1
|
Tang M, Hattori Y. Effect of vorinostat on protein expression in vitro and in vivo following mRNA lipoplex administration. Biomed Rep 2024; 21:105. [PMID: 38868527 PMCID: PMC11168034 DOI: 10.3892/br.2024.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Previously, we demonstrated that cationic liposomes comprised of N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and poly(ethylene glycol) cholesteryl ether induced substantial protein expression both in vitro and in vivo following the administration of mRNA/cationic liposome complexes (mRNA lipoplexes). The present study evaluated the effect of vorinostat, a histone deacetylase inhibitor, on protein expression levels in vitro and in vivo following the administration of mRNA lipoplexes. The half-maximal inhibitory concentration (IC50) values of vorinostat for human cervical carcinoma HeLa and human liver cancer HepG2 cells were determined to be 7.8 and 2.6 µM, respectively, following a 24 h incubation period. Treatment with 1 µM vorinostat resulted in a 2.7-fold increase in luciferase (Luc) activity for HeLa cells and a 1.6-fold increase for HepG2 cells at 24 h post-transfection with firefly Luc (FLuc) mRNA lipoplexes compared with untreated cells. However, treatment with 10 µM vorinostat decreased Luc activity compared with treatment with 1 µM vorinostat. Intravenous injection of Cy5-labeled mRNA lipoplexes into mice resulted in mRNA accumulation primarily in the lungs; however, co-injection with vorinostat at doses of 5 or 25 mg/kg resulted in mRNA accumulation in both the lungs and liver. Furthermore, intravenous injection of FLuc mRNA lipoplexes resulted in high Luc activity in both the lungs and spleen. Nevertheless, co-injection with vorinostat slightly decreased Luc activity in the lungs but not in the spleen. These findings indicated that vorinostat enhances in vitro protein expression from transfected mRNA after treatment with a lower concentration of IC50; however, it does not largely affect in vivo protein expression from the transfected mRNA.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
2
|
Pulya S, Himaja A, Paul M, Adhikari N, Banerjee S, Routholla G, Biswas S, Jha T, Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J Med Chem 2023; 66:12033-12058. [PMID: 37660352 DOI: 10.1021/acs.jmedchem.3c00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
HDAC3 modulation shows promise for breast cancer, including triple-negative cases. Novel pyrazino-hydrazide-based HDAC3 inhibitors were designed and synthesized. Lead compound 4i exhibited potent HDAC3 inhibition (IC50 = 14 nM) with at least 121-fold selectivity. It demonstrated strong cytotoxicity against triple-negative breast cancer cells (IC50: 0.55 μM for 4T1, 0.74 μM for MDA-MB-231) with least normal cell toxicity. Metabolically stable 4i displayed a superior pharmacokinetic profile. A dose-dependent therapeutic efficacy of 4i was observed in a tumor-bearing mouse model. The biomarker analysis with tumor tissues displayed enhanced acetylation on Ac-H3K9, Ac-H3K27, and Ac-H4K12 compared to Ac-tubulin and Ac-SMC3 indicating HDAC3 selectivity of 4i in vivo. The immunoblotting study with tumor tissue showed upregulation of apoptotic proteins caspase-3, caspase-7, and cytochrome c and the downregulation of proliferation markers Bcl-2, CD44, EGFR, and Ki-67. Compound 4i represents a promising candidate for targeted breast cancer therapy, particularly for cases with triple-negative breast cancer.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
3
|
Xun T, Lin Z, Zhang M, Mo L, Chen Y, Wang X, Zhao J, Ye C, Feng H, Yang X. Advanced oxidation protein products upregulate ABCB1 expression and activity via HDAC2-Foxo3α-mediated signaling in vitro and in vivo. Toxicol Appl Pharmacol 2022; 449:116140. [PMID: 35753429 DOI: 10.1016/j.taap.2022.116140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
The unpredictable pharmacokinetics of non-renal cleared drugs in chronic kidney disease (CKD) patients is associated with the activity of drug transporters. However, the mechanisms underlying regulation of drug transporters are yet to be established. In this study, we demonstrated the involvement of a HDAC2-Foxo3α pathway in advanced oxidation protein products (AOPPs)-induced ATP-binding cassette subfamily B member 1 (ABCB1) expression and activity. The correlation of AOPPs accumulation with concentration of cyclosporine in plasma was evaluated in 194 patients with transplantation. Molecular changes in acetylation of various histones and related regulatory molecules were examined in HepG2 cell cultures treated with AOPPs. Accumulation of AOPPs in serum in relation to molecular changes in HDAC2-Foxo3α in vivo were evaluated in 5/6 nephrectomy (5/6 nx) and oral adenine (Adenine) CKD rat models. Interestingly, the cyclosporine level was negatively correlated with AOPPs in plasma. In addition, AOPPs markedly suppressed the expression of histone deacetylase 2 (HDAC2), inducing ABCB1 expression and activity in vitro and in vivo. Importantly, AOPPs modulated phosphorylation of Foxo3α and the upstream Akt protein. Our findings indicate that AOPPs regulate the expression and activity of ABCB1 via reducing HDAC2 expression and activating Foxo3α-dependent signaling. The collective results support the utility of AOPPs as a potential target for drug and/or dosage adjustment in CKD patients. Targeting of AOPPs presents a novel approach to regulate non-renal clearance.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mimi Zhang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
4
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
5
|
Activation of ABCC Genes by Cisplatin Depends on the CoREST Occurrence at Their Promoters in A549 and MDA-MB-231 Cell Lines. Cancers (Basel) 2022; 14:cancers14040894. [PMID: 35205642 PMCID: PMC8870433 DOI: 10.3390/cancers14040894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cisplatin resistance is a common issue that affects patients with a variety of cancers who are treated with this drug. In this research, we present a novel epigenetic mechanism that controls the expression of ABC-family transporters, which are involved in multidrug resistance. We report that the CoREST complex may be a key factor that determines the transcription of ABC transporters in non-small cell lung and triple-negative breast cancer cells (A549 and MDA-MB-231, respectively) treated with cisplatin. By occupying gene promoters, this multi-subunit repressor prevents both an EP300-dependent increase in ABCC transcription induced by the alkylating drug and gene overexpression in cisplatin-resistant phenotypes. Moreover, the CoREST-free promoter of ABCC10 responds to cisplatin with EP300-mediated gene activation, which is only possible in p53-proficient cells. Abstract Although cisplatin-based therapies are common among anticancer approaches, they are often associated with the development of cancer drug resistance. This phenomenon is, among others, caused by the overexpression of ATP-binding cassette, membrane-anchored transporters (ABC proteins), which utilize ATP to remove, e.g., chemotherapeutics from intracellular compartments. To test the possible molecular basis of increased expression of ABCC subfamily members in a cisplatin therapy mimicking model, we generated two cisplatin-resistant cell lines derived from non-small cell lung cancer cells (A549) and triple-negative breast cancer cells (MDA-MB-231). Analysis of data for A549 cells deposited in UCSC Genome Browser provided evidence on the negative interdependence between the occurrence of the CoREST complex at the gene promoters and the overexpression of ABCC genes in cisplatin-resistant lung cancer cells. Pharmacological inhibition of CoREST enzymatic subunits—LSD1 and HDACs—restored gene responsiveness to cisplatin. Overexpression of CoREST-free ABCC10 in cisplatin-resistant phenotypes was caused by the activity of EP300 that was enriched at the ABCC10 promoter in drug-treated cells. Cisplatin-induced and EP300-dependent transcriptional activation of ABCC10 was only possible in the presence of p53. In summary, the CoREST complex prevents the overexpression of some multidrug resistance proteins from the ABCC subfamily in cancer cells exposed to cisplatin. p53-mediated activation of some ABCC genes by EP300 occurs once their promoters are devoid of the CoREST complex.
Collapse
|
6
|
Hashim Z, Mishra R, Gupta M, Chaturvedi R, Singh H, Nath A, Misra D, Khan A, Rai M, Srivastava S, Chaturvedi S, Agarwal V. Histone deacetylase-2 inducer like theophylline has a potential to improve glucocorticoid responsiveness in severe uncontrolled asthma by reducing P-glycoprotein/MRP-1. INDIAN JOURNAL OF RHEUMATOLOGY 2022. [DOI: 10.4103/injr.injr_85_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Kamaraju S, Mohan M, Zaharova S, Wallace B, McGraw J, Lokken J, Tierney J, Weil E, Fatunde O, Brown SA. Interactions between cardiology and oncology drugs in precision cardio-oncology. Clin Sci (Lond) 2021; 135:1333-1351. [PMID: 34076246 PMCID: PMC8984624 DOI: 10.1042/cs20200309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in treatment have transformed the management of cancer. Despite these advances, cardiovascular disease remains a leading cause of death in cancer survivors. Cardio-oncology has recently evolved as a subspecialty to prevent, diagnose, and manage cardiovascular side effects of antineoplastic therapy. An emphasis on optimal management of comorbidities and close attention to drug interactions are important in cardio-oncologic care. With interdisciplinary collaboration among oncologists, cardiologists, and pharmacists, there is potential to prevent and reduce drug-related toxicities of treatments. The cytochrome P450 (CYP450) family of enzymes and the P-glycoprotein (P-g) transporter play a crucial role in drug metabolism and drug resistance. Here we discuss the role of CYP450 and P-g in drug interactions in the field of cardio-oncology, provide an overview of the cardiotoxicity of a spectrum of cancer agents, highlight the role of precision medicine, and encourage a multidisciplinary treatment approach for patients with cancer.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, WI, U.S.A
| | - Meera Mohan
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, WI, U.S.A
| | - Svetlana Zaharova
- Cardio-Oncology Program, Division of Cardiovascular
Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Joseph McGraw
- Department of Pharmacy, Concordia University, Milwaukee,
WI, U.S.A
| | - James Lokken
- Department of Pharmacy, Concordia University, Milwaukee,
WI, U.S.A
| | - John Tierney
- School of Pharmacy, Medical College of Wisconsin, WI,
U.S.A
| | - Elizabeth Weil
- Department of Pharmacy, Medical College of Wisconsin, WI,
U.S.A
| | - Olubadewa Fatunde
- Division of Cardiology, Department of Medicine, Mayo Clinic
Arizona, Scottsdale, AZ, U.S.A
| | - Sherry-Ann Brown
- Cardio-Oncology Program, Division of Cardiovascular
Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
8
|
Singh SV, Chaube B, Mayengbam SS, Singh A, Malvi P, Mohammad N, Deb A, Bhat MK. Metformin induced lactic acidosis impaired response of cancer cells towards paclitaxel and doxorubicin: Role of monocarboxylate transporter. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166011. [PMID: 33212188 DOI: 10.1016/j.bbadis.2020.166011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
Abnormal glucose metabolism in cancer cells causes generation and secretion of excess lactate, which results in acidification of the extracellular microenvironment. This altered metabolism aids not only in survival and proliferation but also in suppressing immune-mediated destruction of cancer cells. However, how it influences the response of cancer cells to chemotherapeutic drugs is not clearly understood. We employed appropriate in vitro approaches to explore the role of mono-carboxylate transporter 4 (MCT4) mediated altered intra and extracellular pH on the outcome of the therapeutic efficacy of chemotherapeutic drugs in breast and lung cancer models. We demonstrate by in vitro experiments that inhibition of complex I enhances glycolysis and increases expression as well as membrane translocation of MCT4. It causes a decrease in extracellular pH (pHe) and impairs doxorubicin and paclitaxel's therapeutic efficacy. Acidic pHe inhibits doxorubicin's uptake, while acidic intracellular pH (pH i) impairs the efficacy of paclitaxel. Under in vivo experimental settings, the modulation of pHe with phloretin or alkalizer (NaHCO3) enhances cytotoxicity of drugs and inhibits the growth of MCF-7 xenografts in mice. In a nutshell, this study indicates that MCT4 mediated extracellular acidosis is involved in impairing chemotherapeutic drugs' efficacy on cancer cells. Therefore, the use of pH neutralizing agents or MCT inhibitors may be beneficial towards circumventing impairment in the efficacy of certain drugs that are sensitive to pH changes.
Collapse
Affiliation(s)
- Shivendra Vikram Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Balkrishna Chaube
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | | | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Parmanand Malvi
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Naoshad Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
9
|
Rana Z, Tyndall JDA, Hanif M, Hartinger CG, Rosengren RJ. Cytostatic Action of Novel Histone Deacetylase Inhibitors in Androgen Receptor-Null Prostate Cancer Cells. Pharmaceuticals (Basel) 2021; 14:103. [PMID: 33572730 PMCID: PMC7912319 DOI: 10.3390/ph14020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Androgen receptor (AR)-null prostate tumors have been observed in 11-24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.
Collapse
Affiliation(s)
- Zohaib Rana
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand;
| | | | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand; (M.H.); (C.G.H.)
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand; (M.H.); (C.G.H.)
| | - Rhonda J. Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
10
|
Shi B, Xu FF, Xiang CP, Jia R, Yan CH, Ma SQ, Wang N, Wang AJ, Fan P. Effect of sodium butyrate on ABC transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol Lett 2020; 20:148. [PMID: 32934716 PMCID: PMC7471751 DOI: 10.3892/ol.2020.12011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors and DNA alkylators are effective components of combination chemotherapy. The aim of the present study was to investigate the possible mechanism of their synergism by detecting the effect of HDAC inhibitors on the expression levels of drug transporters that export DNA alkylators. It was demonstrated that the HDAC inhibitor sodium butyrate (NaB) induced the differential expression of multidrug resistant ATP-binding cassette (ABC) transporters in lung cancer and colorectal cancer cells. Specifically, NaB increased the mRNA expression levels of ABC subfamily B member 1 (ABCB1), ABCC10 and ABCC12, and protein expression levels of multidrug resistance-1 (MDR1), multidrug resistance-associated protein 7 (MRP7) and MRP9. Moreover, NaB decreased the expression levels of ABCC1, ABCC2 and ABCC3 mRNAs, as well as those of MRP1, MRP2 and MRP3 proteins. The molecular mechanism underlying this process was subsequently investigated. NaB decreased the expression of HDAC4, but not HDAC1, HDAC2 or HDAC3. In addition, NaB promoted histone H3 acetylation and methylation at lysine 9, as well as MDR1 acetylation, suggesting that acetylation and methylation may be involved in NaB-mediated ABC transporter expression. Thus, the present results indicated that the synergism of the HDAC inhibitors with the DNA alkylating agents may due to the inhibitory effect of MRPs by HDAC inhibitors. The findings also suggested the possibility of antagonistic effects following the combined treatment of HDAC inhibitors with MDR1 ligands.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Fang-Fang Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Cai-Ping Xiang
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Ru Jia
- Department of Anorectal Surgery, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230000, P.R. China
| | - Chun-Hong Yan
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Se-Qing Ma
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Ning Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - An-Jiao Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Ping Fan
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
11
|
Understanding Failure and Improving Treatment Using HDAC Inhibitors for Prostate Cancer. Biomedicines 2020; 8:biomedicines8020022. [PMID: 32019149 PMCID: PMC7168248 DOI: 10.3390/biomedicines8020022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Novel treatment regimens are required for castration-resistant prostate cancers (CRPCs) that become unresponsive to standard treatments, such as docetaxel and enzalutamide. Histone deacetylase (HDAC) inhibitors showed promising results in hematological malignancies, but they failed in solid tumors such as prostate cancer, despite the overexpression of HDACs in CRPC. Four HDAC inhibitors, vorinostat, pracinostat, panobinostat and romidepsin, underwent phase II clinical trials for prostate cancers; however, phase III trials were not recommended due to a majority of patients exhibiting either toxicity or disease progression. In this review, the pharmacodynamic reasons for the failure of HDAC inhibitors were assessed and placed in the context of the advancements in the understanding of CRPCs, HDACs and resistance mechanisms. The review focuses on three themes: evolution of androgen receptor-negative prostate cancers, development of resistance mechanisms and differential effects of HDACs. In conclusion, advancements can be made in this field by characterizing HDACs in prostate tumors more extensively, as this will allow more specific drugs catering to the specific HDAC subtypes to be designed.
Collapse
|
12
|
Wang H, Chi CH, Zhang Y, Shi B, Jia R, Wang BJ. Effects of histone deacetylase inhibitors on ATP-binding cassette transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol Lett 2019; 18:63-71. [PMID: 31289473 PMCID: PMC6540461 DOI: 10.3892/ol.2019.10319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors and DNA alkylators are effective components used in combination chemotherapy. In the present study, the effects of HDAC inhibitors on the expression of ATP-binding cassette (ABC) transporters were investigated. It was observed that HDAC inhibitors induced the expression of multidrug-resistant ABC transporters differently in lung cancer A549 cells than in colorectal cancer HCT116 cells. In these two cell lines, the HDAC inhibitors suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) significantly increased ABCB1 expression at the mRNA and protein levels, whereas they had no evident effect on ABCG2 protein expression. SAHA and TSA decreased ABCG2 mRNA expression in A549 cells and had no evident effect on ABCG2 mRNA expression in HCT116 cells. Notably, SAHA and TSA increased the mRNA expression levels of ABCC5, ABCC6, ABCC10, ABCC11 and ABCC12, as well as the protein expression levels of ABCC2, ABCC10 and ABCC12. By contrast, these inhibitors decreased the mRNA expression levels of ABCC1, ABCC2, ABCC3 and ABCC4, as well as the expression of ABCC1 and ABCC3 proteins. Furthermore, SAHA and TSA were found to downregulate HDAC3 and HDAC4, but not HDAC1 and HDAC2. Taken together, the results suggested that HDAC inhibitors work synergistically with DNA alkylators, in part, due to the inhibitory effect of these inhibitors on ABCC1 expression, which translocates these alkylators from inside to outside of cancer cells. These results further suggested the possibility of antagonism when HDAC inhibitors are combined with anthracyclines and other ABCB1 drug ligands in chemotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Chun-Hua Chi
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Ying Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Bin Shi
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Ru Jia
- Department of Anorectal Surgery, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230001, P.R. China
| | - Ben-Jun Wang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
13
|
Implication for Cancer Stem Cells in Solid Cancer Chemo-Resistance: Promising Therapeutic Strategies Based on the Use of HDAC Inhibitors. J Clin Med 2019; 8:jcm8070912. [PMID: 31247937 PMCID: PMC6678716 DOI: 10.3390/jcm8070912] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to therapy in patients with solid cancers represents a daunting challenge that must be addressed. Indeed, current strategies are still not effective in the majority of patients; which has resulted in the need for novel therapeutic approaches. Cancer stem cells (CSCs), a subset of tumor cells that possess self-renewal and multilineage differentiation potential, are known to be intrinsically resistant to anticancer treatments. In this review, we analyzed the implications for CSCs in drug resistance and described that multiple alterations in morphogenetic pathways (i.e., Hippo, Wnt, JAK/STAT, TGF-β, Notch, Hedgehog pathways) were suggested to be critical for CSC plasticity. By interrogating The Cancer Genome Atlas (TCGA) datasets, we first analyzed the prevalence of morphogenetic pathways alterations in solid tumors with associated outcomes. Then, by highlighting epigenetic relevance in CSC development and maintenance, we selected histone deacetylase inhibitors (HDACi) as potential agents of interest to target this subpopulation based on the pleiotropic effects exerted specifically on altered morphogenetic pathways. In detail, we highlighted the role of HDACi in solid cancers and, specifically, in the CSC subpopulation and we pointed out some mechanisms by which HDACi are able to overcome drug resistance and to modulate stemness. Although, further clinical and preclinical investigations should be conducted to disclose the unclear mechanisms by which HDACi modulate several signaling pathways in different tumors. To date, several lines of evidence support the testing of novel combinatorial therapeutic strategies based on the combination of drugs commonly used in clinical practice and HDACi to improve therapeutic efficacy in solid cancer patients.
Collapse
|
14
|
Singh H, Agarwal V, Chaturvedi S, Misra DP, Jaiswal AK, Prasad N. Reciprocal Relationship Between HDAC2 and P-Glycoprotein/MRP-1 and Their Role in Steroid Resistance in Childhood Nephrotic Syndrome. Front Pharmacol 2019; 10:558. [PMID: 31191307 PMCID: PMC6540828 DOI: 10.3389/fphar.2019.00558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/03/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Reduced HDACs levels have been reported in steroid resistant chronic obstructive pulmonary disease and bronchial asthma patients. P-glycoprotein (P-gp) over expression in peripheral blood mononuclear cells (PBMCs) has been reported in patients with steroid resistant nephrotic syndrome (NS). Whether and how HDACs and P-gp are linked with each other is not clear, especially in NS patients. Aim: To evaluate mRNA expression of P-gp/MRP-1 and HDAC2 in PBMCs of steroid sensitive (SSNS) and steroid resistant nephrotic syndrome (SRNS) patients, and determine the relationship between expression of HDAC2 and P-gp/ MRP-1in NS patients. Methods: Twenty subjects (10 in each group), SSNS (mean age 7.54 ± 3.5 years), and SRNS (mean age 8.43 ± 3.8 years) were recruited. mRNA expression of HDAC2 and P-gp/MRP-1 was studied by quantitative real time PCR. PBMCs were treated with Theophylline, 1 μM, and Trichostatin A, 0.8 μM, for 48 h for induction and suppression of HDAC2, respectively. Results: At baseline, expression of P-gp (4.79 ± 0.10 vs. 2.13 ± 0.12, p < 0.0001) and MRP-1 (3.99 ± 0.08 vs. 1.99 ±0.11, p < 0.0001) on PBMCs were increased whereas, HDAC2 mRNA levels (2.97 ± 0.15 vs. 6.02 ± 0.13, p < 0.0001) were significantly decreased in SRNS as compared to that of SSNS patients. Compared to baseline, theophylline reduced mRNA expression of P-gp and MRP-1 (fold change 2.65 and 2.21, * p < 0.0001 in SRNS) (fold change 1.25, 1.24, * p < 0.0001 in SSNS), respectively. However, it increased the expression of HDAC2 (fold change 5.67, * p < 0.0001 in SRNS) (fold change 6.93, * p < 0.0001 in SSNS). Compared to baseline, TSA treatment increased mRNA levels of P-gp and MRP-1 (fold change 7.51, 7.31, * p < 0.0001 in SRNS) and (fold change 3.49, 3.35, * p < 0.0001 in SSNS), respectively. It significantly decreased the level of HDAC2 (fold change 1.50, * p < 0.0001 in SRNS) (fold change 2.53, * p < 0.0001 in SSNS) patients. Conclusion: Reduced HDAC2 and increased P-gp/MRP-1 activity may play a role in response to steroids in childhood NS. HDAC2 and P-gp/MRP-1 are in reciprocal relationship with each other.
Collapse
Affiliation(s)
- Harshit Singh
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Saurabh Chaturvedi
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Akhilesh Kumar Jaiswal
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
15
|
Chen Y, Gera L, Zhang S, Li X, Yang Y, Mamouni K, Wu AY, Liu H, Kucuk O, Wu D. Small molecule BKM1972 inhibits human prostate cancer growth and overcomes docetaxel resistance in intraosseous models. Cancer Lett 2019; 446:62-72. [PMID: 30660650 PMCID: PMC6361683 DOI: 10.1016/j.canlet.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022]
Abstract
Bone metastasis is a major cause of prostate cancer (PCa) mortality. Although docetaxel chemotherapy initially extends patients' survival, in most cases PCa becomes chemoresistant and eventually progresses without a cure. In this study, we developed a novel small-molecule compound BKM1972, which exhibited potent in vitro cytotoxicity in PCa and other cancer cells regardless of their differences in chemo-responsiveness. Mechanistic studies demonstrated that BKM1972 effectively inhibited the expression of anti-apoptotic protein survivin and membrane-bound efflux pump ATP binding cassette B 1 (ABCB1, p-glycoprotein), presumably via signal transducer and activator of transcription 3 (Stat3). BKM1972 was well tolerated in mice and as a monotherapy, significantly inhibited the intraosseous growth of chemosensitive and chemoresistant PCa cells. These results indicate that BKM1972 is a promising small-molecule lead to treat PCa bone metastasis and overcome docetaxel resistance.
Collapse
Affiliation(s)
- Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Alyssa Y Wu
- Chamblee Charter High School, Atlanta, GA, USA
| | - HongYan Liu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Omer Kucuk
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; MetCure Therapeutics LLC, Atlanta, GA, USA.
| |
Collapse
|
16
|
Histone deacetylase inhibitor SAHA-induced epithelial-mesenchymal transition by upregulating Slug in lung cancer cells. Anticancer Drugs 2018; 29:80-88. [PMID: 29176396 DOI: 10.1097/cad.0000000000000573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SAHA, a member of histone deacetylase inhibitors (HDACIs), which emerged as a class of novel antitumor drug, has been used in clinical treatment of cancers. However, clinical experience of SAHA in solid tumors has been disappointing. Nevertheless, the underlying mechanism of this deficiency is not clearly understood. In the present study, we found that SAHA could induce epithelial-mesenchymal transitions (EMT) in lung cancer A549 cells, which was associated with increased migration capability and cellular morphology changes. We showed that SAHA decreased epithelial marker E-cadherin's expression and increased the expression of mesenchymal marker vimentin. SAHA upregulated the protein and mRNA expression of transcription factor Slug in a time-dependent manner and promoted its nuclear translocation. We further demonstrated that SAHA upregulated Slug expression by promoting Slug acetylation but not influencing the phosphorylation of GSK-3β, a main kinase-controlled Slug expression. Finally, silencing of Slug by siRNA reversed EMT marker expressions and cellular morphology change induced by SAHA, suggesting that Slug plays a crucial role in SAHA-mediated EMT in A549 cells. Our research study provided a better understanding of treatment failure of SAHA in patients with solid tumors. Therefore, more attention should be paid to cancer treatment using SAHA and strategies for reversing EMT before using SAHA would be better if the value of SAHA in the treatment of solid tumors, especially lung cancer, is realized.
Collapse
|
17
|
Sodium butyrate increases P-gp expression in lung cancer by upregulation of STAT3 and mRNA stabilization of ABCB1. Anticancer Drugs 2018; 29:227-233. [PMID: 29293118 DOI: 10.1097/cad.0000000000000588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As a new type of anticancer drug, the effect of histone deacetylase inhibitors (HDACIs) in cancer clinical therapy is disappointing owing to drug resistance. P-glycoprotein (P-gp) is clearly recognized as a multidrug resistance protein. However, the relationship between P-gp and sodium butyrate (SB), a kind of HDACIs, has not been investigated. In this study, we found that SB increased mRNA and protein expression of P-gp in lung cancer cells and the underlying mechanisms were elucidated. We found that SB treatment enhanced the mRNA and protein expression of STAT3 rather than that of β-catenin, Foxo3a, PXR, or CAR, which were reported to directly regulate the transcription of ABCB1, a P-gp-encoding gene. Interestingly, inhibition of STAT3 expression obviously attenuated SB-increased P-gp expression in lung cancer cells, indicating that STAT3 played an important role in SB-mediated P-gp upregulation. Furthermore, we found that SB increased the mRNA stability of ABCB1. In summary, this study showed that SB increased P-gp expression by facilitating transcriptional activation and improving ABCB1 mRNA stability. This study indicated that we should pay more attention to HDACIs during cancer clinical therapy.
Collapse
|
18
|
Pasini A, Brand OJ, Jenkins G, Knox AJ, Pang L. Suberanilohydroxamic acid prevents TGF-β1-induced COX-2 repression in human lung fibroblasts post-transcriptionally by TIA-1 downregulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:463-472. [PMID: 29555582 PMCID: PMC5910054 DOI: 10.1016/j.bbagrm.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase-2 (COX-2), with its main antifibrotic metabolite PGE2, is regarded as an antifibrotic gene. Repressed COX-2 expression and deficient PGE2 have been shown to contribute to the activation of lung fibroblasts and excessive deposition of collagen in pulmonary fibrosis. We have previously demonstrated that COX-2 expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) is epigenetically silenced and can be restored by epigenetic inhibitors. This study aimed to investigate whether COX-2 downregulation induced by the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in normal lung fibroblasts could be prevented by epigenetic inhibitors. We found that COX-2 protein expression and PGE2 production were markedly reduced by TGF-β1 and this was prevented by the pan-histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) and to a lesser extent by the DNA demethylating agent Decitabine (DAC), but not by the G9a histone methyltransferase (HMT) inhibitor BIX01294 or the EZH2 HMT inhibitor 3-deazaneplanocin A (DZNep). However, chromatin immunoprecipitation assay revealed that the effect of SAHA was unlikely mediated by histone modifications. Instead 3′-untranslated region (3′-UTR) luciferase reporter assay indicated the involvement of post-transcriptional mechanisms. This was supported by the downregulation by SAHA of the 3′-UTR mRNA binding protein TIA-1 (T-cell intracellular antigen-1), a negative regulator of COX-2 translation. Furthermore, TIA-1 knockdown by siRNA mimicked the effect of SAHA on COX-2 expression. These findings suggest SAHA can prevent TGF-β1-induced COX-2 repression in lung fibroblasts post-transcriptionally through a novel TIA-1-dependent mechanism and provide new insights into the mechanisms underlying its potential antifibrotic activity. Abbreviations Unlabelled TableSAHA | suberanilohydroxamic acid | TGF-β1 | transforming growth factor-β1 | COX-2 | cyclooxygenase-2 | TIA-1 | T-cell intracellular antigen-1 | PGE2 | prostaglandin E2 | IPF | idiopathic pulmonary fibrosis | DAC | Decitabine | HMT | histone methyltransferase | EZH2 | enhancer of zeste homolog 2 | DZNep | 3-deazaneplanocin A | 3′-UTR | 3′-untranslated region | α-SMA | α-smooth muscle actin | ECM | extracellular matrix | COL1 | collagen 1 | DNMT | DNA methyltransferase | HAT | histone acetyltransferase | HDAC | histone deacetylase | H3K9me3 | histone H3 lysine 9 trimethylation | ARE | AUUUA-rich element | HuR | human antigen R | ELAV1 | ELAV-like RNA binding protein 1 | TTP | Tristetraprolin | CUGBP2 | CUG triplet repeat, RNA binding protein 2 | F-NL | fibroblast from non-fibrotic lung | FCS | fetal calf serum |
The HDAC inhibitor SAHA upregulates the expression of the antifibrotic gene COX-2 post-transcriptionally. The mechanism relies on the downregulation of TIA-1, a negative regulator of COX-2 translation. SAHA has a therapeutic potential by preventing COX-2 repression induced by TGF-β1 in human lung fibroblasts.
Collapse
Affiliation(s)
- Alice Pasini
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom; Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via Venezia 52, 47521 Cesena, FC, Italy
| | - Oliver J Brand
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Linhua Pang
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
19
|
Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, Hu Q, Iguchi T, Kuroda Y, Ito S, Eguchi H, Sugimachi K, Saeki H, Oki E, Maehara Y, Suzuki A, Mimori K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget 2017; 8:107666-107677. [PMID: 29296196 PMCID: PMC5746098 DOI: 10.18632/oncotarget.22587] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Yes-associated protein 1 (YAP1) acts as an oncogene through dephosphorylation and nuclear translocation, and nuclear accumulation of YAP1 is associated with poor prognosis in gastric cancer (GC). We previously identified ivermectin, an antiparasitic drug, as a YAP1 inhibitor. Here, we aimed to clarify whether ivermectin had antitumor effects on GC through inhibition of YAP1. First, we evaluated the antiproliferative effects of ivermectin on human GC cells using in vitro proliferation assays and a xenograft mouse model. YAP1-knockdown assays were performed to assess whether the sensitivity to ivermectin depended on YAP1 expression. Next, we explored the mechanism through which ivermectin regulated YAP1 expression or localization by immunoblotting and reverse transcription-quantitative polymerase chain reaction for YAP1 and the downstream gene CTGF. Finally, the clinical significance of YAP1 expression was examined using three independent GC datasets. We found that MKN1 GC cells were most sensitive to ivermectin, whereas MKN7 cells were most resistant. In MKN1 xenografts, ivermectin suppressed tumor growth, and the sensitivity of MKN1 cells to ivermectin was decreased by YAP1 knockdown. Ivermectin inhibited YAP1 nuclear expression and CTGF expression in MKN1 cells but not MKN7 cells. Moreover, ivermectin decreased YAP1 mRNA expression, thereby inhibiting nuclear accumulation of YAP1 in MKN1 cells. In survival analysis, low YAP1 mRNA expression was associated with a better prognosis in three independent GC datasets. In conclusion, we identified ivermectin as a potential antitumor agent and found a promising novel therapeutic strategy for inhibition of GC progression by blocking YAP1 expression.
Collapse
Affiliation(s)
- Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Miki Nishio
- Medical Institute of Bioregulation, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Hyogo 650-0017, Japan
| | - Shotaro Kuramitsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki-Ku, Kanagawa 224-8503, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Tomohiro Iguchi
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Yousuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan.,Department of Gastroenterological Surgery, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Suzuki
- Medical Institute of Bioregulation, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Hyogo 650-0017, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita 874-0838, Japan
| |
Collapse
|