1
|
Yin J, Liu G, Zhang Y, Zhou Y, Pan Y, Zhang Q, Yu R, Gao S. Gender differences in gliomas: From epidemiological trends to changes at the hormonal and molecular levels. Cancer Lett 2024; 598:217114. [PMID: 38992488 DOI: 10.1016/j.canlet.2024.217114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.
Collapse
Affiliation(s)
- Jiale Yin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Gai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yu Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuchun Pan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Qiaoshan Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
2
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
3
|
Barnett AE, Ozair A, Bamashmos AS, Li H, Bosler DS, Yeaney G, Ali A, Peereboom DM, Lathia JD, Ahluwalia MS. MGMT Methylation and Differential Survival Impact by Sex in Glioblastoma. Cancers (Basel) 2024; 16:1374. [PMID: 38611052 PMCID: PMC11011031 DOI: 10.3390/cancers16071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introduction: Sex differences in glioblastoma (GBM) have been observed in incidence, genetic and epigenetic alterations, and immune response. These differences have extended to the methylation of the MGMT promoter, which critically impacts temozolomide resistance. However, the association between sex, MGMT methylation, and survival is poorly understood, which this study sought to evaluate. Methods: A retrospective cohort study was conducted and reported following STROBE guidelines, based on adults with newly diagnosed GBM who received their first surgical intervention at Cleveland Clinic (Ohio, USA) between 2012 and 2018. Kaplan-Meier and multivariable Cox proportional hazards models were used to analyze the association between sex and MGMT promoter methylation status on overall survival (OS). MGMT was defined as methylated if the mean of CpG 1-5 ≥ 12. Propensity score matching was performed on a subset of patients to evaluate the effect of individual CpG site methylation. Results: A total of 464 patients had documented MGMT methylation status with a mean age of 63.4 (range 19-93) years. A total of 170 (36.6%) were female, and 133 (28.7%) received gross total resection as a first intervention. A total of 42.5% were MGMT methylated, with females more often having MGMT methylation than males (52.1% vs. 37.4%, p = 0.004). In univariable analysis, OS was significantly longer for MGMT promoter methylated than un-methylated groups for females (2 yr: 36.8% vs. 11.1%; median: 18.7 vs. 9.5 months; p = 0.001) but not for males (2 yr: 24.3% vs. 12.2%; median: 12.4 vs. 11.3 months; p = 0.22, p for MGMT-sex interaction = 0.02). In multivariable analysis, MGMT un-methylated versus methylated promoter females (2.07; 95% CI, 1.45-2.95; p < 0.0001) and males (1.51; 95% CI, 1.14-2.00; p = 0.004) had worse OS. Within the MGMT promoter methylated group, males had significantly worse OS than females (1.42; 95% CI: 1.01-1.99; p = 0.04). Amongst patients with data on MGMT CpG promoter site methylation values (n = 304), the median (IQR) of CpG mean methylation was 3.0% (2.0, 30.5). Females had greater mean CpG methylation than males (11.0 vs. 3.0, p < 0.002) and higher per-site CpG methylation with a significant difference at CPG 1, 2, and 4 (p < 0.008). After propensity score matching, females maintained a significant survival benefit (18.7 vs. 10.0 months, p = 0.004) compared to males (13.0 vs. 13.6 months, p = 0.76), and the pattern of difference was significant (P for CpG-sex interaction = 0.03). Conclusions: In this study, females had higher mean and individual CpG site methylation and received a greater PFS and OS benefit by MGMT methylation that was not seen in males despite equal degrees of CpG methylation.
Collapse
Affiliation(s)
- Addison E. Barnett
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anas S. Bamashmos
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
- NYU Langone Health, New York, NY 10016, USA
| | - Hong Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - David S. Bosler
- Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (D.S.B.); (G.Y.)
| | - Gabrielle Yeaney
- Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (D.S.B.); (G.Y.)
| | - Assad Ali
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
| | - David M. Peereboom
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
| | - Justin D. Lathia
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Manmeet S. Ahluwalia
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Dumitru CA, Schröder H, Schäfer FTA, Aust JF, Kreße N, Siebert CLR, Stein KP, Haghikia A, Wilkens L, Mawrin C, Sandalcioglu IE. Progesterone Receptor Membrane Component 1 (PGRMC1) Modulates Tumour Progression, the Immune Microenvironment and the Response to Therapy in Glioblastoma. Cells 2023; 12:2498. [PMID: 37887342 PMCID: PMC10604944 DOI: 10.3390/cells12202498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a tumour-promoting factor in several types of cancer but its role in brain tumours is poorly characterized thus far. Our study aimed to determine the effect of PGRMC1 on glioblastoma (GBM) pathophysiology using two independent cohorts of IDH wild-type GBM patients and stable knockdown GBM models. We found that high levels of PGRMC1 significantly predicted poor overall survival in both cohorts of GBM patients. PGRMC1 promoted the proliferation, anchorage-independent growth, and invasion of GBM cells. We identified Integrin beta-1 (ITGB1) and TCF 1/7 as potential members of the PGRMC1 pathway in vitro. The levels of ITGB1 and PGRMC1 also correlated in neoplastic tissues from GBM patients. High expression of PGRMC1 rendered GBM cells less susceptible to the standard GBM chemotherapeutic agent temozolomide but more susceptible to the ferroptosis inducer erastin. Finally, PGRMC1 enhanced Interleukin-8 production in GBM cells and promoted the recruitment of neutrophils. The expression of PGRMC1 significantly correlated with the numbers of tumour-infiltrating neutrophils also in tissues from GBM patients. In conclusion, PGRMC1 enhances tumour-related inflammation and promotes the progression of GBM. However, PGRMC1 might be a promising target for novel therapeutic strategies using ferroptosis inducers in this type of cancer.
Collapse
Affiliation(s)
| | - Hannah Schröder
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | - Jan Friedrich Aust
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Nina Kreße
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ludwig Wilkens
- Department of Pathology, Nordstadt Hospital Hannover, 30167 Hannover, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
5
|
Lan S, Zhang Z, Li Q. FZD7: A potential biomarker for endometriosis. Medicine (Baltimore) 2023; 102:e35406. [PMID: 37800830 PMCID: PMC10553041 DOI: 10.1097/md.0000000000035406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Endometriosis is a chronic inflammatory, benign disorder that often co-occurs with adenomyosis and/or leiomyoma. The overall incidence of endometriosis in reproductive period women was nearly 10%. However, the exact mechanisms of endometriosis-associated pathogenesis are still unknown. METHODS In this study, we aimed to investigate whether Frizzled-7 (FZD7) would effectively promote the development of endometriosis. The microarray-based data analysis was performed to screen endometriosis-related differentially expressed genes. This process uncovered specific hub genes, and the nexus of vital genes and ferroptosis-related genes were pinpointed. Then, we collected human endometrial and endometriotic tissues from patients with endometriosis of the ovary (n = 39) and control patients without endometriosis (n = 10, who underwent hysterectomy for uterine fibroids) to compare the expression of FZD7. RESULTS These findings indicated that the expression of FZD7 was high compared with normal endometrium, and FZD7 may promote the progression of endometriosis. CONCLUSION FZD7 may serve as a potential therapeutic target for endometriosis treatment.
Collapse
Affiliation(s)
- Suwei Lan
- Hebei Medical University, Hebei, China
- Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Qing Li
- Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
6
|
Ilic I, Ilic M. International patterns and trends in the brain cancer incidence and mortality: An observational study based on the global burden of disease. Heliyon 2023; 9:e18222. [PMID: 37519769 PMCID: PMC10372320 DOI: 10.1016/j.heliyon.2023.e18222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background Brain cancer is a serious issue in the global burden of diseases. This observational research aimed to assess trends of the brain cancer incidence and mortality in the world in the period 1990-2019. Methods Brain cancer incidence and mortality data were retrieved from the Global Burden of Disease 2019 study database. The joinpoint regression analysis was done to assess the brain cancer indicence and mortality trends: the average annual percent change (AAPC) along with its 95% confidence interval (95% CI) was calculated. Results In both sexes, the highest age-standardized rates of incidence and mortality were found in high-income regions (Europe and America), while the lowest were observed in the African Region. A significant rise in brain cancer incidence rates both in males and females was observed in all regions, with one exception of a significantly decreased trend only among males in the South-East Asia Region. Among countries with increased trends in incidence and mortality from brain cancer, Cuba experienced the most marked increase in both incidence (AAPC = +5.7% in males and AAPC = +5.4% in females) and mortality rates (AAPC = +5.5% in males and AAPC = +5.1% in females). Among countries that experienced a decline in brain cancer incidence and mortality, Hungary and Greenland showed the most marked decline in both sexes (equally by -1.0%). Conclusion Brain cancer shows increasing global incidence rates in both sexes and represents a priority for prevention and further research.
Collapse
Affiliation(s)
- Irena Ilic
- Faculty of Medicine, University of Belgrade, Serbia
| | - Milena Ilic
- Department of Epidemiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| |
Collapse
|
7
|
Norris JN, Waack AL, Becker KN, Keener M, Hoyt A, Reinard K. Glioblastoma in pregnant patient with pathologic and exogenous sex hormone exposure and family history of high-grade glioma: A case report and review of the literature. Surg Neurol Int 2023; 14:169. [PMID: 37292394 PMCID: PMC10246315 DOI: 10.25259/sni_58_2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Background Glioblastoma (GBM) incidence is higher in males, suggesting sex hormones may influence GBM tumorigenesis. Patients with GBM and altered sex hormone states could offer insight into a relationship between the two. Most GBMs arise sporadically and heritable genetic influence on GBM development is poorly understood, but reports describing familial GBM suggest genetic predispositions exist. However, no existing reports examine GBM development in context of both supraphysiologic sex hormone states and familial predisposition for GBM. We present a case of isocitrate dehydrogenase (IDH)-wild type GBM in a young pregnant female with polycystic ovary syndrome (PCOS), history of in vitro fertilization (IVF), and significant family history of GBM and further discuss how unique sex hormone states and genetics may affect GBM development or progression. Case Description A 35-year-old pregnant female with PCOS and recent history of IVF treatment and frozen embryo transfer presented with seizure and headache. Imaging revealed a right frontal brain mass. Molecular and histopathological analysis of the resected tumor supported a diagnosis of IDH-wild type GBM. The patient's family medical history was significant for GBM. Current literature indicates testosterone promotes GBM cell proliferation, while estrogen and progesterone effects vary with receptor subtype and hormone concentration, respectively. Conclusion Sex hormones and genetics likely exert influence on GBM development and progression that may compound with concurrence. Here, we describe a unique case of GBM in a young pregnant patient with a family history of glioma and atypical sex hormone exposure due to endocrine disorder and pregnancy assisted by exogenous IVF hormone administration.
Collapse
Affiliation(s)
- Jordan N. Norris
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Andrew L. Waack
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Kathryn N. Becker
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Myles Keener
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Alastair Hoyt
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Kevin Reinard
- Department of Neurosurgery, Promedica, Toledo, Ohio, United States
| |
Collapse
|
8
|
Abstract
Sex differences play a large role in oncology. It has long been discussed that the incidence of different types of tumors varies by sex, and this holds in neuro-oncology. There are also profound survival sex differences, biologic factors, and treatment effects. This review aims to summarize some of the main sex differences observed in primary brain tumors and goes on to focus specifically on gliomas and meningiomas, as these are two commonly encountered primary brain tumors in clinical practice. Additionally, considerations unique to female individuals, including pregnancy and breastfeeding, are explored. This review sheds light on many of the unique attributes that must be considered when diagnosing and treating female patients with primary brain tumors in clinical practice.
Collapse
Affiliation(s)
- Lauren Singer
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA.
| | - Ditte Primdahl
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA
| | - Priya Kumthekar
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Perdyan A, Lawrynowicz U, Horbacz M, Kaminska B, Mieczkowski J. Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity. F1000Res 2022; 11:1180. [PMID: 36875988 PMCID: PMC9978243 DOI: 10.12688/f1000research.126243.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Glioblastoma (GBM), a deadly brain tumor, is still one of a few lasting challenges of contemporary oncology. Current therapies fail to significantly improve patient survival due to GBM tremendous genetic, transcriptomic, immunological, and sex-dependent heterogeneity. Over the years, clinical differences between males and females were characterized. For instance, higher incidence of GBM in males or distinct responses to cancer chemotherapy and immunotherapy between males and females have been noted. Despite the introduction of single-cell RNA sequencing and spatial transcriptomics, these differences were not further investigated as studies were focused only on revealing the general picture of GBM heterogeneity. Hence, in this mini-review, we summarized the current state of knowledge on GBM heterogeneity revealed by single-cell RNA sequencing and spatial transcriptomics with regard to genetics, immunology, and sex-dependent differences. Additionally, we highlighted future research directions which would fill the gap of knowledge on the impact of patient's sex on the disease outcome.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Urszula Lawrynowicz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | | | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Perdyan A, Lawrynowicz U, Horbacz M, Kaminska B, Mieczkowski J. Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity. F1000Res 2022; 11:1180. [PMID: 36875988 PMCID: PMC9978243 DOI: 10.12688/f1000research.126243.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM), a deadly brain tumor, is still one of the few lasting challenges of contemporary oncology. Current therapies fail to significantly improve patient survival due to GBM's tremendous genetic, transcriptomic, immunological, and sex-dependent heterogeneity. Over the years, clinical differences between males and females were characterized. For instance, higher incidence of GBM in males or distinct responses to cancer chemotherapy and immunotherapy between males and females have been noted. However, despite the introduction of single-cell RNA sequencing and spatial transcriptomics, these differences were not further investigated as studies were focused only on exposing the general picture of GBM heterogeneity. Hence, in this study, we summarized the current state of knowledge on GBM heterogeneity exposed by single-cell RNA sequencing and spatial transcriptomics with regard to genetics, immunology, and sex-dependent differences. Additionally, we highlighted future research directions which would fill the gap of knowledge on the impact of patient's sex on the disease outcome.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Urszula Lawrynowicz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | | | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Sex as a prognostic factor in adult-type diffuse gliomas: an integrated clinical and molecular analysis according to the 2021 WHO classification. J Neurooncol 2022; 159:695-703. [PMID: 35988090 DOI: 10.1007/s11060-022-04114-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate whether type-specific sex differences in survival exist independently of clinical and molecular factors in adult-type diffuse gliomas according to the 2021 World Health Organization (WHO) classification. METHODS A retrospective chart and imaging review of 1325 patients (mean age, 54 ± 15 years; 569 females) with adult-type diffuse gliomas (oligodendroglioma, IDH-mutant, and 1p/19q-codeleted, n = 183; astrocytoma, IDH-mutant, n = 211; glioblastoma, IDH-wildtype, n = 800; IDH-wildtype diffuse glioma, NOS, n = 131) was performed. The demographic information, extent of resection, imaging data, and molecular data including O6-methylguanine-methyltransferase promoter methylation (MGMT) promotor methylation were collected. Sex differences in survival were analyzed using Cox analysis. RESULTS In patients with glioblastoma, IDH-wildtype, female sex remained as an independent predictor of better overall survival (hazard ratio = 0.91, P = 0.031), along with age, histological grade 4, MGMT promoter methylation status, and gross total resection. Female sex showed a higher prevalence of MGMT promoter methylation (40.2% vs 32.0%, P = 0.017) but there was no interaction effect between female sex and MGMT promoter methylation status (P-interaction = 0.194), indicating independent role of female sex. The median OS for females were 19.2 months (12.3-35.0) and 16.2 months (10.5-30.6) for males. No sex difference in survival was seen in other types of adult-type diffuse gliomas. CONCLUSION There was a female survival advantage in glioblastoma, IDH-wildtype, independently of clinical data or MGMT promoter methylation status. There was no sex difference in survival in other types of adult-type diffuse gliomas, suggesting type-specific sex effects solely in glioblastoma, IDH-wildtype.
Collapse
|
12
|
Cucchiara F, Luci G, Giannini N, Giorgi FS, Orlandi P, Banchi M, Di Paolo A, Pasqualetti F, Danesi R, Bocci G. Association of plasma levetiracetam concentration, MGMT methylation and sex with survival of chemoradiotherapy-treated glioblastoma patients. Pharmacol Res 2022; 181:106290. [DOI: 10.1016/j.phrs.2022.106290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/27/2022]
|
13
|
PLOD2 Is a Prognostic Marker in Glioblastoma That Modulates the Immune Microenvironment and Tumor Progression. Int J Mol Sci 2022; 23:ijms23116037. [PMID: 35682709 PMCID: PMC9181500 DOI: 10.3390/ijms23116037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the role of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) in glioblastoma (GBM) pathophysiology. To this end, PLOD2 protein expression was assessed by immunohistochemistry in two independent cohorts of patients with primary GBM (n1 = 204 and n2 = 203, respectively). Association with the outcome was tested by Kaplan−Meier, log-rank and multivariate Cox regression analysis in patients with confirmed IDH wild-type status. The biological effects and downstream mechanisms of PLOD2 were assessed in stable PLOD2 knock-down GBM cell lines. High levels of PLOD2 significantly associated with (p1 = 0.020; p2< 0.001; log-rank) and predicted (cohort 1: HR = 1.401, CI [95%] = 1.009−1.946, p1 = 0.044; cohort 2: HR = 1.493; CI [95%] = 1.042−2.140, p2 = 0.029; Cox regression) the poor overall survival of GBM patients. PLOD2 knock-down inhibited tumor proliferation, invasion and anchorage-independent growth. MT1-MMP, CD44, CD99, Catenin D1 and MMP2 were downstream of PLOD2 in GBM cells. GBM cells produced soluble factors via PLOD2, which subsequently induced neutrophils to acquire a pro-tumor phenotype characterized by prolonged survival and the release of MMP9. Importantly, GBM patients with synchronous high levels of PLOD2 and neutrophil infiltration had significantly worse overall survival (p < 0.001; log-rank) compared to the other groups of GBM patients. These findings indicate that PLOD2 promotes GBM progression and might be a useful therapeutic target in this type of cancer.
Collapse
|
14
|
Philpott D, Gomis S, Wang H, Atwal R, Kelil A, Sack T, Morningstar B, Burnie C, Sargent EH, Angers S, Sidhu S, Kelley SO. Rapid On-Cell Selection of High-Performance Human Antibodies. ACS CENTRAL SCIENCE 2022; 8:102-109. [PMID: 35106377 PMCID: PMC8796304 DOI: 10.1021/acscentsci.1c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Phage display is a critical tool for developing antibodies. However, existing approaches require many time-consuming rounds of biopanning and screening of potential candidates due to a high rate of failure during validation. Herein, we present a rapid on-cell phage display platform which recapitulates the complex in vivo binding environment to produce high-performance human antibodies in a short amount of time. Selection is performed in a highly stringent heterogeneous mixture of cells to quickly remove nonspecific binders. A microfluidic platform then separates antigen-presenting cells with high throughput and specificity. An unsupervised machine learning algorithm analyzes sequences of phage from all pools to identify the structural trends that contribute to affinity and proposes ideal candidates for validation. In a proof-of-concept screen against human Frizzled-7, a key ligand in the Wnt signaling pathway, antibodies with picomolar affinity were discovered in two rounds of selection that outperformed current gold-standard reagents. This approach, termed μCellect, is low cost, high throughput, and compatible with a wide variety of cell types, enabling widespread adoption for antibody development.
Collapse
Affiliation(s)
- David
N. Philpott
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Surath Gomis
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Hansen Wang
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Abdellali Kelil
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Tanja Sack
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Brandon Morningstar
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Chris Burnie
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Edward H. Sargent
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sachdev Sidhu
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
15
|
Sex Differences in Glioblastoma—Findings from the Swedish National Quality Registry for Primary Brain Tumors between 1999–2018. J Clin Med 2022; 11:jcm11030486. [PMID: 35159938 PMCID: PMC8837060 DOI: 10.3390/jcm11030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sex disparities in glioblastoma (GBM) have received increasing attention. Sex-related differences for several molecular markers have been reported, which could impact on clinical factors and outcomes. We therefore analyzed data on all patients with GBM reported to the Swedish National Quality Registry for Primary Brain Tumors, according to sex, with a focus on prognostic factors and survival. All glioma patients registered during 20 years, from 1 January 1999 until 31 December 2018, with SNOMED codes 94403, 94413, and 94423, were analyzed. Chi2-test, log-rank test, and Kaplan–Meier analyses were performed. We identified 5243 patients, of which 2083 were females and 3160 males, resulting in a ratio of 1:1.5. We found sex related differences, with women having diagnostic surgery at a significantly higher age (p = 0.001). Women were also reported to have a worse preoperative performance status (PPS) (<0.001). There was no gender difference for the type of surgery performed. For women with radical surgery, overall survival was slightly better than for men (p = 0.045). The time period did not influence survival, neither for 1999–2005 nor 2006–2018, after temozolomide treatment was introduced (p = 0.35 and 0.10, respectively). In the multivariate analysis including sex, age, surgery, and PPS, a survival advantage was noted for women, but this was not clinically relevant (HR = 0.92, p = 0.006). For patients with GBM; sex-related differences in clinical factors could be identified in a population-based cohort. In this dataset, for survival, the only advantage noted was for women who had undergone radical surgery, although this was clinically almost negligible.
Collapse
|
16
|
Hallaert G, Pinson H, Van den Broecke C, Van Roost D, Kalala JP, Boterberg T. Sex-based survival differences in IDH-wildtype glioblastoma: Results from a retrospective cohort study. J Clin Neurosci 2021; 91:209-213. [PMID: 34373029 DOI: 10.1016/j.jocn.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/23/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
A female survival benefit has been described for glioblastoma patients. Recent studies report that the effect of 06-methylguanine-DNA-methyltransferase gene promoter (MGMTp) methylation is only present in female patients. We retrospectively studied sex-based survival, including MGMTp-methylation, in a cohort of 159 uniformly treated isocitrate dehydrogenase wildtype (IDHwt) patients. All patients were treated with temozolomide-based chemoradiotherapy after surgery. Kaplan-Meier survival curves and Cox regression models were used to evaluate overall survival. The study included 59 female (37.1%) and 100 male patients (62.9%). There were no statistically significant differences between sexes concerning demographic, surgical or radiological characteristics. Female patients harbored MGMTp-methylated tumors in 45.8% of cases and males in 33% (P = 0.129). Median overall survival was 13.4 months for men and women alike. After adjustment of survival for age, Karnofsky Performance Score, extent of resection and MGMTp-methylation, sex did not have a significant survival impact. However, MGMTp-methylation proved to be an independent beneficial prognosticator for both sexes, contradicting earlier reports. Several sex-based molecular subtypes of glioblastoma with different response to current treatment may exist explaining conflicting survival results in different patient cohorts. Further research on sex-based differences in IDHwt glioblastoma patients is needed.
Collapse
Affiliation(s)
- G Hallaert
- Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium.
| | - H Pinson
- Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| | - C Van den Broecke
- Department of Pathology, AZ St. Lucas Gent, Groenebriel 1, 9000 Gent, Belgium; Department of Pathology, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| | - D Van Roost
- Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| | - J P Kalala
- Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| | - T Boterberg
- Department of Radiation Oncology, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
17
|
Carrano A, Juarez JJ, Incontri D, Ibarra A, Cazares HG. Sex-Specific Differences in Glioblastoma. Cells 2021; 10:cells10071783. [PMID: 34359952 PMCID: PMC8303471 DOI: 10.3390/cells10071783] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences have been well identified in many brain tumors. Even though glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has the worst outcome, well-established differences between men and women are limited to incidence and outcome. Little is known about sex differences in GBM at the disease phenotype and genetical/molecular level. This review focuses on a deep understanding of the pathophysiology of GBM, including hormones, metabolic pathways, the immune system, and molecular changes, along with differences between men and women and how these dimorphisms affect disease outcome. The information analyzed in this review shows a greater incidence and worse outcome in male patients with GBM compared with female patients. We highlight the protective role of estrogen and the upregulation of androgen receptors and testosterone having detrimental effects on GBM. Moreover, hormones and the immune system work in synergy to directly affect the GBM microenvironment. Genetic and molecular differences have also recently been identified. Specific genes and molecular pathways, either upregulated or downregulated depending on sex, could potentially directly dictate GBM outcome differences. It appears that sexual dimorphism in GBM affects patient outcome and requires an individualized approach to management considering the sex of the patient, especially in relation to differences at the molecular level.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Juan Jose Juarez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Diego Incontri
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Hugo Guerrero Cazares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
- Correspondence:
| |
Collapse
|
18
|
Dumitru CA, Brouwer E, Stelzer T, Nocerino S, Rading S, Wilkens L, Sandalcioglu IE, Karsak M. Dynein Light Chain Protein Tctex1: A Novel Prognostic Marker and Molecular Mediator in Glioblastoma. Cancers (Basel) 2021; 13:cancers13112624. [PMID: 34071761 PMCID: PMC8199143 DOI: 10.3390/cancers13112624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) remains one of the deadliest solid cancers, with only a dismal proportion of GBM patients achieving 5-year survival. Thus, it is critical to identify molecular mechanisms that could be targeted by novel therapeutic approaches in this tumor type. Our study identified Tctex1/DYNLT1 as an independent prognostic marker for the overall survival of GBM patients. Importantly, Tctex1 promoted the aggressiveness of GBM cells by enhancing tumor proliferation and invasion. These effects of Tctex1 appeared to be modulated via phosphorylation of retinoblastoma protein (RB) and the release of matrix metalloprotease 2 (MMP2), respectively. As Tctex1 can potentially be inhibited in vivo, our study provides a rationale for novel, individualized therapeutic strategies in GBM patients. Abstract The purpose of this study was to determine the role of Tctex1 (DYNLT1, dynein light chain-1) in the pathophysiology of glioblastoma (GBM). To this end, we performed immunohistochemical analyses on tissues from GBM patients (n = 202). Tctex1 was additionally overexpressed in two different GBM cell lines, which were then evaluated in regard to their proliferative and invasive properties. We found that Tctex1 levels were significantly higher in GBM compared to healthy adjacent brain tissues. Furthermore, high Tctex1 expression was significantly associated with the short overall- (p = 0.002, log-rank) and progression-free (p = 0.028, log-rank) survival of GBM patients and was an independent predictor of poor overall survival in multivariate Cox-regression models. In vitro, Tctex1 promoted the metabolic activity, anchorage-independent growth and proliferation of GBM cells. This phenomenon was previously shown to occur via the phosphorylation of retinoblastoma protein (phospho-RB). Here, we found a direct and significant correlation between the levels of Tctex1 and phospho-RB (Ser807/801) in tissues from GBM patients (p = 0.007, Rho = 0.284, Spearman’s rank). Finally, Tctex1 enhanced the invasiveness of GBM cells and the release of pro-invasive matrix metalloprotease 2 (MMP2). These findings indicate that Tctex1 promotes GBM progression and therefore might be a useful therapeutic target in this type of cancer.
Collapse
Affiliation(s)
- Claudia Alexandra Dumitru
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- Correspondence: (C.A.D.); (M.K.)
| | - Eileen Brouwer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (E.B.); (T.S.); (S.N.); (S.R.)
| | - Tamina Stelzer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (E.B.); (T.S.); (S.N.); (S.R.)
| | - Salvatore Nocerino
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (E.B.); (T.S.); (S.N.); (S.R.)
| | - Sebastian Rading
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (E.B.); (T.S.); (S.N.); (S.R.)
| | - Ludwig Wilkens
- Department of Pathology, Nordstadt Hospital Hannover, 30167 Hannover, Germany;
| | | | - Meliha Karsak
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (E.B.); (T.S.); (S.N.); (S.R.)
- Correspondence: (C.A.D.); (M.K.)
| |
Collapse
|
19
|
Javadi M, Rad JS, Farashah MSG, Roshangar L. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci 2021; 29:1395-1407. [PMID: 33825167 DOI: 10.1007/s43032-021-00556-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are small bilayer-lipid membrane vesicles secreted by living cells that are able to transfer regulatory molecules and genetic information from one cell to another. These vesicles are enriched with several nucleic acids including mRNAs, microRNAs (miRNAs), other non-coding RNAs, as well as proteins and lipids. Alterations in the exosomal content and functions are observed in numerous reproductive diseases in both animals and human cases. MicroRNAs, a class of small endogenous RNA molecules, can negatively regulate gene expression at the post-transcription level. Aberrant microRNA expression has been reported in multiple human reproductive diseases such as polycystic ovary syndrome, preeclampsia, uterine leiomyomata, ovarian cancer, endometriosis, and Asherman's syndrome. This study focuses to review recent research on alterations of microRNA expression and the role of exosomes in female reproductive diseases. It has been demonstrated that exosomes may be a potential therapeutic approach in various female reproductive diseases. In addition, changes in expression of microRNAs act as molecular biomarkers for diagnosis of several reproductive diseases in women, and regulation of their expression can potentially reduce infertility.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Łysiak M, Smits A, Roodakker KR, Sandberg E, Dimberg A, Mudaisi M, Bratthäll C, Strandeus M, Milos P, Hallbeck M, Söderkvist P, Malmström A. Deletions on Chromosome Y and Downregulation of the SRY Gene in Tumor Tissue Are Associated with Worse Survival of Glioblastoma Patients. Cancers (Basel) 2021; 13:cancers13071619. [PMID: 33807423 PMCID: PMC8036637 DOI: 10.3390/cancers13071619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Biological causes of sex disparity seen in the prevalence of cancer, including glioblastoma (GBM), remain poorly understood. One of the considered aspects is the involvement of the sex chromosomes, especially loss of chromosome Y (LOY). METHODS Tumors from 105 isocitrate dehydrogenase (IDH) wild type male GBM patients were tested with droplet digital PCR for copy number changes of ten genes on chromosome Y. Decreased gene expression, a proxy of gene loss, was then analyzed in 225 IDH wild type GBM derived from TCGA and overall survival in both cohorts was tested with Kaplan-Meier log-rank analysis and maximally selected rank statistics for cut-off determination. RESULTS LOY was associated with significantly shorter overall survival (7 vs. 14.6 months, p = 0.0016), and among investigated individual genes survival correlated most prominently with loss of the sex-determining region Y gene (SRY) (10.8 vs. 14.8 months, p = 0.0031). Gene set enrichment analysis revealed that epidermal growth factor receptor, platelet-derived growth factor receptor, and MYC proto-oncogene signaling pathways are associated with low SRY expression. CONCLUSION Our data show that deletions and reduced gene expression of chromosome Y genes, especially SRY, are associated with reduced survival of male GBM patients and connected to major susceptibility pathways of gliomagenesis.
Collapse
Affiliation(s)
- Małgorzata Łysiak
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Correspondence: (M.Ł.); (P.S.)
| | - Anja Smits
- Department of Neuroscience and Physiology, Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Elisabeth Sandberg
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Anna Dimberg
- Institute of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden;
| | - Munila Mudaisi
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Oncology in Linköping, Linköping University, 58185 Linköping, Sweden
| | | | | | - Peter Milos
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Neurosurgery in Linköping, Linköping University, 58185 Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Clinical Pathology, Linköping University, 58185 Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Correspondence: (M.Ł.); (P.S.)
| | - Annika Malmström
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Advanced Home Care, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
21
|
Jain R, Chi AS. Radiogenomics identifying important biological pathways in gliomas. Neuro Oncol 2021; 23:177-178. [PMID: 33630091 DOI: 10.1093/neuonc/noaa290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.,Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York, USA
| | | |
Collapse
|
22
|
McAleenan A, Kelly C, Spiga F, Kernohan A, Cheng HY, Dawson S, Schmidt L, Robinson T, Brandner S, Faulkner CL, Wragg C, Jefferies S, Howell A, Vale L, Higgins JPT, Kurian KM. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst Rev 2021; 3:CD013316. [PMID: 33710615 PMCID: PMC8078495 DOI: 10.1002/14651858.cd013316.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O6-methylguanine-DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan-Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS Two review authors independently undertook all steps of the identification and data extraction process for multiple-method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'-cytosine-phosphate-guanine-3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta-analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good-quality studies making such comparisons.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hung-Yuan Cheng
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Amy Howell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kathreena M Kurian
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
23
|
Llaguno-Munive M, Vazquez-Lopez MI, Jurado R, Garcia-Lopez P. Mifepristone Repurposing in Treatment of High-Grade Gliomas. Front Oncol 2021; 11:606907. [PMID: 33680961 PMCID: PMC7930566 DOI: 10.3389/fonc.2021.606907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common and aggressive primary tumor of the central nervous system. The standard treatment for malignant gliomas is surgery followed by chemoradiotherapy. Unfortunately, this treatment has not produced an adequate patient response, resulting in a median survival time of 12–15 months and a 5-year overall survival of <5%. Although new strategies have been sought to enhance patient response, no significant increase in the global survival of glioma patients has been achieved. The option of developing new drugs implies a long and costly process, making drug repurposing a more practical alternative for improving glioma treatment. In the last few years, researchers seeking more effective cancer therapy have pursued the possibility of using anti-hormonal agents, such as mifepristone. The latter drug, an antagonist for progesterone and glucocorticoid receptors, has several attractive features: anti-tumor activity, low cytotoxicity to healthy cells, and modulation of the chemosensitivity of several cancer cell lines in vitro. Hence, the addition of mifepristone to temozolomide-based glioblastoma chemotherapy may lead to a better patient response. The mechanisms by which mifepristone enhances glioma treatment are not yet known. The current review aims to discuss the potential role of mifepristone as an adjuvant drug for the treatment of high-grade gliomas.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Maria Ines Vazquez-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Jurado
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
24
|
Sex Disparities in MGMT Promoter Methylation and Survival in Glioblastoma: Further Evidence from Clinical Cohorts. J Clin Med 2021; 10:jcm10040556. [PMID: 33546098 PMCID: PMC7913151 DOI: 10.3390/jcm10040556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/29/2023] Open
Abstract
Introduction: Recent studies suggest an overrepresentation of MGMT promoter methylated tumors in females with IDHwt glioblastoma (GBM) compared to males, with a subsequent better response to alkylating treatment. Methods: To reveal sex-bound associations that may have gone unnoticed in the original analysis, we re-analyzed two previously published clinical cohorts. One was the multicenter Nordic trial of elderly patients with GBM, randomizing patients into three different treatment arms, including 203 cases with known MGMT promoter methylation status. The other was a population-based study of 179 patients with IDHwt GBM, receiving concomittant radiotherapy and chemotherapy with temozolomide. Cohorts were stratified by sex to test the hypothesis that female sex in combination with MGMT promoter methylation constitutes a subgroup with more favorable outcome. Results: There was a significantly larger proportion of MGMT promoter methylation and better outcome for female patients with MGMT promoter methylated tumors. Results were confirmed in 257 TCGA-derived IDHwt GBM with known sex and MGMT status. Conclusions: These results confirm that patient sex in combination with MGMT promoter methylation is a key determinant in GBM to be considered prior to treatment decisions. Our study also illustrates the need for stratification to identify such sex-bound associations.
Collapse
|
25
|
Whitmire P, Rickertsen CR, Hawkins-Daarud A, Carrasco E, Lorence J, De Leon G, Curtin L, Bayless S, Clark-Swanson K, Peeri NC, Corpuz C, Lewis-de Los Angeles CP, Bendok BR, Gonzalez-Cuyar L, Vora S, Mrugala MM, Hu LS, Wang L, Porter A, Kumthekar P, Johnston SK, Egan KM, Gatenby R, Canoll P, Rubin JB, Swanson KR. Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. BMC Cancer 2020; 20:447. [PMID: 32429869 PMCID: PMC7238585 DOI: 10.1186/s12885-020-06816-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
Background Sex is recognized as a significant determinant of outcome among glioblastoma patients, but the relative prognostic importance of glioblastoma features has not been thoroughly explored for sex differences. Methods Combining multi-modal MR images, biomathematical models, and patient clinical information, this investigation assesses which pretreatment variables have a sex-specific impact on the survival of glioblastoma patients (299 males and 195 females). Results Among males, tumor (T1Gd) radius was a predictor of overall survival (HR = 1.027, p = 0.044). Among females, higher tumor cell net invasion rate was a significant detriment to overall survival (HR = 1.011, p < 0.001). Female extreme survivors had significantly smaller tumors (T1Gd) (p = 0.010 t-test), but tumor size was not correlated with female overall survival (p = 0.955 CPH). Both male and female extreme survivors had significantly lower tumor cell net proliferation rates than other patients (M p = 0.004, F p = 0.001, t-test). Conclusion Despite similar distributions of the MR imaging parameters between males and females, there was a sex-specific difference in how these parameters related to outcomes.
Collapse
Affiliation(s)
- Paula Whitmire
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA.
| | - Cassandra R Rickertsen
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| | - Andrea Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| | - Eduardo Carrasco
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| | - Julia Lorence
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gustavo De Leon
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| | - Lee Curtin
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA.,Centre for Mathematical Medicine and Biology, University of Nottingham, Nottingham, UK
| | - Spencer Bayless
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| | - Kamala Clark-Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| | - Noah C Peeri
- Cancer Epidemiology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Christina Corpuz
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Bernard R Bendok
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA.,Department of Neurologic Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Luis Gonzalez-Cuyar
- Department of Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| | - Sujay Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Lei Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alyx Porter
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Priya Kumthekar
- Department of Neurology, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra K Johnston
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA.,Department of Radiology, University of Washington, Seattle, WA, USA
| | - Kathleen M Egan
- Cancer Epidemiology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Peter Canoll
- Division of Neuropathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Kristin R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd , SSB 02-700, Phoenix, AZ, 85054, USA
| |
Collapse
|
26
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
27
|
Yang W, Warrington NM, Taylor SJ, Whitmire P, Carrasco E, Singleton KW, Wu N, Lathia JD, Berens ME, Kim AH, Barnholtz-Sloan JS, Swanson KR, Luo J, Rubin JB. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med 2020; 11:11/473/eaao5253. [PMID: 30602536 DOI: 10.1126/scitranslmed.aao5253] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/20/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Sex differences in the incidence and outcome of human disease are broadly recognized but, in most cases, not sufficiently understood to enable sex-specific approaches to treatment. Glioblastoma (GBM), the most common malignant brain tumor, provides a case in point. Despite well-established differences in incidence and emerging indications of differences in outcome, there are few insights that distinguish male and female GBM at the molecular level or allow specific targeting of these biological differences. Here, using a quantitative imaging-based measure of response, we found that standard therapy is more effective in female compared with male patients with GBM. We then applied a computational algorithm to linked GBM transcriptome and outcome data and identified sex-specific molecular subtypes of GBM in which cell cycle and integrin signaling are the critical determinants of survival for male and female patients, respectively. The clinical relevance of cell cycle and integrin signaling pathway signatures was further established through correlations between gene expression and in vitro chemotherapy sensitivity in a panel of male and female patient-derived GBM cell lines. Together, these results suggest that greater precision in GBM molecular subtyping can be achieved through sex-specific analyses and that improved outcomes for all patients might be accomplished by tailoring treatment to sex differences in molecular mechanisms.
Collapse
Affiliation(s)
- Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara J Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paula Whitmire
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Eduardo Carrasco
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kyle W Singleton
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Ningying Wu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH, 44195, USA
| | | | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kristin R Swanson
- Precision Neurotherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, AZ 85054, USA.,School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA. .,Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Gittleman H, Ostrom QT, Stetson LC, Waite K, Hodges TR, Wright CH, Wright J, Rubin JB, Berens ME, Lathia J, Connor JR, Kruchko C, Sloan AE, Barnholtz-Sloan JS. Sex is an important prognostic factor for glioblastoma but not for nonglioblastoma. Neurooncol Pract 2019; 6:451-462. [PMID: 31832215 PMCID: PMC6899055 DOI: 10.1093/nop/npz019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and most malignant glioma. Nonglioblastoma (non-GBM) gliomas (WHO Grades II and III) are invasive and also often fatal. The goal of this study is to determine whether sex differences exist in glioma survival. METHODS Data were obtained from the National Cancer Database (NCDB) for years 2010 to 2014. GBM (WHO Grade IV; N = 2073) and non-GBM (WHO Grades II and III; N = 2963) were defined using the histology grouping of the Central Brain Tumor Registry of the United States. Non-GBM was divided into oligodendrogliomas/mixed gliomas and astrocytomas. Sex differences in survival were analyzed using Kaplan-Meier and multivariable Cox proportional hazards models adjusted for known prognostic variables. RESULTS There was a female survival advantage in patients with GBM both in the unadjusted (P = .048) and adjusted (P = .003) models. Unadjusted, median survival was 20.1 months (95% CI: 18.7-21.3 months) for women and 17.8 months (95% CI: 16.9-18.7 months) for men. Adjusted, median survival was 20.4 months (95% CI: 18.9-21.6 months) for women and 17.5 months (95% CI: 16.7-18.3 months) for men. When stratifying by age group (18-55 vs 56+ years at diagnosis), this female survival advantage appeared only in the older group, adjusting for covariates (P = .017). Women (44.1%) had a higher proportion of methylated MGMT (O6-methylguanine-DNA methyltransferase) than men (38.4%). No sex differences were found for non-GBM. CONCLUSIONS Using the NCDB data, there was a statistically significant female survival advantage in GBM, but not in non-GBM.
Collapse
Affiliation(s)
- Haley Gittleman
- Central Brain Tumor Registry of the United States, Hinsdale, IL
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Population Health and Quantitative Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Quinn T Ostrom
- Central Brain Tumor Registry of the United States, Hinsdale, IL
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - L C Stetson
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Kristin Waite
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Population Health and Quantitative Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Tiffany R Hodges
- Department of Neurological Surgery, University Hospitals of Cleveland and Case Western University School of Medicine, OH
- Seidman Cancer Center, University Hospitals of Cleveland, OH
| | - Christina H Wright
- Department of Neurological Surgery, University Hospitals of Cleveland and Case Western University School of Medicine, OH
| | - James Wright
- Department of Neurological Surgery, University Hospitals of Cleveland and Case Western University School of Medicine, OH
| | | | | | - Justin Lathia
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Cleveland Clinic, Lerner Research Institute, OH
| | - James R Connor
- Department of Neurosurgery, Penn State Cancer Institute, Penn State, State College
| | - Carol Kruchko
- Central Brain Tumor Registry of the United States, Hinsdale, IL
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Neurological Surgery, University Hospitals of Cleveland and Case Western University School of Medicine, OH
- Seidman Cancer Center, University Hospitals of Cleveland, OH
| | - Jill S Barnholtz-Sloan
- Central Brain Tumor Registry of the United States, Hinsdale, IL
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Population Health and Quantitative Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
29
|
Ye C, Xu M, Lin M, Zhang Y, Zheng X, Sun Y, Deng Y, Pan J, Xu Z, Lu X, Chi P. Overexpression of FZD7 is associated with poor survival in patients with colon cancer. Pathol Res Pract 2019; 215:152478. [DOI: 10.1016/j.prp.2019.152478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022]
|
30
|
Wang J, Quan X, Peng D, Hu G. Long non‑coding RNA DLEU1 promotes cell proliferation of glioblastoma multiforme. Mol Med Rep 2019; 20:1873-1882. [PMID: 31257517 DOI: 10.3892/mmr.2019.10428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/10/2019] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor with high morbidity and mortality. This study investigated the role of long non‑coding RNAs (lncRNAs) in glioblastomagenesis progression. Using the GSE2223 and GSE59612 datasets, and RNA sequencing data of GBM from The Cancer Genome Atlas, differentially expressed (DE) genes including DE messenger RNAs (DEmRNAs) and DElncRNAs between GBM and normal controls were identified. Based on the competing endogenous RNA hypothesis, DElncRNA‑micro RNA (miRNA)‑DEmRNA interactions were obtained by target gene prediction. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes pathway analysis of DEmRNAs in the DElncRNA‑miRNA‑DEmRNA network was performed. Expression and function analyses of DElncRNAs were performed by reverse transcription‑polymerase chain reaction (RT‑PCR) and an established viability assay, respectively. In total, 712 DE genes were identified. Significant upregulation of lncRNA deleted in lymphocytic leukemia 1 (DLEU1) was revealed in GBM and a number of other types of cancer. DLEU1 interacted with 315 miRNAs and 105 DEmRNAs. The DEmRNAs were mainly enriched in tumorigenesis‑associated GO terms (angiogenesis, positive regulation of cell proliferation, positive regulation of fibroblast apoptotic processes and regulation of neutrophil migration) and pathways (Hippo signaling pathway, cancer pathways, and Wnt signaling pathway). Correlation analysis revealed that mRNA TNF receptor associated factor 4 (TRAF4) was associated with DLEU1 expression. RT‑PCR demonstrated that the expression levels of DLEU1 and TRAF4 were increased in GBM tissues. Small interfering RNA demonstrated that silencing DLEU1 downregulated TRAF4. The viability of GBM cells was significantly decreased following RNA interference with DLEU1 and TRAF4 production. The results demonstrate that DLEU1 and TRAF4 is highly expressed in GBM tissues and promotes proliferation of GBM cells. It may act as a competing endogenous RNA and influence tumorigenesis of GBM.
Collapse
Affiliation(s)
- Jiancun Wang
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| | - Xingyun Quan
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| | - Dingting Peng
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| | - Guancheng Hu
- Department of Neurosurgery, People's Hospital of Zhangjiajie, Zhangjiajie, Hunan 427000, P.R. China
| |
Collapse
|
31
|
Choi Y, Ahn KJ, Nam Y, Jang J, Shin NY, Choi HS, Jung SL, Kim BS. Analysis of peritumoral hyperintensity on pre-operative T2-weighted MR images in glioblastoma: Additive prognostic value of Minkowski functionals. PLoS One 2019; 14:e0217785. [PMID: 31150499 PMCID: PMC6544273 DOI: 10.1371/journal.pone.0217785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
Objectives The extent of peritumoral tumor cell infiltrations in glioblastoma contributes to poor prognosis. We aimed to assess additive prognostic value of Minkowski functionals in analyzing heterogeneity of peritumoral hyperintensity on T2WI in glioblastoma patients. Methods Clinical data (age, sex, extent of surgical resection), O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and pre-operative T2WI of 113 pathologically confirmed glioblastoma patients (from our institution, n = 61; from the Cancer Imaging Archive, n = 52) were retrospectively reviewed. The patients were randomly grouped into a training set (n = 80) and a test set (n = 33). Peritumoral T2 hyperintensity was manually segmented and Minkowski functionals—a texture analysis method capturing heterogeneity of MR images—were computed as a function of 11 grayscale thresholds. The Cox proportional hazards models were fitted with clinical variables, Minkowski functionals features as well as both combined. The risk prediction performances of the Minkowski functionals and combined models were validated on a separate test dataset. The sex-specific survival difference of the entire cohort was analyzed according to MGMT methylation status via Kaplan-Meier survival curves. Results Thirty-three Minkowski features (11 area, 11 perimeter and 11 genus) for each patient were acquired giving a total of 3729 features. Cox regression models fitted with clinical data, Minkowski features, and both combined had incremental concordance indices of 0.577 (P = 0.02), 0.706 (P = 0.02) and 0.714 (P = 0.01) respectively. The prediction error rate of the combined model—having clinical and Minkowski features—was lower than that of Minkowski functionals model (0.135 and 0.161, respectively) when validated on a test dataset. No sex-specific survival difference was found according to MGMT methylation status (male, P = 0.2; female, P = 0.22). Conclusions Minkowski functionals features computed from peritumoral hyperintensity can capture heterogeneity of glioblastoma on T2WI and have additive prognostic value in predicting survival, demonstrating their potential in complementing currently available prognostic parameters.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kook Jin Ahn
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- * E-mail:
| | - Yoonho Nam
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na-Young Shin
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Seok Choi
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - So-Lyung Jung
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bum-soo Kim
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
32
|
Gittleman H, Cioffi G, Chunduru P, Molinaro AM, Berger MS, Sloan AE, Barnholtz-Sloan JS. An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. Neurooncol Adv 2019; 1:vdz007. [PMID: 31608326 PMCID: PMC6777501 DOI: 10.1093/noajnl/vdz007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background In 2016, the World Health Organization reclassified the definition of glioblastoma (GBM), dividing these tumors into isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant GBM, where the vast majority of GBMs are IDH-wild-type. Nomograms are useful tools for individualized estimation of survival. This study aimed to develop and independently validate a nomogram for IDH-wild-type patients with newly diagnosed GBM. Methods Data were obtained from newly diagnosed GBM patients from the Ohio Brain Tumor Study (OBTS) and the University of California San Francisco (UCSF) for diagnosis years 2007-2017 with the following variables: age at diagnosis, sex, extent of resection, concurrent radiation/temozolomide (TMZ) status, Karnofsky Performance Status (KPS), O6-methylguanine-DNA methyltransferase (MGMT) methylation status, and IDH mutation status. Survival was assessed using Cox proportional hazards regression, random survival forests, and recursive partitioning analysis, with adjustment for known prognostic factors. The models were developed using the OBTS data and independently validated using the UCSF data. Models were internally validated using 10-fold cross-validation and externally validated by plotting calibration curves. Results A final nomogram was validated for IDH-wild-type newly diagnosed GBM. Factors that increased the probability of survival included younger age at diagnosis, female sex, having gross total resection, having concurrent radiation/TMZ, having a high KPS, and having MGMT methylation. Conclusions A nomogram that calculates individualized survival probabilities for IDH-wild-type patients with newly diagnosed GBM could be useful to physicians for counseling patients regarding treatment decisions and optimizing therapeutic approaches. Free software for implementing this nomogram is provided: https://gcioffi.shinyapps.io/Nomogram_For_IDH_Wildtype_GBM_H_Gittleman/.
Collapse
Affiliation(s)
- Haley Gittleman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Gino Cioffi
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Pranathi Chunduru
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Neurological Surgery, University Hospitals of Cleveland and Case Western University School of Medicine, Cleveland, Ohio.,Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, Ohio
| | - Jill S Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
33
|
Consequences of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH Proteins. Molecules 2019; 24:molecules24050968. [PMID: 30857299 PMCID: PMC6429355 DOI: 10.3390/molecules24050968] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Isocitrate dehydrogenases (IDH) 1 and 2 are key metabolic enzymes that generate reduced nicotinamide adenine dinucleotide phosphate (NADPH) to maintain a pool of reduced glutathione and peroxiredoxin, and produce α-ketoglutarate, a co-factor of numerous enzymes. IDH1/2 is mutated in ~70–80% of lower-grade gliomas and the majority of secondary glioblastomas. The mutant IDH1 (R132H), in addition to losing its normal catalytic activity, gains the function of producing the d-(R)-2-hydroxyglutarate (2-HG). Overproduction of 2-HG in cancer cells interferes with cellular metabolism and inhibits histone and DNA demethylases, which results in histone and DNA hypermethylation and the blockade of cellular differentiation. We summarize recent findings characterizing molecular mechanisms underlying oncogenic alterations associated with mutated IDH1/2, and their impact on tumor microenvironment and antitumor immunity. Isoform-selective IDH inhibitors which suppress 2-HG production and induce antitumor responses in cells with IDH1 and IDH2 mutations were developed and validated in preclinical settings. Inhibitors of mutated IDH1/2 enzymes entered clinical trials and represent a novel drug class for targeted therapy of gliomas. We describe the development of small-molecule compounds and peptide vaccines targeting IDH-mutant gliomas and the results of their testing in preclinical and clinical studies. All those results support the translational potential of strategies targeting gliomas carrying IDH1 mutations.
Collapse
|
34
|
Zhu H, Cao XX, Liu J, Hua H. MicroRNA-488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7. J Cell Mol Med 2019; 23:2419-2430. [PMID: 30729701 PMCID: PMC6433721 DOI: 10.1111/jcmm.14078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a chronic inflammatory syndrome and nearly 6%‐10% of women are affected by it during the reproductive period. Previous studies have proved that microRNAs (miRNAs) are implicated in the pathogenesis of ovarian endometriosis. In this study, we aimed to investigate that restored miR‐488 would effectively inhibit the development of endometriosis. The microarray‐based data analysis was performed to screen endometriosis‐related differentially expressed genes (DEGs). The mouse model in endometriosis syndrome was established by being subcutaneously injected with Estradiol benzoate, and the ectopic endometrial tissues and normal endometrial tissues were collected. Additionally, the endometrial glandular epithelial cells were extracted from the endometrial glandular epithelial tissues from normal and endometriosis mice. In order to examine the role of miR‐488 in mice with endometriosis, we measured miR‐488 expression and expression levels of Frizzled‐7 (FZD7), cyclinD1, β‐catenin, and c‐Myc in vivo and in vitro. Finally, we detected the effect of miR‐488 on cell proliferation, apoptosis, migration and invasion in vitro. FZD7 was upregulated in human endometriosis. The data showed higher expression levels of FZD7, β‐catenin, c‐Myc and cyclinD1, and lower miR‐488 expression in mouse endometrial tissues. FZD7 was the target gene of miR‐488. Furthermore, elevated miR‐488 in isolated mouse endometrial glandular endometrial cells inhibited FZD7, the translocation of β‐catenin to nucleus, the activation of Wnt pathway, and the cell proliferation, migration and invasion. Collectively, these findings indicated that up‐regulated miR‐488 may reduce the proliferation, migration and invasion of endometrial glandular epithelial cells through inhibiting the activation of Wnt pathway by down‐regulating FZD7.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Reproductive Health, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Xi-Xia Cao
- Department of Reproductive Health, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Juan Liu
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Hua Hua
- Department of Reproductive Health, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
35
|
Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. Neuro Oncol 2019; 20:576-577. [PMID: 29474647 DOI: 10.1093/neuonc/noy002] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Quinn T Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Joshua B Rubin
- Department of Pediatrics and Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri
| | - Justin D Lathia
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
36
|
Franceschi E, Tosoni A, Minichillo S, Depenni R, Paccapelo A, Bartolini S, Michiara M, Pavesi G, Urbini B, Crisi G, Cavallo MA, Tosatto L, Dazzi C, Biasini C, Pasini G, Balestrini D, Zanelli F, Ramponi V, Fioravanti A, Giombelli E, De Biase D, Baruzzi A, Brandes AA. The Prognostic Roles of Gender and O6-Methylguanine-DNA Methyltransferase Methylation Status in Glioblastoma Patients: The Female Power. World Neurosurg 2018; 112:e342-e347. [PMID: 29337169 DOI: 10.1016/j.wneu.2018.01.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clinical and molecular factors are essential to define the prognosis in patients with glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) methylation status, age, Karnofsky Performance Status (KPS), and extent of surgical resection are the most relevant prognostic factors. Our investigation of the role of gender in predicting prognosis shows a slight survival advantage for female patients. METHODS We performed a prospective evaluation of the Project of Emilia Romagna on Neuro-Oncology (PERNO) registry to identify prognostic factors in patients with GBM who received standard treatment. RESULTS A total of 169 patients (99 males [58.6%] and 70 females [41.4%]) were evaluated prospectively. MGMT methylation was evaluable in 140 patients. Among the male patients, 36 were MGMT methylated (25.7%) and 47 were unmethylated (33.6%); among the female patients, 32 were methylated (22.9%) and 25 were unmethylated (17.9%). Survival was longer in the methylated females compared with the methylated males (P = 0.028) but was not significantly different between the unmethylated females and the unmethylated males (P = 0.395). In multivariate analysis, gender and MGMT methylation status considered together (methylated females vs. methylated males; hazard ratio [HR], 0.459; 95% confidence interval [CI], 0.242-0.827; P = 0.017), age (HR, 1.025; 95% CI, 1.002-1.049; P = 0.032), and KPS (HR, 0.965; 95% CI, 0.948-0.982; P < 0.001) were significantly correlated with survival. CONCLUSIONS Survival was consistently longer among MGMT methylated females compared with males. Gender can be considered as a further prognostic factor.
Collapse
Affiliation(s)
- Enrico Franceschi
- Department of Medical Oncology, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alicia Tosoni
- Department of Medical Oncology, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Santino Minichillo
- Department of Medical Oncology, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Roberta Depenni
- Department of Oncology, Hematology, and Respiratory Diseases, University Hospital of Modena, Modena, Italy
| | - Alexandro Paccapelo
- Department of Medical Oncology, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Maria Michiara
- Department of Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Giacomo Pavesi
- Department of Neurosurgery, Agostino-Estense Hospital, Modena, Italy; Department of Oncology and Hematology, Romagnolo Scientific Institute for the Study and Treatment of Tumors-IRCCS, Cesena, Italy
| | - Benedetta Urbini
- Clinical Oncology Unit, St. Anna University Hospital, Ferrara, Italy
| | - Girolamo Crisi
- Department of Neuroradiology, University Hospital of Parma, Parma, Italy
| | - Michele A Cavallo
- Department of Neurosurgery, St. Anna University Hospital, Ferrara, Italy
| | - Luigino Tosatto
- Department of Neurosurgery, M. Bufalini Hospital, Cesena, Italy
| | - Claudio Dazzi
- Department of Oncology and Hematology, General Hospital, Ravenna, Italy
| | - Claudia Biasini
- Department of Oncology and Hematology, Oncology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Giuseppe Pasini
- Department of Medical Oncology, Infermi Hospital, Rimini, Italy
| | | | - Francesca Zanelli
- Department of Oncology, Santa Maria Nuova Hospital-IRCCS, Reggio Emilia, Italy
| | - Vania Ramponi
- Department of Neurosurgery, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Antonio Fioravanti
- Department of Neurosurgery, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Ermanno Giombelli
- Department of Special Surgeries, Unit of Neurosurgery, University Hospital of Parma, Parma, Italy
| | - Dario De Biase
- Molecular Diagnostic Unit, Department of Pharmacy and Biotechnology, USL Company of Bologna, University of Bologna, Bologna, Italy
| | - Agostino Baruzzi
- IRCCS Institute of Neurological Sciences, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba A Brandes
- Department of Medical Oncology, Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy.
| | | |
Collapse
|
37
|
Gao YF, Mao XY, Zhu T, Mao CX, Liu ZX, Wang ZB, Li L, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. COL3A1 and SNAP91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget 2018; 7:70494-70503. [PMID: 27655637 PMCID: PMC5342568 DOI: 10.18632/oncotarget.12038] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023] Open
Abstract
Although patients with glioblastoma (GBM) have grave prognosis, significant variability in patient outcome is observed. This study aims to identify novel targets for GBM diagnosis and therapy. Microarray data (GSE4290, GSE7696, and GSE4412) obtained from the Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) by significant analysis of microarray (SAM). Intersection of the identified DEGs for each profile revealed 46 DEGs in GBM. A subset of common DEGs were validated by real-time reverse transcription quantitative PCR (qPCR). The prognostic value of some of the markers was also studied. We determined that RRM2 and COL3A1 were increased and directly correlated with glioma grade, while SH3GL2 and SNAP91 were decreased in GBM and inversely correlated with glioma grade. Kaplan-Meir analysis of GSE7696 revealed that COL3A1 and SNAP91 correlated with survival, suggesting that COL3A1 and SNAP91 may be suitable biomarkers for diagnostic or therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Xiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
38
|
Qiu X, Jiao J, Li Y, Tian T. Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget 2018; 7:85987-85999. [PMID: 27852064 PMCID: PMC5349891 DOI: 10.18632/oncotarget.13292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/03/2016] [Indexed: 01/27/2023] Open
Abstract
Gliomas are the most prevalent type of primary brain tumors in adults, accounting for more than 40% of neoplasm in the central nervous system. Frizzled-7 (FZD7) is a seven-pass trans-membrane Wnt receptor that plays a critical role in the development of various tumors. In this study, we detected high-level FZD7 expression in glioma and its overexpression was associated with advanced tumor stage. In vitro functional assays showed that forced overexpression of FZD7 promoted proliferation of gliomas cells, whereas knockdown of endogenous FZD7 significantly suppressed proliferation ability of these cells. In a xenograft assay, FZD7 was also found to promote the growth of glioma cells. We further found that FZD7 could activate transcriptional coactivator with PDZ-binding motif (TAZ), and TAZ was required for FZD7 to promote cell proliferation in glioma. Furthermore, the univariate analysis of survival shows that glioma patients with high FZD7 expression have a shorter survival. In conclusion, our findings demonstrate that FZD7 may promote glioma cell proliferation via upregulation of TAZ.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Medicine, Shangqiu Medical School, Shangqiu, Henan Province, China
| | - Jianguo Jiao
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yidong Li
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
39
|
Abstract
Wnt signalling regulates cardiogenesis during specification of heart tissue and the morphogenetic movements necessary to form the linear heart. Wnt11-mediated non-canonical signalling promotes early cardiac development whilst Wnt11-R, which is expressed later, also signals through the non-canonical pathway to promote heart development. It is unclear which Frizzled proteins mediate these interactions. Frizzled-7 (fzd7) is expressed during gastrulation in the mesodermal cells fated to become heart, and then in the primary heart field. This expression is complementary to the expression of wnt11 and wnt11-R. We further show co-localisation of fzd7 with other early- and late-heart-specific markers using double in situ hybridisation. We have used loss of function analysis to determine the role of fzd7 during heart development. Morpholino antisense oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We propose that Fzd7 has an important role during Xenopus heart development. Summary: Wnt signalling has been shown to be important in heart development. Here, we demonstrate that the wnt receptor fzd7 is required in mediating these Wnt signals.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216 Jeddah 21589, Kingdom of Saudi Arabia.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Joanna Mulvaney
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
40
|
Qiao B, Zhang Z, Li Y. Association of MGMT promoter methylation with tumorigenesis features in patients with ovarian cancer: A systematic meta-analysis. Mol Genet Genomic Med 2017; 6:69-76. [PMID: 29195029 PMCID: PMC5823672 DOI: 10.1002/mgg3.349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022] Open
Abstract
Background The MGMT is a key tumor suppressor gene and aberrant promoter methylation has been reported in many cancers. However, the relationship between MGMT promoter methylation and ovarian cancer remains controversial. This meta‐analysis was first conducted to estimate the clinical significance of MGMT promoter methylation in ovarian carcinoma. Methods Literature search was performed in the PubMed, Embase, EBSCO and Cochrane Library databases. The pooled odds ratio (OR) and their corresponding 95% confidence interval (95% CI) were summarized. Results Final 10 studies with 910 ovarian tissue samples were included in this meta‐analysis. MGMT promoter methylation was significantly higher in ovarian cancer than in normal ovarian tissues (OR = 4.13, 95% CI = 2.32–7.33, p < .001). The MGMT had a similar methylation status in cancer versus benign lesions and low malignant potential (LMP) samples (OR = 2.01, 95% CI = 0.67–6.04, p = .212; OR = 1.42, 95% CI = 0.46–4.40, p = .543; respectively). MGMT promoter methylation was correlated with pathological types in which it was significantly lower in serous cancer than in nonserous cancer (OR = 0.29, 95% CI = 0.14–0.59, p = .001). The methylation of the MGMT promoter was not associated with clinical stage and tumor grade (OR = 1.46, 95% CI = 0.71–3.02, p = .301; OR = 1.13, 95% CI = 0.51–2.46, p = .767; respectively). Conclusions MGMT promoter methylation may be correlated with the tumorigenesis of ovarian cancer. It was associated with tumor histotypes, but not correlated with clinical stage and tumor grade. More prospective studies with lager sample sizes are necessary in the future.
Collapse
Affiliation(s)
- Baoli Qiao
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yanfang Li
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Zhang W, Lu W, Ananthan S, Suto MJ, Li Y. Discovery of novel frizzled-7 inhibitors by targeting the receptor's transmembrane domain. Oncotarget 2017; 8:91459-91470. [PMID: 29207657 PMCID: PMC5710937 DOI: 10.18632/oncotarget.20665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Frizzled (Fzd) proteins are seven transmembrane receptors that belong to a novel and separated family of G-protein-coupled receptors (GPCRs). The Fzd receptors can respond to Wnt proteins to activate the canonical β-catenin pathway which is important for both initiation and progression of cancers. Disruption of the Wnt/β-catenin signal thus represents an opportunity for rational cancer prevention and therapy. Of the 10 members of the Fzd family, Fzd7 is the most important member involved in cancer development and progression. In the present studies, we applied structure-based virtual screening targeting the transmembrane domain (TMD) of Fzd7 to select compounds that could potentially bind to the Fzd7-TMD and block the Wnt/Fzd7 signaling and further evaluated them in biological assays. Six small molecule compounds were confirmed as Fzd7 inhibitors. The best hit, SRI37892, significantly blocked the Wnt/Fzd7 signaling with IC50 values in the sub-micromolar range and inhibited cancer cell proliferation with IC50 values around 2 μM. Our results provide the first proof of concept of targeting Fzd-TMD for the development of Wnt/Fzd modulators. The identified small molecular Fzd7 inhibitors can serve as a useful tool for studying the regulation mechanism(s) of Wnt/Fzd7 signaling as well as a starting point for the development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Wenyan Lu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Subramaniam Ananthan
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Mark J Suto
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Yonghe Li
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| |
Collapse
|
42
|
Abstract
Glioblastoma is the most frequent malignant brain tumor and is characterized by poor prognosis, increased invasiveness, and high recurrence rates. Standard treatment for glioblastoma includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. Despite treatment advances, only 15-20% of glioblastoma patients survive to 5 years, and no therapies have demonstrated a durable survival benefit in recurrent disease. In the last 10 years, significant advances in knowledge of the biology and molecular pathology of the malignancy have opened the way to new treatment options. Clinical management of patients (pseudo-progressions, side effects of therapies, best supportive care, centralization in expertise care centers) has improved. In brain tumors, such as in other solid tumors, we have entered an era of immune-oncology. Immunotherapy seems to have an acceptable safety and tolerability profile in the recurrent setting and is under investigation in clinical trials in newly diagnosed glioblastoma patients. This review focuses on novel targeted therapies recently developed for the management of newly diagnosed and recurrent glioblastomas.
Collapse
|
43
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|