1
|
D’Amico M, De Amicis F. Challenges of Regulated Cell Death: Implications for Therapy Resistance in Cancer. Cells 2024; 13:1083. [PMID: 38994937 PMCID: PMC11240625 DOI: 10.3390/cells13131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Regulated cell death, a regulatory form of cell demise, has been extensively studied in multicellular organisms. It plays a pivotal role in maintaining organismal homeostasis under normal and pathological conditions. Although alterations in various regulated cell death modes are hallmark features of tumorigenesis, they can have divergent effects on cancer cells. Consequently, there is a growing interest in targeting these mechanisms using small-molecule compounds for therapeutic purposes, with substantial progress observed across various human cancers. This review focuses on summarizing key signaling pathways associated with apoptotic and autophagy-dependent cell death. Additionally, it explores crucial pathways related to other regulated cell death modes in the context of cancer. The discussion delves into the current understanding of these processes and their implications in cancer treatment, aiming to illuminate novel strategies to combat therapy resistance and enhance overall cancer therapy.
Collapse
Affiliation(s)
- Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
2
|
Giordano F, D'Amico M, Montalto FI, Malivindi R, Chimento A, Conforti FL, Pezzi V, Panno ML, Andò S, De Amicis F. Cdk4 Regulates Glioblastoma Cell Invasion and Stemness and Is Target of a Notch Inhibitor Plus Resveratrol Combined Treatment. Int J Mol Sci 2023; 24:10094. [PMID: 37373242 DOI: 10.3390/ijms241210094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D'Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Jovanović Galović A, Jovanović Lješković N, Vidović S, Vladić J, Jojić N, Ilić M, Srdić Rajić T, Kojić V, Jakimov D. The Effects of Resveratrol-Rich Extracts of Vitis vinifera Pruning Waste on HeLa, MCF-7 and MRC-5 Cells: Apoptosis, Autophagia and Necrosis Interplay. Pharmaceutics 2022; 14:pharmaceutics14102017. [PMID: 36297452 PMCID: PMC9607132 DOI: 10.3390/pharmaceutics14102017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a well-studied plant-derived molecule in cancer biology, with a plethora of documented in vitro effects. However, its low bioavailability and toxicity risk hamper its wider use. In this study, vine shoots after pruning were used as a source of resveratrol (RSV). The activity of subcritical water extract (SWE) and dry extract (DE) is examined on three cell lines: HeLa, MCF-7 and MRC-5. The cytotoxic effect is assessed by the MTT test and EB/AO staining, levels of apoptosis are determined by Annexin V assay, autophagia by ULK-1 expression using Western blot and NF-kB activation by p65 ELISA. Our results show that both resveratrol-rich extracts (DE, SWE) have a preferential cytotoxic effect on malignant cell lines (HeLa, MCF-7), and low cytotoxicity on non-malignant cells in culture (MRC-5). Further experiments indicate that the investigated malignant cells undergo different cell death pathways. MCF-7 cells died preferentially by apoptosis, while the HeLa cells died most likely by necrosis (possibly ferroptosis). Protective autophagia is diminished upon treatment with DE in both HeLa and MCF-7 cells, while SWE does not influence the level of autophagia. The extracts are effective even at low concentrations (below IC50) in the activation of NF-kB (p65 translocation).
Collapse
Affiliation(s)
- Aleksandra Jovanović Galović
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
- Correspondence:
| | | | - Senka Vidović
- Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Vladić
- Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Jojić
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Milan Ilić
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Tatjana Srdić Rajić
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Pasterova 14, 11000 Belgrade, Serbia
| | - Vesna Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dimitar Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
4
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
5
|
Giordano F, Montalto FI, Panno ML, Andò S, De Amicis F. A Notch inhibitor plus Resveratrol induced blockade of autophagy drives glioblastoma cell death by promoting a switch to apoptosis. Am J Cancer Res 2021; 11:5933-5950. [PMID: 35018234 PMCID: PMC8727809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain tumors and the hardest type of cancer to treat. Therapies targeting developmental pathways, such as Notch, eliminate neoplastic glioma cells, but their efficacy can be limited by various mechanisms. Combination regimens may represent a good opportunity for effective therapies with durable effects. We used low doses of the γ-secretase inhibitor RO4929097 (GSI), to block the Notch pathway activity, in combination with Resveratrol (RSV) and we evidenced the mechanisms of autophagy/apoptosis transition in GBM cells. Resveratrol and GSI combination results in the synergistic induction of cell death together with the block of the autophagic flux evidenced by a sustained increase of LC3-II and p62 protein content, due to the dramatic reduction of CDK4, an important regulator of lysosomal function. The ectopic overexpression of the constitutive active CDK4 mutant, greatly counteracted the RSV+GSI induced block of the autophagy. Triggering autophagy in RSV+GSI-treated cells, which have impaired lysosomal function, caused the collapse of the system and a following apoptosis. For instance, by combining the CDK4 mutant as well as the early stage autophagy inhibitor, 3-methyladenina, abolished the RSV+GSI induced caspases activation. The initiator caspases (caspases-8 and -9), effector caspase (caspase-3) and its downstream substrate PARP were induced after RSV+GSI exposure as well as the percentage of the TUNEL positive cells. Moreover, the pro-apoptotic signaling MAPK p38 was activated while the pro-survival MAPK p42/p44 signaling was inhibited. In short, we establish the role of CDK4 in the regulation of autophagy/apoptosis transition induced by RSV and GSI in GBM cells. This new synergistic therapeutic combination, increasing the accumulation of autophagosomes, may have therapeutic value for GBM patients.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of CalabriaItaly
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of CalabriaItaly
- Health Center, University of CalabriaItaly
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of CalabriaItaly
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of CalabriaItaly
- Health Center, University of CalabriaItaly
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of CalabriaItaly
- Health Center, University of CalabriaItaly
| |
Collapse
|
6
|
Augimeri G, Montalto FI, Giordano C, Barone I, Lanzino M, Catalano S, Andò S, De Amicis F, Bonofiglio D. Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients 2021; 13:2557. [PMID: 34444715 PMCID: PMC8400469 DOI: 10.3390/nu13082557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
7
|
Wang H, Shi H. Megestrol acetate drives endometrial carcinoma cell senescence via interacting with progesterone receptor B/FOXO1 axis. Exp Biol Med (Maywood) 2021; 246:2307-2316. [PMID: 34233525 DOI: 10.1177/15353702211026566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Megestrol acetate is a common and efficient anticancer progesterone. To explore the activity and the therapeutic mechanisms of megestrol acetate in endometrial cancer, human endometrial cancer cell lines Ishikawa and HHUA overexpressing progesterone receptor A (PR-A) and progesterone receptor B (PR-B) were treated with megestrol acetate. Cell viability, apoptosis, cycle arrest, and senescence, as well as the expressions of p21 and p16, two hallmarks of cellular senescence, were evaluated. Compared with the control, >10 nmol/L megestrol acetate treatment could significantly reduce endometrial cancer cell growth, and induce the irreversible G1 arrest and cell senescence. The expression of cyclin D1 in megestrol acetate treated cells was downregulated, while the expressions of p21 and p16 were upregulated via PR-B isoform. FOXO1 inhibitor AS1842856 could significantly abrogate megestrol acetate-induced cell senescence, suggesting that FOXO1 was involved in megestrol acetate/PR-B axis. These findings may provide a new understanding for the treatment of human endometrial cancer.
Collapse
Affiliation(s)
- Hong Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Obstetrics and Gynecology, The Second People's Hospital of Jiaozuo (The First Affiliated Hospital of Henan Polytechnic University), Jiaozuo 454001, China
| | - Huirong Shi
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Lan C, Cao N, Chen C, Qu S, Fan C, Luo H, Zeng A, Yu C, Xue Y, Ren H, Li L, Wang H, Jose PA, Xu Z, Zeng C. Progesterone, via yes-associated protein, promotes cardiomyocyte proliferation and cardiac repair. Cell Prolif 2020; 53:e12910. [PMID: 33047378 PMCID: PMC7653240 DOI: 10.1111/cpr.12910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives The mechanisms responsible for the postnatal loss of mammalian cardiac regenerative capacity are not fully elucidated. The aim of the present study is to investigate the role of progesterone in cardiac regeneration and explore underlying mechanism. Materials and Methods Effect of progesterone on cardiomyocyte proliferation was analysed by immunofluorescent staining. RNA sequencing was performed to screen key target genes of progesterone, and yes‐associated protein (YAP) was knocked down to demonstrate its role in pro‐proliferative effect of progesterone. Effect of progesterone on activity of YAP promoter was measured by luciferase assay and interaction between progesterone receptor and YAP promoter by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Adult mice were subjected to myocardial infarction, and then, effects of progesterone on adult cardiac regeneration were analysed. Results Progesterone supplementation enhanced cardiomyocyte proliferation in a progesterone receptor‐dependent manner. Progesterone up‐regulated YAP expression and knockdown of YAP by small interfering RNA reduced progesterone‐mediated cardiomyocyte proliferative effect. Progesterone receptor interacted with the YAP promoter, determined by ChIP and EMSA; progesterone increased luciferase activity of YAP promoter and up‐regulated YAP target genes. Progesterone administration also promoted adult cardiomyocyte proliferation and improved cardiac function in myocardial infarction. Conclusion Our data uncover a role of circulating progesterone withdrawal as a novel mechanism for the postnatal loss of mammalian cardiac regenerative potential. Progesterone promotes both neonatal and adult cardiomyocyte proliferation by up‐regulating YAP expression.
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Nian Cao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Chao Fan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Andi Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Cheng Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Yuanzheng Xue
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China.,Cardiovascular Research Center, Chongqing College, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
9
|
Mazzei R, Piacentini E, Nardi M, Poerio T, Bazzarelli F, Procopio A, Di Gioia ML, Rizza P, Ceraldi R, Morelli C, Giorno L, Pellegrino M. Production of Plant-Derived Oleuropein Aglycone by a Combined Membrane Process and Evaluation of Its Breast Anticancer Properties. Front Bioeng Biotechnol 2020; 8:908. [PMID: 33117773 PMCID: PMC7551858 DOI: 10.3389/fbioe.2020.00908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Natural products and herbal therapies represent a thriving field of research, but methods for the production of plant-derived compounds with a significative biological activity by synthetic methods are required. Conventional commercial production by chemical synthesis or solvent extraction is not yet sustainable and economical because toxic solvents are used, the process involves many steps, and there is generally a low amount of the product produced, which is often mixed with other or similar by-products. For this reason, alternative, sustainable, greener, and more efficient processes are required. Membrane processes are recognized worldwide as green technologies since they promote waste minimization, material diversity, efficient separation, energy saving, process intensification, and integration. This article describes the production, characterization, and utilization of bioactive compounds derived from renewable waste material (olive leaves) as drug candidates in breast cancer (BC) treatment. In particular, an integrated membrane process [composed by a membrane bioreactor (MBR) and a membrane emulsification (ME) system] was developed to produce a purified non-commercially available phytotherapic compound: the oleuropein aglycone (OLA). This method achieves a 93% conversion of the substrate (oleuropein) and enables the extraction of the compound of interest with 90% efficiency in sustainable conditions. The bioderived compound exercised pro-apoptotic and antiproliferative activities against MDA-MB-231 and Tamoxifen-resistant MCF-7 (MCF-7/TR) cells, suggesting it as a potential agent for the treatment of breast cancer including hormonal resistance therapies.
Collapse
Affiliation(s)
- Rosalinda Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, Rende, Italy
| | - Emma Piacentini
- Institute on Membrane Technology, National Research Council, ITM-CNR, Rende, Italy
| | - Monica Nardi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Teresa Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, Rende, Italy
| | - Fabio Bazzarelli
- Institute on Membrane Technology, National Research Council, ITM-CNR, Rende, Italy
| | - Antonio Procopio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosangela Ceraldi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Lidietta Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
10
|
Haghi A, Salami M, Mohammadi Kian M, Nikbakht M, Mohammadi S, Chahardouli B, Rostami SH, Malekzadeh K. Effects of Sorafenib and Arsenic Trioxide on U937 and KG-1 Cell Lines: Apoptosis or Autophagy? CELL JOURNAL 2019; 22:253-262. [PMID: 31863650 PMCID: PMC6947003 DOI: 10.22074/cellj.2020.6728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Objective Acute myeloid leukemia (AML) is a clonal disorder of hemopoietic progenitor cells. The Raf serine/threonine (Ser/Thr) protein kinase isoforms including B-Raf and RAF1, are the upstream in the MAPK cascade that play essential functions in regulating cellular proliferation and survival. Activated autophagy-related genes have a dual role in both cell death and cell survival in cancer cells. The cytotoxic activities of arsenic trioxide (ATO) were widely assessed in many cancers. Sorafenib is known as a multikinase inhibitor which acts through suppression of Ser/Thr kinase Raf that was reported to have a key role in tumor cell signaling, proliferation, and angiogenesis. In this study, we examined the combination effect of ATO and sorafenib in AML cell lines. Materials and Methods In this experimental study, we studied in vitro effects of ATO and sorafenib on human leukemia cell lines. The effective concentrations of compounds were determined by MTT assay in both single and combination treatments. Apoptosis was evaluated by annexin-V FITC staining. Finally, mRNA levels of apoptotic and autophagy genes were evaluated using real-time polymerase chain reaction (PCR). Results Data demonstrated that sorafenib, ATO, and their combination significantly increase the number of apoptotic cells. We found that the combination of ATO and sorafenib significantly reduces the viability of U937 and KG-1 cells. The expression level of selective autophagy genes, ULK1 and Beclin1 decreased but LC3-II increased in U937. Conclusion The expression levels of apoptotic and autophagy activator genes were increased in response to treatment. The crosstalk between apoptosis and autophagy is a complicated mechanism and further investigations seem to be necessary.
Collapse
Affiliation(s)
- Atousa Haghi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdieh Salami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mohammadi Kian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Bahram Chahardouli
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Haharbano Rostami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kianoosh Malekzadeh
- Molecular Medicine Research Center (MMRC), Hormozgan University of Medical Science (HUMS), Bandar Abbass, Iran
| |
Collapse
|
11
|
De Amicis F, Chiodo C, Morelli C, Casaburi I, Marsico S, Bruno R, Sisci D, Andò S, Lanzino M. AIB1 sequestration by androgen receptor inhibits estrogen-dependent cyclin D1 expression in breast cancer cells. BMC Cancer 2019; 19:1038. [PMID: 31684907 PMCID: PMC6829973 DOI: 10.1186/s12885-019-6262-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Androgens, through their own receptor, play a protective role on breast tumor development and progression and counterbalance estrogen-dependent growth stimuli which are intimately linked to breast carcinogenesis. Methods Cell counting by trypan blu exclusion was used to study androgen effect on estrogen-dependent breast tumor growth. Quantitative Real Time RT–PCR, western blotting, transient transfection, protein immunoprecipitation and chromatin immunoprecipitation assays were carried out to investigate how androgen treatment and/or androgen receptor overexpression influences the functional interaction between the steroid receptor coactivator AIB1 and the estrogen- or androgen receptor which, in turn affects the estrogen-induced cyclin D1 gene expression in MCF-7 breast cancer cells. Data were analyzed by ANOVA. Results Here we demonstrated, in estrogen receptor α (ERα)-positive breast cancer cells, an androgen-dependent mechanism through which ligand-activated androgen receptor (AR) decreases estradiol-induced cyclin D1 protein, mRNA and gene promoter activity. These effects involve the competition between AR and ERα for the interaction with the steroid receptor coactivator AIB1, a limiting factor in the functional coupling of the ERα with the cyclin D1 promoter. Indeed, AIB1 overexpression is able to reverse the down-regulatory effects exerted by AR on ERα-mediated induction of cyclin D1 promoter activity. Co-immunoprecipitation studies indicated that the preferential interaction of AIB1 with ERα or AR depends on the intracellular expression levels of the two steroid receptors. In addition, ChIP analysis evidenced that androgen administration decreased E2-induced recruitment of AIB1 on the AP-1 site containing region of the cyclin D1 gene promoter. Conclusions Taken together all these data support the hypothesis that AIB1 sequestration by AR may be an effective mechanism to explain the reduction of estrogen-induced cyclin D1 gene activity. In estrogen-dependent breast cancer cell proliferation, these findings reinforce the possibility that targeting AR signalling may potentiate the effectiveness of anti-estrogen adjuvant therapies.
Collapse
Affiliation(s)
- Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Chiara Chiodo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Rosalinda Bruno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy.
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, CS, 87036, Arcavacata di Rende, Italy
| |
Collapse
|
12
|
Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep 2019; 39:BSR20190094. [PMID: 31262976 PMCID: PMC6646233 DOI: 10.1042/bsr20190094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Uterine leiomyoma is the most common benign smooth muscle tumor of uterus in women of reproductive age, with a high lifetime incidence. Nowadays, the exploration on the pharmacotherapies, such as progesterone receptor antagonist (PRA) requires more attention. Hence, the current study aimed to examine whether mifepristone, a PRA, influences the autophagy and apoptosis of uterine leiomyoma cells. Primary uterine leiomyoma cells were collected from 36 patients diagnosed with uterine leiomyoma to establish PR-M-positive (PR-M[+]) cells. The lentiviral vector overexpressing or silencing PR-M was subsequently delivered into one part of PR-M(+) cells in order to evaluate the role of PR-M in PR-M(+) cells. The results obtained revealed that cell viability was increased, while cell autophagy and apoptosis were diminished in the PR-M(+) cells treated with overexpressed PR-M, whereby the Bcl-2 level was elevated and the level of Beclin1 was reduced. An opposite trends were identified following treatment with knockdown of PR-M. Mifepristone at different concentrations (low, moderate, or high) was then applied to treat another part of the PR-M(+) cells. Mifepristone was identified to promote cell autophagy and apoptosis, decrease Bcl-2 level and increase Beclin1 level, accompanied by weakened interaction between Bcl-2 and Beclin1. Moreover, these effects of mifepristone on PR-M(+) cells were enhanced with increasing of the concentration. Taken together, the present study present evidence indicates the ability of PRA to regulate the Bcl-2/Beclin1 axis, ultimately promoting the autophagy and apoptosis of uterine leiomyoma cells, highlighting that PRA serves as a promising therapeutic target for the treatment of uterine leiomyoma.
Collapse
Affiliation(s)
- Lindong Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quanling Feng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhiting Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pingping Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shihong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Tan S, Bajalovic N, Wong ESP, Lin VCL. Ligand-activated progesterone receptor B activates transcription factor EB to promote autophagy in human breast cancer cells. Exp Cell Res 2019; 382:111433. [PMID: 31100306 DOI: 10.1016/j.yexcr.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Autophagy is an evolutionary conserved, self-eating process that targets cellular constituents for lysosomal degradation. Transcription factor EB (TFEB) is a master regulator of autophagy by inducing the expression of genes involved in autophagic and lysosomal degradation. In breast cancer, ligand-activated progesterone receptor has been reported to influence cancer development by manipulating the autophagy pathway. However, understanding of the mechanism that underlies this autophagic response remains limited. Herein, we report that prolonged treatment with progestin R5020 upregulates autophagy in MCF-7 human breast cancer cells via a novel interplay between progesterone receptor B (PRB) and TFEB. R5020 upregulates TFEB gene expression and protein levels in a PRB-dependent manner. Additionally, R5020 enhances the co-recruitment of PRB and TFEB to each other to facilitate TFEB nuclear localization. Once in the nucleus, TFEB induces the expression of autophagy and lysosomal genes to potentiate autophagy. Together, our findings highlight a novel functional connection between ligand-activated PRB and TFEB to modulate autophagy in MCF-7 breast cancer cells. As breast cancer development is controlled by autophagy, the progestin-PRB-TFEB transduction pathway warrants future attention as a potential therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Natasa Bajalovic
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Esther S P Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore; Centre for Healthy Ageing, National University Health System, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie C L Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
14
|
Mao Z, Yao M, Li Y, Fu Z, Li S, Zhang L, Zhou Z, Tang Q, Han X, Xia Y. miR-96-5p and miR-101-3p as potential intervention targets to rescue TiO 2 NP-induced autophagy and migration impairment of human trophoblastic cells. Biomater Sci 2018; 6:3273-3283. [PMID: 30345998 DOI: 10.1039/c8bm00856f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Autophagy induced by titanium dioxide nanoparticles (TiO2 NPs) has been realized nowadays, but the underlying mechanisms remain largely unknown. Animal studies have confirmed that autophagy might be an important mechanism to impair placenta development, but the reversal of damage is not clear. Here, we used human HTR-8/SVneo (HTR) cells as a proper model to explore how autophagy is regulated in TiO2 NP-exposed human placenta cells. Our studies showed that TiO2 NPs could enter HTR cells and locate in cytoplasm. Although they did not affect cell viability even under 100 μg ml-1, autophagy was observed and cell migration ability was severely impaired. Further study showed that TiO2 NPs increased the expressions of both miR-96-5p and miR-101-3p and then, they targeted mTOR and decreased the expression of mTOR proteins. In addition, miR-96-5p also targeted Bcl-2 to down-regulate Bcl-2 protein level, which is also a key regulator of autophagy. We proved that when two microRNA inhibitors were added, cell autophagy was, to a greater extent, reversed compared with the result when one inhibitor was added, and the cell migration ability was also reversed to a greater degree. Our studies revealed that TiO2 NPs might impair placenta development via autophagy. Moreover, miR-96-5p as well as miR-101-3p may act as potential targets to reverse TiO2 NP-induced autophagy and placenta dysfunction.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu J, Cai Y, Xu K, Ren X, Sun J, Lu S, Chen J, Xu P. Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy‑dependent pathway in human synovial sarcoma cells. Oncol Rep 2018; 40:1927-1936. [PMID: 30066884 PMCID: PMC6111547 DOI: 10.3892/or.2018.6599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Beclin1 is an important autophagy‑related prot-ein, which is involved in both autophagy and apoptosis. In recent years, the antitumor effect of Beclin1 has received increased attention. In the present study, we established a stable Beclin1‑overexpressing cell line with SW982 human synovial sarcoma cells. We found that Beclin1 overexpression decreased the cell viability, inhibited proliferation and induced apoptosis in SW982 cells. The expression levels of Bcl‑2 and PCNA were decreased, while the levels of cleaved‑caspase‑3 and cleaved‑PARP were increased. Beclin1 is closely related with autophagy, thus the autophagy‑related markers LC3 and p62 were detected by western blot analysis, and transmission electron microscopy was used to observe autophagosomes. The results showed that the expression level of LC3II was increased and that of p62 was decreased. Moreover, many double membrane‑enclosed autophagosomes were found in cells with Beclin1 overexpression, which indicated that the autophagic activity was enhanced. To explore the effect of autophagy on the viability of SW982 cells, Atg5 was knocked down using siRNA to inhibit the autophagic activity. We found that autophagy contributed to the decrease in cell viability. Knockdown of Atg5 increased the viability and decreased the apoptotic rate of SW982 cells with Beclin1 overexpression. The expression level of Bcl‑2 was increased, while the expression levels of cleaved‑caspase‑3 and cleaved‑PARP were decreased. We also found that the Akt/Bcl‑2/caspase‑9 pathway was involved. The phosphorylation of AKT was positively correlated with cell viability. The cleavage of caspase‑9 was increased by Beclin1 overexpression and decreased by inhibition of autophagy. Altogether, our results suggested that both autophagy and apoptosis contributed to the antitumor effect of Beclin1 in SW982 cells.
Collapse
Affiliation(s)
- Jialin Zhu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P.R. China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P.R. China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaoyu Ren
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P.R. China
| | - Jian Sun
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Shemin Lu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jinghong Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
16
|
Tramontano D, De Amicis F. Is the secret for a successful aging to keep track of cancer pathways? J Cell Physiol 2018; 233:8467-8476. [DOI: 10.1002/jcp.26825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies University of Naples “Federico II” Naples Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| |
Collapse
|
17
|
Pellegrino M, Rizza P, Nigro A, Ceraldi R, Ricci E, Perrotta I, Aquila S, Lanzino M, Andò S, Morelli C, Sisci D. FoxO3a Mediates the Inhibitory Effects of the Antiepileptic Drug Lamotrigine on Breast Cancer Growth. Mol Cancer Res 2018. [PMID: 29523760 DOI: 10.1158/1541-7786.mcr-17-0662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is a complex and heterogeneous disease, with distinct histologic features dictating the therapy. Although the clinical outcome of breast cancer patients has been considerably improved, the occurrence of resistance to common endocrine and chemotherapy treatments remains the major cause of relapse and mortality. Thus, efforts in identifying new molecules to be employed in breast cancer therapy are needed. As a "faster" alternative to reach this aim, we evaluated whether lamotrigine, a broadly used anticonvulsant, could be "repurposed" as an antitumoral drug in breast cancer. Our data show that lamotrigine inhibits the proliferation, the anchorage-dependent, and independent cell growth in breast cancer cells (BCC), including hormone-resistant cell models. These effects were associated with cell-cycle arrest and modulation of related proteins (cyclin D1, cyclin E, p27Kip1, and p21Waf1/Cip1), all target genes of FoxO3a, an ubiquitous transcription factor negatively regulated by AKT. Lamotrigine also increases the expression of another FoxO3a target, PTEN, which, in turn, downregulates the PI3K/Akt signaling pathway, with consequent dephosphorylation, thus activation, of FoxO3a. Moreover, lamotrigine induces FoxO3a expression by increasing its transcription through FoxO3a recruitment on specific FHRE located on its own promoter, in an autoregulatory fashion. Finally, lamotrigine significantly reduced tumor growth in vivo, increasing FoxO3a expression.Implications: The anticonvulsant drug lamotrigine shows strong antiproliferative activity on breast cancer, both in vitro and in vivo Thus, drug repurposing could represent a valuable option for a molecularly targeted therapy in breast cancer patients. Mol Cancer Res; 16(6); 923-34. ©2018 AACR.
Collapse
Affiliation(s)
- Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy.
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy.
| | - Alessandra Nigro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Rosangela Ceraldi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Elena Ricci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Ida Perrotta
- Department of Biology, Ecology and Earth Sciences and Centre for Microscopy and Microanalysis (CM2), Transmission Electron Microscopy Laboratory, University of Calabria, Rende, Cosenza, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy.
| |
Collapse
|
18
|
Cao C, Wang W, Lu L, Wang L, Chen X, Guo R, Li S, Jiang J. Inactivation of Beclin-1-dependent autophagy promotes ursolic acid-induced apoptosis in hypertrophic scar fibroblasts. Exp Dermatol 2018; 27:58-63. [PMID: 28767174 DOI: 10.1111/exd.13410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Abstract
A hypertrophic scar (HS) is caused by abnormal proliferation of dermal fibroblasts. Thus, promoting hypertrophic scar fibroblast (HSFB) apoptosis is an effective strategy for HS therapy. Ursolic acid (UA) has been widely used as an inducer of apoptosis in diverse cancers. However, whether UA plays an inhibitory role in HS formation is still unknown. In our study, UA was used to treat HSFBs and the cell viability, apoptosis, and collagen synthesis were determined by a Cell Counting Kit 8 assay, flow cytometry, and an H3 -proline incorporation assay, respectively. Autophagy activity was detected by LC3 immunoblotting and electron microscopy, and siRNAs targeting Beclin-1 were used to inhibit autophagy. Western blotting was performed to investigate the molecular changes in HSFBs after various treatments. We found that UA inhibited collagen synthesis and induced cell apoptosis in HSFBs, evidenced by the deregulated expression of Bim, Bcl-2 and Cyto C. Furthermore, we demonstrated that UA induced autophagy and inactivation of autophagy promoted UA-induced apoptosis and collagen synthesis inhibition in HSFBs. Molecular investigation indicated that UA-induced autophagy through upregulation of Beclin-1 and knockdown of Beclin-1 prevent UA-induced autophagy. Overexpression of Bcl-2 prevents UA-induced autophagy, Beclin-1 upregulation, apoptosis and collagen synthesis inhibition in HSFBs. Collectively, our study demonstrated that UA is a novel agent for inhibiting HS formation by promoting apoptosis, especially in combination with an autophagy inhibitor. Our results provide strong evidence of the application of UA in clinical HS treatment.
Collapse
Affiliation(s)
- Chuan Cao
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Wenping Wang
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Lele Lu
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Liang Wang
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - XiaoSong Chen
- Plastic Surgery Department of Concord Hospital of the Fujian Medical University, Fuzhou, China
| | - Rui Guo
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Shirong Li
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| | - Junzi Jiang
- Plastic Surgery Department of Southwest Hospital, Chongqing, China
| |
Collapse
|
19
|
Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. Cell Death Dis 2017; 8:e2912. [PMID: 28682313 PMCID: PMC5550846 DOI: 10.1038/cddis.2017.289] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023]
Abstract
Our previous findings suggest that sphingosine kinase 2 (SPK2) mediates ischemic tolerance and autophagy in cerebral preconditioning. The aim of this study was to determine by which mechanism SPK2 activates autophagy in neural cells. In both primary murine cortical neurons and HT22 hippocampal neuronal cells, overexpression of SPK2 increased LC3II and enhanced the autophagy flux. SPK2 overexpression protected cortical neurons against oxygen glucose deprivation (OGD) injury, as evidenced by improvement of neuronal morphology, increased cell viability and reduced lactate dehydrogenase release. The inhibition of autophagy effectively suppressed the neuroprotective effect of SPK2. SPK2 overexpression reduced the co-immunoprecipitation of Beclin-1 and Bcl-2, while Beclin-1 knockdown inhibited SPK2-induced autophagy. Both co-immunoprecipitation and GST pull-down analysis suggest that SPK2 directly interacts with Bcl-2. SPK2 might interact to Bcl-2 in the cytoplasm. Notably, an SPK2 mutant with L219A substitution in its putative BH3 domain was not able to activate autophagy. A Tat peptide fused to an 18-amino acid peptide encompassing the native, but not the L219A mutated BH3 domain of SPK2 activated autophagy in neural cells. The Tat-SPK2 peptide also protected neurons against OGD injury through autophagy activation. These results suggest that SPK2 interacts with Bcl-2 via its BH3 domain, thereby dissociating it from Beclin-1 and activating autophagy. The observation that Tat-SPK2 peptide designed from the BH3 domain of SPK2 activates autophagy and protects neural cells against OGD injury suggest that this structure may provide the basis for a novel class of therapeutic agents against ischemic stroke.
Collapse
|