Using claudin-4 BioID technology we confirmed that large amounts of claudin-4 are localized to the Golgi compartment, including in dispersed Golgi in cells where claudin-4 is partially knocked down and in dividing cells. Claudin-4 appears to be present in the vicinity of several types of cell-cell junctions, but there is no evidence that it forms tight junctions in these tumor cells. Both claudin-4, the Golgi marker GM130, and the plasma membrane receptor Notch2 were found in dispersed Golgi in dividing cells. This definition of the cellular architecture of claudin-4 should provide a framework for better understanding of the function of claudin-4 in tumor cells and its molecular interactions.
Collapse
Affiliation(s)
- Margaret C. Neville
- Departments of Obstetrics and Gynecology and Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, 80845, USA
- Corresponding author.
| | - Patricia G. Webb
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80845, USA
| | - Heidi K. Baumgartner
- University of Colorado Anschutz Medical Campus, 2700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Denver Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19 Ave., Aurora, CO, 80045, USA
| |
Collapse
|
13
|
Giusti I, Di Francesco M, Poppa G, Esposito L, D’Ascenzo S, Dolo V. Tumor-Derived Extracellular Vesicles Activate Normal Human Fibroblasts to a Cancer-Associated Fibroblast-Like Phenotype, Sustaining a Pro-Tumorigenic Microenvironment. Front Oncol 2022; 12:839880. [PMID: 35280782 PMCID: PMC8905682 DOI: 10.3389/fonc.2022.839880] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts in the tumor microenvironment have been proven to actively participate in tumor progression; they can be "educated" by cancer cells acquiring an activated state and, as such, are identified as cancer-associated fibroblasts (CAFs); CAFs, in turn, remodel tumor stroma to be more advantageous for cancer progression by modulating several processes, including angiogenesis, immunosuppression, and drug access, presumably driving the chemoresistance. That is why they are believed to hamper the response to clinical therapeutic options. The communication between cancer cells and fibroblasts can be mediated by extracellular vesicles (EVs), composed of both exosomes (EXOs) and microvesicles (MVs). To verify the role of different subpopulations of EVs in this cross-talk, a nearly pure subpopulation of EXO-like EVs and the second one of mixed EXO- and MV-like EVs were isolated from ovarian cancer cells and administered to fibroblasts. It turned out that EVs can activate fibroblasts to a CAF-like state, supporting their proliferation, motility, invasiveness, and enzyme expression; EXO-like EV subpopulation seems to be more efficient in some of those processes, suggesting different roles for different EV subpopulations. Moreover, the secretome of these "activated" fibroblasts, composed of both soluble and EV-associated molecules, was, in turn, able to modulate the response of bystander cells (fibroblasts, tumor, and endothelial cells), supporting the idea that EVs sustain the mutual cross-talk between tumor cells and CAFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
14
|
Zardab M, Stasinos K, Grose RP, Kocher HM. The Obscure Potential of AHNAK2. Cancers (Basel) 2022; 14:cancers14030528. [PMID: 35158796 PMCID: PMC8833689 DOI: 10.3390/cancers14030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AHNAK2 is a relatively newly discovered protein. It can interact with many other proteins. This protein is increased in cells of variety of different cancers. AHNAK2 may play a vital role in cancer formation. AHNAK2 may have a role in early detection of cancer. This obscure potential of AHNAK2 is being studied. Abstract AHNAK2 is a protein discovered in 2004, with a strong association with oncogenesis in various epithelial cancers. It has a large 616 kDa tripartite structure and is thought to take part in the formation of large multi-protein complexes. High expression is found in clear cell renal carcinoma, pancreatic ductal adenocarcinoma, uveal melanoma, and lung adenocarcinoma, with a relation to poor prognosis. Little work has been done in exploring the function and relation AHNAK2 has with cancer, with early studies showing promising potential as a future biomarker and therapeutic target.
Collapse
|
15
|
He J, Zeng Z, Wang Y, Deng J, Tang X, Liu F, Huang J, Chen H, Liang R, Zan X, Liu Z, Tong A, Guo G, Xu J, Zhu X, Zhou L, Peng Y. Characterization of novel CTNNB1 mutation in Craniopharyngioma by whole-genome sequencing. Mol Cancer 2021; 20:168. [PMID: 34922552 PMCID: PMC8684236 DOI: 10.1186/s12943-021-01468-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Craniopharyngioma (CP) is rare histologically benign but clinically challenging tumor because of its intimate relationship with the critical structure in the central brain. CP can be divided into two major histologic subtypes: adamantinomatous-type CP (ACP) and papillary-type CP (PCP). Although some genetic aberrations for both categories have been revealed in previous studies, the complete spectrum of genetic changes of this tumor remains unknown. Methods In this study, we conducted whole genome sequencing (WGS) on twenty-six CPs including 16 ACPs and 10 PCPs together with their matched blood samples. Somatic variants (SNVs, InDels, SVs and CNVs) were identified and mutational signatures were characterized for each patient. We investigated the impact of a novel CTNNB1 mutant on its protein stability, ubiquitination and Wnt pathway activity. Cell proliferation ability of the CTNNB1 mutant in ACP primary cells was additionally analyzed by CCK8 and colony formation assays. Results We found that CPs had showed less complexity with fewer somatic mutations compared with malignant tumors. Moreover, mutations in CTNNB1 (68.75% of ACP) and BRAF V600E (70.00% of PCP) are mutually exclusive in ACP and PCP, consolidating that the driving roles of these two genes in ACP and PCP, respectively. A novel mutation in the exon 3 of CTNNB1 which compromised both a transversion and in-frame deletion was identified in ACP. This mutation was experimentally validated to confer β-catenin increased stability by inhibiting its ubiquitination, thus activating Wnt-signaling pathway and promoting cell proliferation. Conclusions Whole genome landscape for CP was revealed by WGS analysis, and a novel mutation in the exon 3 of CTNNB1 was identified. This novel mutation activates Wnt-signaling pathway through increasing the stability of β-catenin. Our findings provided us with more comprehensive insight into the spectrum of genetic alterations in CP. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01468-7.
Collapse
Affiliation(s)
- Juan He
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zeng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yuelong Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 20040, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fujun Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianhan Huang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxu Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aiping Tong
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Teles RHG, Yano RS, Villarinho NJ, Yamagata AS, Jaeger RG, Meybohm P, Burek M, Freitas VM. Advances in Breast Cancer Management and Extracellular Vesicle Research, a Bibliometric Analysis. Curr Oncol 2021; 28:4504-4520. [PMID: 34898576 PMCID: PMC8628791 DOI: 10.3390/curroncol28060382] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles transport variable content and have crucial functions in cell–cell communication. The role of extracellular vesicles in cancer is a current hot topic, and no bibliometric study has ever analyzed research production regarding their role in breast cancer and indicated the trends in the field. In this way, we aimed to investigate the trends in breast cancer management involved with extracellular vesicle research. Articles were retrieved from Scopus, including all the documents published concerning breast cancer and extracellular vesicles. We analyzed authors, journals, citations, affiliations, and keywords, besides other bibliometric analyses, using R Studio version 3.6.2. and VOSviewer version 1.6.0. A total of 1151 articles were retrieved, and as the main result, our analysis revealed trending topics on biomarkers of liquid biopsy, drug delivery, chemotherapy, autophagy, and microRNA. Additionally, research related to extracellular vesicles in breast cancer has been focused on diagnosis, treatment, and mechanisms of action of breast tumor-derived vesicles. Future studies are expected to explore the role of extracellular vesicles on autophagy and microRNA, besides investigating the application of extracellular vesicles from liquid biopsies for biomarkers and drug delivery, enabling the development and validation of therapeutic strategies for specific cancers.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
- Correspondence: ; Tel.: +55-16-98205-9151
| | - Rafael Sussumu Yano
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Nicolas Jones Villarinho
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Ana Sayuri Yamagata
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Ruy Gastaldoni Jaeger
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.M.); (M.B.)
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.M.); (M.B.)
| | - Vanessa Morais Freitas
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| |
Collapse
|
17
|
Jia M', Li ZY, Xu K, Wang YH, Yu F, He XY. Biological effects of exosome derived from Cal27 on normal human gingival fibroblasts. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:313-319. [PMID: 34041881 DOI: 10.7518/hxkq.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The proliferation, migration capacity, and expression of activation-related proteins of NHGFs+Cal27-exo were determined by coculturing Cal27 exosome (Cal27-exo) with normal human gingival fibroblasts (NHGFs) to explore the effects of Cal27-exo on the activation and biological behavior of NHGFs. METHODS Cal27-exo was extracted using supercentrifugation, and exosomes were identified using Western blot, transmission electron microscopy (TEM), and particle size detection. Cal27-exo was cocultured with NHGFs to detect the uptake of Cal27-exo by NHGFs, and the proliferation and migration capacity of NHGFs+Cal27-exo were detected using CCK8 and wound healing tests, respectively. The expression levels of NHGF activation-related proteins, i.e., matrix metalloproteinase-9 (MMP-9), fibroblast-activating protein (FAP), alpha smooth muscle actin (αSMA), and transforming growth factor-β (TGF-β), were detected using real-time quantitative polymerase chain reaction (qRT-PCR). RESULTS Cal27-exo was extracted u-sing supercentrifugation, and Western blot showed the positive expression levels of Alix and CD63. TEM showed that Cal27-exo had a circular double-layer vesicle. The particle size was between 30 and 150 nm. Cal27-exo labeled with PKH67 entered NHGFs after the coculture method. The wound healing test showed that the migration capacity of NHGFs+Cal27-exo was stronger after the scratch compared with that of NHGFs. CCK8 results showed that the proliferation activity of NHGFs+Cal27-exo was enhanced. qRT-PCR results showed that the MMP-9 levels of NHGFs+Cal27-exo were upregulated, whereas the TGF-β and αSMA mRNA levels of NHGFs+Cal27-exo were downregulated (P<0.05). CONCLUSIONS The proliferation and migration ability of NHGFs+Cal27-exo are enhanced, and the mRNA expression of related proteins is changed. Cal27-exo can activate NHGFs, which suggests that Cal27-exo has potential significance in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Mei-'e Jia
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Yong Li
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Kai Xu
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yi-Heng Wang
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Fei Yu
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Yi He
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Chan QWT, Rogalski J, Moon KM, Foster LJ. The application of forensic proteomics to identify an unknown snake venom in a deceased toddler. Forensic Sci Int 2021; 323:110820. [PMID: 33984813 DOI: 10.1016/j.forsciint.2021.110820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Proteomics is the global analysis of proteins in a sample, and its methodologies are commonly applied in life science research. Despite its wide applicability however, proteomics is rarely used as a tool in criminal investigations. Here we present a case where the technique provided key evidence in a case that involved the death of a two-year old girl. The defendant was known to keep exotic snakes, including several venomous species, which led the coroner to probe whether there could be snake venom in the blood of the deceased. One major challenge of the investigation was the overwhelming presence of several blood proteins, such as apolipoprotein and complement proteins, which hinders the detection of less abundant analytes. In a counter-acting strategy, a combination of immunodepletion and fractionation methods was used; the sample was then submitted to tandem mass spectrometry for peptide identification. Using this strategy, 15,000 peptides could be sequenced. However, the subsequent challenge was to differentiate between human and snake proteins, given the genetic similarities that are shared by the two vertebrate species. After a thorough bioinformatics search and manual inspection, we found that<1% of the sequenced peptides could be matched unequivocally to snake proteins, including a well-known venom component, phospholipase A2. This evidence, in part, led to a court-issued search warrant of the defendant's home, followed by his arrest and an eventual guilty plea with formal sentencing to 18 months in prison. The work outlined here is an example of how proteomics technology can help to expand the toolkit for molecular forensics.
Collapse
Affiliation(s)
- Queenie W T Chan
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jason Rogalski
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
19
|
Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochim Biophys Acta Rev Cancer 2021; 1876:188553. [PMID: 33915221 DOI: 10.1016/j.bbcan.2021.188553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The commencement of cancer is attributed to one or a few cells that become rogue and attain the property of immortality. The inception of distinct cancer cell clones during the hyperplastic and dysplastic stages of cancer progression is the utimate consequence of the dysregulated cellular pathways and the proliferative potential itself. Furthermore, a critical factor that adds a layer of complexity to this pre-existent intra-tumoral heterogeneity (ITH) is the foundation of an oxygen gradient, that is established due to the improper architecture of the tumor vasculature. Therefore, as a resultant effect, the poorly oxygenated regions thus formed and characterized as hypoxic, promote the emergence of aggressive and treatment-resistant cancer cell clones. The extraordinary property of the hypoxic cancer cells to exist harmoniously with cancerous and non-cancerous cells in the tumor microenvironment (TME) further increases the intricacies of ITH. Here in this review, the pivotal influence of differential oxygen concentrations in shaping the ITH is thoroughly discussed. We also emphasize on the vitality of the interacting networks that govern the overall fate of oxygen gradient-dependent origin of tumor heterogeneity. Additionally, the implications of less-appreciated reverse Warburg effect, a symbiotic metabolic coupling, and the associated epigenetic regulation of rewiring of cancer metabolism in response to oxygen gradients, have been highlighted as critical influencers of ITH.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Shruti G Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
20
|
Xiang X, Langlois S, St-Pierre ME, Blinder A, Charron P, Graber TE, Fowler SL, Baird SD, Bennett SAL, Alain T, Cowan KN. Identification of pannexin 1-regulated genes, interactome, and pathways in rhabdomyosarcoma and its tumor inhibitory interaction with AHNAK. Oncogene 2021; 40:1868-1883. [PMID: 33564071 PMCID: PMC7946643 DOI: 10.1038/s41388-020-01623-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023]
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, is an aggressive cancer with a poor prognosis. Despite current management, the 5-year survival rate for patients with metastatic RMS is ∼30%; underscoring the need to develop better treatment strategies. We have recently reported that pannexin 1 (PANX1) levels are downregulated in RMS and that restoring its expression inhibits RMS progression. Here, we have surveyed and characterized the molecular changes induced by PANX1 re-expression in RMS. We cataloged transcriptomic changes in this context by RNA sequencing. At the protein level, we unveiled PANX1 interactors using BioID, complemented by co-immunoprecipitation coupled to high-performance liquid chromatography/electrospray ionization tandem mass spectrometry performed in PANX1-enriched fractions. Using these data, we generated searchable public databases for the PANX1 interactome and changes to the RMS transcriptome occurring when PANX1 expression is restored. STRING network analyses revealed a PANX1 interactome involving plasma membrane and cytoskeleton-associated proteins including the previously undescribed interactor AHNAK. Indeed, AHNAK knockdown abrogated the PANX1-mediated reduction in RMS cell viability and migration. Using these unbiased approaches, we bring insight to the mechanisms by which PANX1 inhibits RMS progression, identifying the cell migration protein AHNAK as a key modifier of PANX1-mediated changes in RMS malignant properties.
Collapse
Affiliation(s)
- Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anna Blinder
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Charron
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Stephanie L Fowler
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- UK Dementia Research Institute, University College London, London, UK
| | - Stephen D Baird
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Yang H, Zhang F, Long H, Lin Y, Liao J, Xia H, Huang K. IFT20 Mediates the Transport of Cell Migration Regulators From the Trans-Golgi Network to the Plasma Membrane in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:632198. [PMID: 33748116 PMCID: PMC7968458 DOI: 10.3389/fcell.2021.632198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
IFT20 is a subunit of the intraflagellar transport (IFT) system essential for the formation and function of cilia. Besides predominant research in the cilia field, some IFT subunits perform extraciliary roles in non-ciliated cancer cells. However, the specific roles of IFT subunits in tumorigenesis remain unknown. Here, we found that knockout of IFT20 in mouse breast cancer cells lacking primary cilia promoted epithelial mesenchymal transitions (EMTs), active lamellipodia formation, and cell migration. IFT20 localized at the trans-Golgi and trans-Golgi network (TGN), and displayed vesicular co-distributions with Rab8a, the marker of TGN-to-plasma membrane vesicular trafficking. Proximity-dependent biotin identification (BioID) and colocalization analyzes showed that Numb and Ctnnal1, whose depletion promoted cell migration, co-localized with IFT20 at the trans-Golgi/TGN or intracellular transport vesicles. Furthermore, Strep-Tactin pulldown assays revealed an interaction between IFT20 and Ctnnal1 or Numb. Loss of IFT20 lowered the expression of actin-associated Tagln2, whose knockdown promoted cell migration. Thus, the extraciliary function of ITF20 in breast cancer cell was associated with the negative regulation of migration.
Collapse
Affiliation(s)
- Huihui Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiwen Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Hubei-MOST & KLOBM), Wuhan University, Wuhan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Hubei-MOST & KLOBM), Wuhan University, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
22
|
Environmental control of mammary carcinoma cell expansion by acidification and spheroid formation in vitro. Sci Rep 2020; 10:21959. [PMID: 33319820 PMCID: PMC7738540 DOI: 10.1038/s41598-020-78989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Like other cancers, mammary carcinoma progression involves acidification of the tumor microenvironment, which is an important factor for cancer detection and treatment strategies. However, the effects of acidity on mammary carcinoma cell morphology and phenotype have not been thoroughly characterized. Here, we evaluated fundamental effects of environmental acidification on mammary carcinoma cells in standard two-dimensional cultures and three-dimensional spheroids. Acidification decreased overall mammary carcinoma cell viability, while increasing their resistance to the anthracycline doxorubicin. Environmental acidification also increased extracellular vesicle production by mammary carcinoma cells. Conditioned media containing these vesicles appeared to increase fibroblast motility. Acidification also increased mammary carcinoma cell motility when cultured with fibroblasts in spheroids. Taken together, results from this study suggest that environmental acidification induces drug resistance and extracellular vesicle production by mammary carcinoma cells that promote tumor expansion.
Collapse
|
23
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
24
|
Taylor SK, Houshdaran S, Robinson JF, Gormley MJ, Kwan EY, Kapidzic M, Schilling B, Giudice LC, Fisher SJ. Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNFα. Development 2020; 147:dev.187013. [PMID: 32747437 DOI: 10.1242/dev.187013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The placenta releases large quantities of extracellular vesicles (EVs) that likely facilitate communication between the embryo/fetus and the mother. We isolated EVs from second trimester human cytotrophoblasts (CTBs) by differential ultracentrifugation and characterized them using transmission electron microscopy, immunoblotting and mass spectrometry. The 100,000 g pellet was enriched for vesicles with a cup-like morphology typical of exosomes. They expressed markers specific to this vesicle type, CD9 and HRS, and the trophoblast proteins placental alkaline phosphatase and HLA-G. Global profiling by mass spectrometry showed that placental EVs were enriched for proteins that function in transport and viral processes. A cytokine array revealed that the CTB 100,000 g pellet contained a significant amount of tumor necrosis factor α (TNFα). CTB EVs increased decidual stromal cell (dESF) transcription and secretion of NF-κB targets, including IL8, as measured by qRT-PCR and cytokine array. A soluble form of the TNFα receptor inhibited the ability of CTB 100,000 g EVs to increase dESF secretion of IL8. Overall, the data suggest that CTB EVs enhance decidual cell release of inflammatory cytokines, which we theorize is an important component of successful pregnancy.
Collapse
Affiliation(s)
- Sara K Taylor
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Matthew J Gormley
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elaine Y Kwan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA .,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, CA 94143, USA.,Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
The S100B Protein and Partners in Adipocyte Response to Cold Stress and Adaptive Thermogenesis: Facts, Hypotheses, and Perspectives. Biomolecules 2020; 10:biom10060843. [PMID: 32486507 PMCID: PMC7356379 DOI: 10.3390/biom10060843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, adipose tissue is an active secretory tissue that responds to mild hypothermia and as such is a genuine model to study molecular and cellular adaptive responses to cold-stress. A recent study identified a mammal-specific protein of the endoplasmic reticulum that is strongly induced in the inguinal subcutaneous white adipocyte upon exposure to cold, calsyntenin 3β (CLSTN3β). CLSTN3β regulates sympathetic innervation of thermogenic adipocytes and contributes to adaptive non-shivering thermogenesis. The calcium- and zinc-binding S100B is a downstream effector in the CLSTN3β pathways. We review, here, the literature on the transcriptional regulation of the S100b gene in adipocyte cells. We also rationalize the interactions of the S100B protein with its recognized or hypothesized intracellular (p53, ATAD3A, CYP2E1, AHNAK) and extracellular (Receptor for Advanced Glycation End products (RAGE), RPTPσ) target proteins in the context of adipocyte differentiation and adaptive thermogenesis. We highlight a chaperon-associated function for the intracellular S100B and point to functional synergies between the different intracellular S100B target proteins. A model of non-classical S100B secretion involving AHNAK/S100A10/annexin2-dependent exocytosis by the mean of exosomes is also proposed. Implications for related areas of research are noted and suggestions for future research are offered.
Collapse
|
26
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
27
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|
28
|
Baudier J, Deloulme JC, Shaw GS. The Zn 2+ and Ca 2+ -binding S100B and S100A1 proteins: beyond the myths. Biol Rev Camb Philos Soc 2020; 95:738-758. [PMID: 32027773 DOI: 10.1111/brv.12585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The S100 genes encode a conserved group of 21 vertebrate-specific EF-hand calcium-binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium- and zinc-binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+ . The Ca2+ and Zn2+ -dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate-specific proteins and propose a new model for stable interactions of S100B dimers with full-length target proteins. A chaperone-associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.
Collapse
Affiliation(s)
- Jacques Baudier
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Aix Marseille Université, 13288, Marseille Cedex 9, France
| | - Jean Christophe Deloulme
- Grenoble Institut des Neurosciences, INSERM U1216, Université Grenoble Alpes, 38000, Grenoble, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
29
|
Liu Z, Yang X, Jiang F, Pan Y, Zhang L. Matrine involves in the progression of gastric cancer through inhibiting miR‐93‐5p and upregulating the expression of target gene AHNAK. J Cell Biochem 2019; 121:2467-2477. [PMID: 31736157 DOI: 10.1002/jcb.29469] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Zhi‐Min Liu
- Department of Pharmacy Yantai Affiliated Hospital of Binzhou Medical University China
| | - Xiao‐Li Yang
- Department of Pharmacy Yantai Affiliated Hospital of Binzhou Medical University China
| | - Feng Jiang
- Department of Pharmacy Yantai Affiliated Hospital of Binzhou Medical University China
| | - Yan‐Cheng Pan
- Department of Pharmacy Tengzhou Central People's Hospital Zaozhuang China
| | - Li Zhang
- Department of Pharmacy Yantai Hospital of Traditional Chinese Medicine China
| |
Collapse
|
30
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
31
|
Billing AM, Dib SS, Bhagwat AM, da Silva IT, Drummond RD, Hayat S, Al-Mismar R, Ben-Hamidane H, Goswami N, Engholm-Keller K, Larsen MR, Suhre K, Rafii A, Graumann J. A Systems-level Characterization of the Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells. Mol Cell Proteomics 2019; 18:1950-1966. [PMID: 31332097 PMCID: PMC6773553 DOI: 10.1074/mcp.ra119.001356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are self-renewing multipotent cells with regenerative, secretory and immunomodulatory capabilities that are beneficial for the treatment of various diseases. To avoid the issues that come with using tissue-derived MSCs in therapy, MSCs may be generated by the differentiation of human embryonic stems cells (hESCs) in culture. However, the changes that occur during the differentiation process have not been comprehensively characterized. Here, we combined transcriptome, proteome and phosphoproteome profiling to perform an in-depth, multi-omics study of the hESCs-to-MSCs differentiation process. Based on RNA-to-protein correlation, we determined a set of high confidence genes that are important to differentiation. Among the earliest and strongest induced proteins with extensive differential phosphorylation was AHNAK, which we hypothesized to be a defining factor in MSC biology. We observed two distinct expression waves of developmental HOX genes and an AGO2-to-AGO3 switch in gene silencing. Exploring the kinetic of noncoding ORFs during differentiation, we mapped new functions to well annotated long noncoding RNAs (CARMN, MALAT, NEAT1, LINC00152) as well as new candidates which we identified to be important to the differentiation process. Phosphoproteome analysis revealed ESC and MSC-specific phosphorylation motifs with PAK2 and RAF1 as top predicted upstream kinases in MSCs. Our data represent a rich systems-level resource on ESC-to-MSC differentiation that will be useful for the study of stem cell biology.
Collapse
Affiliation(s)
- Anja M Billing
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar.
| | - Shaima S Dib
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Aditya M Bhagwat
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Israel T da Silva
- Laboratory of Bioinformatics and Computational Biology, A. C., Camargo Cancer Center, São Paulo 01508-010, Brazil; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065
| | - Rodrigo D Drummond
- Laboratory of Bioinformatics and Computational Biology, A. C., Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Shahina Hayat
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Rasha Al-Mismar
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Hisham Ben-Hamidane
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Neha Goswami
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Kasper Engholm-Keller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Karsten Suhre
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar
| | - Arash Rafii
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar; Department of Gynecology and Obstetrics, Hôpital Foch, 92100 Suresnes, France
| | - Johannes Graumann
- Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
32
|
Vu LT, Peng B, Zhang DX, Ma V, Mathey-Andrews CA, Lam CK, Kiomourtzis T, Jin J, McReynolds L, Huang L, Grimson A, Cho WC, Lieberman J, Le MT. Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles 2019; 8:1599680. [PMID: 31044053 PMCID: PMC6484490 DOI: 10.1080/20013078.2019.1599680] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Tumour cells release large quantities of extracellular vesicles (EVs) to mediate their interactions with other cells in the tumour microenvironment. To identify host cells that naturally take up EVs from tumour cells, we created breast cancer cell lines secreting fluorescent EVs. These fluorescent EVs are taken up most robustly by fibroblasts within the tumour microenvironment. RNA sequencing indicated that miR-125b is one of the most abundant microRNAs secreted by mouse triple-negative breast cancer 4T1 and 4TO7 cells. Treatment with 4T1 EVs leads to an increase in fibroblast activation in isogenic 4TO7 tumours, which is reversed by blocking miR-125b in 4T1 EVs; hence, miR-125b delivery by EVs is responsible for fibroblast activation in mouse tumour models. miR-125b is also secreted by human breast cancer cells and the uptake of EVs from these cells significantly increases cellular levels of miR-125b and expression of multiple cancer-associated fibroblast markers in resident fibroblasts. Overexpression of miR-125b in both mouse and human fibroblasts leads to an activated phenotype similar to the knockdown of established miR-125b target mRNAs. These data indicate that miR-125b is transferred through EVs from breast cancer cells to normal fibroblasts within the tumour microenvironment and contributes to their development into cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Luyen Tien Vu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Boya Peng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Daniel Xin Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Camille A Mathey-Andrews
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chun Kuen Lam
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | | - Linfeng Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Minh Tn Le
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| |
Collapse
|
33
|
Dental pulp cell-derived powerful inducer of TNF-α comprises PKR containing stress granule rich microvesicles. Sci Rep 2019; 9:3825. [PMID: 30846715 PMCID: PMC6405945 DOI: 10.1038/s41598-019-40046-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
It is well known that dental pulp tissue can evoke some of the most severe acute inflammation observed in the human body. We found that dental pulp cells secrete a factor that induces tumor necrosis factor-α production from macrophages, and designated this factor, dental pulp cell-derived powerful inducer of TNF-α (DPIT). DPIT was induced in dental pulp cells and transported to recipient cells via microvesicles. Treatment of dental pulp cells with a PKR inhibitor markedly suppressed DPIT activity, and weak interferon signals were constitutively activated inside the cells. In recipient macrophages, stimulation with DPIT-containing supernatants from pulp cells resulted in activation of both nuclear factor-κB and MAP kinases like JNK and p38. Proteomics analyses revealed that many stress granule-related proteins were present in supernatants from dental pulp cells as well as microvesicle marker proteins like GAPDH, β-actin, HSPA8, HSPB1, HSPE1, and HSPD1. Furthermore, giant molecule AHNAK and PKR were detected in microvesicles derived from dental pulp cells, and gene silencing of AHNAK in dental pulp cells led to reduced DPIT activity. Thus, it appeared that the core protein of DPIT was PKR, and that PKR was maintained in an active state in stress granule aggregates with AHNAK and transported via microvesicles. The activity of DPIT for TNF-α induction was far superior to that of gram-negative bacterial endotoxin. Therefore, we, report for the first time, that active PKR is transported via microvesicles as stress granule aggregates and induces powerful inflammatory signals in macrophages.
Collapse
|
34
|
Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme. Int J Mol Sci 2018; 20:ijms20010103. [PMID: 30597867 PMCID: PMC6337164 DOI: 10.3390/ijms20010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.
Collapse
|
35
|
Plasminogen activator inhibitor-1 and tenascin-C secreted by equine mesenchymal stromal cells stimulate dermal fibroblast migration in vitro and contribute to wound healing in vivo. Cytotherapy 2018; 20:1061-1076. [PMID: 30087008 DOI: 10.1016/j.jcyt.2018.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Impaired cutaneous wound healing is common in humans, and treatments are often ineffective. Based on the significant emotional and economic burden of impaired wound healing, innovative therapies are needed. The potential of mesenchymal stromal cell (MSC)-secreted factors to treat cutaneous wounds is an active area of research that is in need of refinement before effective clinical trials can be initiated. The aims of the present study were to (i) study which MSC-secreted factors stimulate dermal fibroblast (DF) migration in vitro and (ii) evaluate the potential of these factors to promote wound healing in vivo. METHODS To this end, MSCs were isolated from the peripheral blood of healthy horses, a physiologically relevant large animal model appropriate for translational wound-healing studies. Conditioned medium (CM) from cultured equine MSCs was analyzed using liquid chromatography-mass spectrophotometry (LC-MS/MS) to identify secreted proteins of interest. Double-stranded RNA-mediated interference (RNAi) was used to silence the genes encoding selected proteins, and the effects of CM from these transfected MSCs on migration of cultured equine DF cells in vitro and full-thickness wounds in mice were evaluated. RESULTS We found that MSC-derived plasminogen activator inhibitor-1 (PAI-1) and tenascin-C significantly increased DF migration in vitro and improved wound healing in vivo by decreasing time to wound closure. DISCUSSION These results suggest that in a complex wound environment, MSC-secreted factors PAI-1 and tenascin-C contribute to the positive effect of therapeutically applied MSC CM on wound healing.
Collapse
|
36
|
Sun L, Lin C, Li X, Xing L, Huo D, Sun J, Zhang L, Yang H. Comparative Phospho- and Acetyl Proteomics Analysis of Posttranslational Modifications Regulating Intestine Regeneration in Sea Cucumbers. Front Physiol 2018; 9:836. [PMID: 30018572 PMCID: PMC6037860 DOI: 10.3389/fphys.2018.00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers exposed to stressful circumstances eviscerate most internal organs, and then regenerate them rapidly under favorable environments. Reversible protein phosphorylation and acetylation are major modifications regulating protein function. Herein, for the first time, we perform quantitative phospho- and acetyl proteomics analyses of intestine regeneration in a sea cucumber species Apostichopus japonicus. We identified 1,862 phosphorylation sites in 1,169 proteins, and 712 acetylation sites in 470 proteins. Of the 147 and 251 proteins differentially modified by phosphorylation and acetylation, respectively, most were related to cytoskeleton biogenesis, protein synthesis and modification, signal recognition and transduction, energy production and conversion, or substance transport and metabolism. Phosphorylation appears to play a more important role in signal recognition and transduction than acetylation, while acetylation is of greater importance in posttranslational modification, protein turnover, chaperones; energy production and conversion; amino acid and lipid transport and metabolism. These results expanded our understanding of the regulatory mechanisms of posttranslational modifications in intestine regeneration of sea cucumbers after evisceration.
Collapse
Affiliation(s)
- Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
Lee H, Kim K, Woo J, Park J, Kim H, Lee KE, Kim H, Kim Y, Moon KC, Kim JY, Park IA, Shim BB, Moon JH, Han D, Ryu HS. Quantitative Proteomic Analysis Identifies AHNAK (Neuroblast Differentiation-associated Protein AHNAK) as a Novel Candidate Biomarker for Bladder Urothelial Carcinoma Diagnosis by Liquid-based Cytology. Mol Cell Proteomics 2018; 17:1788-1802. [PMID: 29950347 DOI: 10.1074/mcp.ra118.000562] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/25/2018] [Indexed: 01/04/2023] Open
Abstract
Cytological examination of urine is the most widely used noninvasive pathologic screen for bladder urothelial carcinoma (BLCA); however, inadequate diagnostic accuracy remains a major challenge. We performed mass spectrometry-based proteomic analysis of urine samples of ten patients with BLCA and ten paired patients with benign urothelial lesion (BUL) to identify ancillary proteomic markers for use in liquid-based cytology (LBC). A total of 4,839 proteins were identified and 112 proteins were confirmed as expressed at significantly different levels between the two groups. We also performed an independent proteomic profiling of tumor tissue samples where we identified 7,916 proteins of which 758 were differentially expressed. Cross-platform comparisons of these data with comparative mRNA expression profiles from The Cancer Genome Atlas identified four putative candidate proteins, AHNAK, EPPK1, MYH14 and OLFM4. To determine their immunocytochemical expression levels in LBC, we examined protein expression data from The Human Protein Atlas and in-house FFPE samples. We further investigated the expression of the four candidate proteins in urine cytology samples from two independent validation cohorts. These analyses revealed AHNAK as a unique intracellular protein differing in immunohistochemical expression and subcellular localization between tumor and non-tumor cells. In conclusion, this study identified a new biomarker, AHNAK, applicable to discrimination between BLCA and BUL by LBC. To our knowledge, the present study provides the first identification of a clinical biomarker for LBC based on in-depth proteomics.
Collapse
Affiliation(s)
- Hyebin Lee
- From the ‡Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kwangsoo Kim
- §Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jongmin Woo
- ¶Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Joonho Park
- ¶Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeyoon Kim
- ‖Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,**Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Eun Lee
- ‡‡Department of Statistics, Korea University, Seoul, South Korea
| | - Hyeyeon Kim
- ‖Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Youngsoo Kim
- ¶Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Chul Moon
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Young Kim
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - In Ae Park
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Bae Shim
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hye Moon
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- §Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea; .,‖Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Han Suk Ryu
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea;
| |
Collapse
|
38
|
Oushy S, Hellwinkel JE, Wang M, Nguyen GJ, Gunaydin D, Harland TA, Anchordoquy TJ, Graner MW. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0477. [PMID: 29158308 DOI: 10.1098/rstb.2016.0477] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating tumour with abysmal prognoses. We desperately need novel approaches to understand GBM biology and therapeutic vulnerabilities. Extracellular vesicles (EVs) are membrane-enclosed nanospheres released locally and systemically by all cells, including tumours, with tremendous potential for intercellular communication. Tumour EVs manipulate their local environments as well as distal targets; EVs may be a mechanism for tumourigenesis in the recurrent GBM setting. We hypothesized that GBM EVs drive molecular changes in normal human astrocytes (NHAs), yielding phenotypically tumour-promoting, or even tumourigenic, entities. We incubated NHAs with GBM EVs and examined the astrocytes for changes in cell migration, cytokine release and tumour cell growth promotion via the conditioned media. We measured alterations in intracellular signalling and transformation capacity (astrocyte growth in soft agar). GBM EV-treated NHAs displayed increased migratory capacity, along with enhanced cytokine production which promoted tumour cell growth. GBM EV-treated NHAs developed tumour-like signalling patterns and exhibited colony formation in soft agar, reminiscent of tumour cells themselves. GBM EVs modify the local environment to benefit the tumour itself, co-opting neighbouring astrocytes to promote tumour growth, and perhaps even driving astrocytes to a tumourigenic phenotype. Such biological activities could have profound impacts in the recurrent GBM setting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Soliman Oushy
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin E Hellwinkel
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Wang
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ger J Nguyen
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dicle Gunaydin
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa A Harland
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Rondon AMR, de Almeida VH, Gomes T, Verçoza BRF, Carvalho RS, König S, Rodrigues JCF, Mermelstein CDS, Versteeg HH, Monteiro RQ. Tissue factor mediates microvesicles shedding from MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 2018; 502:137-144. [PMID: 29787758 DOI: 10.1016/j.bbrc.2018.05.136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles, such as microvesicles (MVs), were identified as important players in tumor progression and acquisition of an aggressive phenotype. Tissue factor (TF) is a transmembrane protein that initiates the blood coagulation cascade. In tumor cells, TF has been associated with aggressiveness and cancer progression. Previous studies demonstrate that TF is incorporated into MVs secreted by tumor cells; however, it is unknown whether TF is actively involved in the release of MVs. Here, we investigated the influence of TF expression on the release of MVs. TF silencing was achieved through CRISPR/Cas9 approaches in the human breast cancer cell line, MDA-MB-231. TF knockout in MDA-MB-231 cells efficiently reduced TF-dependent signaling and procoagulant activity. Remarkably, silencing of TF caused a significant decrease in the number of MVs released by MDA-MB-231 cells. We also observed an increase in actin-positive membrane projections in TF knockout cells and a reduction in RhoA expression when compared to TF-expressing cells. Treatment of MDA-MB-231 cells with the RhoA-ROCK signaling pathway inhibitor, fasudil, significantly reduced the release of MVs. Taken together, our results suggest a novel and relevant role for TF in tumor biology by playing an active role in the MVs secretion.
Collapse
Affiliation(s)
- Araci M R Rondon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Brazil; Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - Vitor H de Almeida
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Tainá Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Brunno R F Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, UFRJ, Duque de Caxias, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, RJ, Brazil
| | - Renato S Carvalho
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, UFRJ, Brazil
| | | | - Juliany C F Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, UFRJ, Duque de Caxias, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, RJ, Brazil
| | | | - Henri H Versteeg
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - Robson Q Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Brazil.
| |
Collapse
|
40
|
Park JW, Kim IY, Choi JW, Lim HJ, Shin JH, Kim YN, Lee SH, Son Y, Sohn M, Woo JK, Jeong JH, Lee C, Bae YS, Seong JK. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res 2018; 16:1287-1298. [PMID: 29724814 DOI: 10.1158/1541-7786.mcr-17-0726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
AHNAK is known to be a tumor suppressor in breast cancer due to its ability to activate the TGFβ signaling pathway. However, the role of AHNAK in lung tumor development and progression remains unknown. Here, the Ahnak gene was disrupted to determine its effect on lung tumorigenesis and the mechanism by which it triggers lung tumor development was investigated. First, AHNAK protein expression was determined to be decreased in human lung adenocarcinomas compared with matched nonneoplastic lung tissues. Then, Ahnak -/- mice were used to investigate the role of AHNAK in pulmonary tumorigenesis. Ahnak -/- mice showed increased lung volume and thicker alveolar walls with type II pneumocyte hyperplasia. Most importantly, approximately 20% of aged Ahnak -/- mice developed lung tumors, and Ahnak -/- mice were more susceptible to urethane-induced pulmonary carcinogenesis than wild-type mice. Mechanistically, Ahnak deficiency promotes the cell growth of lung epithelial cells by suppressing the TGFβ signaling pathway. In addition, increased numbers of M2-like alveolar macrophages (AM) were observed in Ahnak -/- lungs, and the depletion of AMs in Ahnak -/- lungs alleviated lung hyperplastic lesions, suggesting that M2-like AMs promoted the progression of lung hyperplastic lesions in Ahnak-null mice. Collectively, AHNAK suppresses type II pneumocyte proliferation and inhibits tumor-promoting M2 alternative activation of macrophages in mouse lung tissue. These results suggest that AHNAK functions as a novel tumor suppressor in lung cancer.Implications: The tumor suppressor function of AHNAK, in murine lungs, occurs by suppressing alveolar epithelial cell proliferation and modulating lung microenvironment. Mol Cancer Res; 16(8); 1287-98. ©2018 AACR.
Collapse
Affiliation(s)
- Jun Won Park
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Ji Won Choi
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hee Jung Lim
- Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Jae Hoon Shin
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yo Na Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seo Hyun Lee
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeri Son
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Mira Sohn
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Jong Kyu Woo
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | | | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea. .,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol 2018. [PMID: 29515996 PMCID: PMC5826063 DOI: 10.3389/fcell.2018.00018] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased), ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.
Collapse
Affiliation(s)
- Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Sergio Caja
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Nuno Couto
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
42
|
Davis T, van Niekerk G, Peres J, Prince S, Loos B, Engelbrecht AM. Doxorubicin resistance in breast cancer: A novel role for the human protein AHNAK. Biochem Pharmacol 2018; 148:174-183. [DOI: 10.1016/j.bcp.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
|
43
|
Zhao Z, Xiao S, Yuan X, Yuan J, Zhang C, Li H, Su J, Wang X, Liu Q. AHNAK as a Prognosis Factor Suppresses the Tumor Progression in Glioma. J Cancer 2017; 8:2924-2932. [PMID: 28928883 PMCID: PMC5604443 DOI: 10.7150/jca.20277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE AHNAK is originally identified as a giant protein based on the estimated size of approximately 700 kDa. The aim of this study is to identify the role of AHNAK in the pathogenesis of glioma. METHODS We tested AHNAK mRNA level in a panel of six human glioma cell lines, and in 30 cases of normal brain tissues and 73 cases of glioma tissue samples using a qRT-PCR method. Further, we analyzed the relationship of AHNAK expression with clinicopathological characteristics in glioma patients. Meanwhile, we analyzed the relationship of expression of AHNAK and survival of glioma patients in survival analyses. Then, in vitro, we analyzed the biological effects of AHNAK in glioma cell lines (U87 and U251) including proliferation assay, cell transwell assay, and apoptosis. And in vivo, we examined the effects of AHNAK on tumor growth using xenograft model of human glioma cells in nude mice. Then we examined the expression of Ki-67-positive cells in these tumors. RESULTS We found that the mRNA levels of AHNAK were down-regulated in 4 of 6 human glioma cell lines, especially in U87 and U251 cell lines. Meanwhile, in glioma patients, a negative correlation was found between the expression of AHNAK and the glioma histopathology. And a low expression of AHNAK was a significant and independent prognostic factor for poor survival of glioma patients. Through over expression of AHNAK in both of U87 and U251, we demonstrated that overexpression of AHNAK could inhibit glioma cell proliferation and invasion, induce apoptosis, and inhibit in vivo glioma tumor growth and ki-67 expression. CONCLUSIONS The AHNAK acts as a potential tumor suppressor. Our study provides a preclinical basis for developing AHNAK as a reliable clinical prognostic indicator for glioma patients, and a new biomarker for treatment response, and a potentially therapeutic target in glioma management options.
Collapse
Affiliation(s)
- Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanzhou, Guangdong, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| |
Collapse
|
44
|
Lu D, Wang J, Shi X, Yue B, Hao J. AHNAK2 is a potential prognostic biomarker in patients with PDAC. Oncotarget 2017; 8:31775-31784. [PMID: 28423668 PMCID: PMC5458247 DOI: 10.18632/oncotarget.15990] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AHNAK nucleoprotein 2 (AHNAK2) belongs to the AHNAK protein family. The studies of AHNAK2 are limited. A recent study reported that AHNAK2 might be a biomarker for pancreatic ductal adenocarcinoma (PDAC); however, tissue-based experiments have not been conducted. The aim of this study was to determine the tissue expression of AHNAK2 and to find the correlation between AHNAK2 and overall survival rate in PDAC. RESULTS AHNAK2 is highly expressed in PDAC (n=79) compared with adjacent normal tissues (n=64, P<0.001). Overexpression of AHNAK2 showed a significant relationship with a lower overall survival rate (P=0.033) in PDAC patients. The predictive value of increased expression of AHNAK2 remains relevant in patients with AJCC grade above II (n=43, P=0.006) or lymph node metastasis (n=32, P=0.004). Cox regression analysis showed that AHNAK2 expression (P=0.003) and pathology grade (P<0.001) are independent prognostic factors for PDAC. The nomogram model was performed to predict the 1- and 3-year survival rates based on Cox regression. The C-index was 0.61. The calibration curves were also made to show the association between the observed and predicted probability of the overall survival rates. MATERIALS AND METHODS AHNAK2 expression was performed in tissue microarrays by immunohistochemistry. The overall survival rate analysis was performed using the Kaplan-Meier method, Cox proportional hazards regression, and a nomogram model. CONCLUSIONS AHNAK2 is overexpressed in PDAC tissues and is an independent prognostic factor in patients with PDAC.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Junxiong Wang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoyan Shi
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bing Yue
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
45
|
Patel SJ, Darie CC, Clarkson BD. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density. Electrophoresis 2016; 38:417-428. [PMID: 27804141 DOI: 10.1002/elps.201600399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA.,Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
| |
Collapse
|