1
|
Nonnast E, Mira E, Mañes S. Biomechanical properties of laminins and their impact on cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189181. [PMID: 39299492 DOI: 10.1016/j.bbcan.2024.189181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Laminins (LMs) constitute a family of heterotrimeric glycoproteins essential for the formation of basement membranes (BM). They act as molecular bridges between cells and the extracellular matrix (ECM), thereby transmitting signals influencing cell behavior and tissue organization. In the realm of cancer pathobiology, LMs regulate key processes such as migration, differentiation, or fibrosis. This review critically examines the multifaceted impact of LMs on tumor progression, with a particular focus on the isoform-specific structure-function relationships, and how this structural diversity contributes to the biomechanical properties of BMs. LM interactions with integrin and non-integrin cell surface receptors, as well as with other ECM proteins, modify the response of cancer cells to the ECM stiffness, ultimately influencing the capacity of malignant cells to breach the BM, a limiting step in metastatic dissemination. Comprehension of the mechanisms underlying LM-driven tumor biomechanics holds potential for better understand cancer pathobiology and design new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Shao S, Bu Z, Xiang J, Liu J, Tan R, Sun H, Hu Y, Wang Y. The role of Tetraspanins in digestive system tumor development: update and emerging evidence. Front Cell Dev Biol 2024; 12:1343894. [PMID: 38389703 PMCID: PMC10882080 DOI: 10.3389/fcell.2024.1343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.
Collapse
Affiliation(s)
- Shijie Shao
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Bu
- Department of General Surgery, Xinyi People's Hospital, Xinyi, China
| | - Jinghua Xiang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachen Liu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rui Tan
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuanwen Hu
- Department of Gastroenterology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yimin Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
4
|
Wang H, Jin X, Zhang Y, Wang Z, Zhang T, Xu J, Shen J, Zan P, Sun M, Wang C, Hua Y, Ma X, Sun W. Inhibition of sphingolipid metabolism in osteosarcoma protects against CD151-mediated tumorigenicity. Cell Biosci 2022; 12:169. [PMID: 36209197 PMCID: PMC9548188 DOI: 10.1186/s13578-022-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, with a poor prognosis owing to the lack of efficient molecular-based targeted therapies. Previous studies have suggested an association between CD151 and distinct consequences in osteosarcoma tumorigenicity. However, the potential of CD151 as a therapeutic target has not yet been sufficiently explored. Here, we performed integrated transcriptomic and metabolomic analyses of osteosarcoma and identified sphingolipid metabolism as the top CD151-regulated pathway. CD151 regulates sphingolipid metabolism primarily through SPTCL1, the first rate-limiting enzyme in sphingolipid biosynthesis. Mechanistically, depletion of CD151 enhanced c-myc polyubiquitination and subsequent degradation. c-myc is vital for the transcriptional activation of SPTLC1. Functionally, sphingolipid synthesis and the SPTLC1 inhibitor, myriocin, significantly suppressed the clonogenic growth of CD151-overexpression cells. Importantly, myriocin selectively restrained CD151-high expression tumor growth in preclinical patient-derived xenograft models. Collectively, these data establish that CD151 is a key mediator of sphingolipid metabolism and provide a new approach to developing novel CD151-based targeted therapies for osteosarcoma.
Collapse
Affiliation(s)
- Hongsheng Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Xinmeng Jin
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Yangfeng Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Jiakang Shen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Pengfei Zan
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiaojun Ma
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
5
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
6
|
Xiao SY, Yan ZG, Zhu XD, Qiu J, Lu YC, Zeng FR. LncRNA DLGAP1-AS2 promotes the radioresistance of rectal cancer stem cells by upregulating CD151 expression via E2F1. Transl Oncol 2022; 18:101304. [PMID: 35144091 PMCID: PMC8844799 DOI: 10.1016/j.tranon.2021.101304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
DLGAP1-AS2 knockdown inhibits radioresistance of rectal cancer stem cells. DLGAP1-AS2 elevates CD151 expression via interactions with E2F1. DLGAP1-AS2 facilitates radioresistance of rectal cancer by interacting with E2F1 to upregulate CD151 expression. DLGAP1-AS2 promotes radioresistance of rectal cancer via modulating E2F1 to elevate CD151 expression through activating AKT/mTOR/cyclinD1 signaling.
Background Radiotherapy resistance is one of the major causes of rectal cancer treatment failure. LncRNA DLGAP1-AS2 participates in the progression of several cancers. We explored the role and potential mechanism of DLGAP1-AS2 in the radioresistance of rectal cancer stem cells. Methods HR8348-R cells, radioresistant cells from HR8348 after irradiation, were isolated into CD133 negative (CD133−) and positive (CD133+) cells. Cell proliferation, apoptosis, migration and tumorsphere formation were determined by CCK-8, flow cytometry, wound healing assay and tumorsphere formation assay, respectively. CD133, tumor stem cell drug resistance gene (MDR1 and BCRP1), DNA repair marker (γ-H2AX) and AKT/mTOR/cyclinD1 signaling were measured by Western blot. The relationship between DLGAP1-AS2 and E2F1 was verified using RIP. The interaction between E2F1 and CD151 promoter was confirmed using dual-luciferase reporter gene assay and ChIP. AKT inhibitor API-2 was employed for validating the effect of AKT/mTOR/cyclinD1 signaling in the radioresistance of rectal cancer cells. Results The DLGAP1-AS2 level was increased in CD133+ cells after irradiation. DLGAP1-AS2 knockdown inhibited the proliferation, migration and tumorsphere formation while stimulating apoptosis in CD133+ cells. DLGAP1-AS2 inhibition downregulated the expression of CD133, MDR1, BCRP1 and γ-H2AX and suppressed AKT/mTOR/cyclinD1 activation. DLGAP1-AS2 upregulated the expression of CD151 by interacting with E2F1. API-2 neutralized the promotive effects of overexpressed CD151 on radioresistance. Conclusion DLGAP1-AS2 accelerates the radioresistance of rectal cancer cells through interactions with E2F1 to upregulate CD151 expression via the activation of the AKT/mTOR/cyclinD1 pathway.
Collapse
|
7
|
Wang JH, Shi CW, Lu YY, Zeng Y, Cheng MY, Wang RY, Sun Y, Jiang YL, Yang WT, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. MicroRNA and circRNA Expression Analysis in a Zbtb1 Gene Knockout Monoclonal EL4 Cell Line. Front Cell Infect Microbiol 2021; 11:706919. [PMID: 34290994 PMCID: PMC8287301 DOI: 10.3389/fcimb.2021.706919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger and BTB domain containing 1(Zbtb1) is a transcriptional suppressor protein, and a member of the mammalian Zbtb gene family. Previous studies have shown that Zbtb1 is essential for T-cell development. However, the role of Zbtb1 in T-cell lymphoma is undetermined. In this study, an EL4 cell line with Zbtb1 deletion was constructed using the CRISPR-Cas9 technique. The expression profiles of microRNA and circRNA produced by the control and gene deletion groups were determined by RNA-seq. In general, 24 differentially expressed microRNA and 16 differentially expressed circRNA were found between normal group and gene deletion group. Through further analysis of differentially expressed genes, GO term histogram and KEGG scatter plot were drawn, and three pairs of miRNA and circRNA regulatory relationships were found. This study describes the differentially expressed microRNA and circRNA in normal and Zbtb1-deficient EL4 cell lines, thus providing potential targets for drug development and clinical treatment of T-cell lymphoma.
Collapse
Affiliation(s)
- Jun-Hong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Yang T, Wang H, Li M, Yang L, Han Y, Liu C, Zhang B, Wu M, Wang G, Zhang Z, Zhang W, Huang J, Zhang H, Cao T, Chen P, Zhang W. CD151 promotes Colorectal Cancer progression by a crosstalk involving CEACAM6, LGR5 and Wnt signaling via TGFβ1. Int J Biol Sci 2021; 17:848-860. [PMID: 33767593 PMCID: PMC7975690 DOI: 10.7150/ijbs.53657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/03/2021] [Indexed: 01/28/2023] Open
Abstract
CD151 impacts various signaling pathways in different cancers, and promotes colorectal cancer (CRC) cell malignancy by yet undefined mechanisms. This study aimed to comprehensively assess CD151's function in CRC. CD151 levels were significantly higher in CRC tissues and cells compared with controls in the tissue microarray. Cell viability, migration and invasion were suppressed by CD151 downregulation in CRC cells. Consistently, mouse xenografts were inhibited by CD151 silencing. RNA-seq revealed that multiple genes were significantly altered by CD151 knockdown in cultured CRC cells and xenografts. Particularly, transforming growth factor β1 (TGFβ1), carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) alongside CD151 were downregulated both in vitro and in vivo. Co-immunoprecipitation and mass spectrometry results were validated by qRT-PCR and immunoblot. Moreover, pull-down assay and immunofluorescence confirmed the associations of TGFβ1, CEACAM6 and LGR5 with CD151. This study demonstrated CEACAM6, LGR5 and Wnt pathway suppression by CD151 silencing might occur through TGFβ1 regulation, offering a comprehensive view of CD151's roles in colorectal carcinogenesis. Our findings provide an insight into the CD151-involved signaling network in CRC oncogenesis, which could be utilized to design novel targeted therapies against CD151-based signaling in treatment for CRC.
Collapse
Affiliation(s)
- Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Huibing Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yu Han
- Department of Pharmacy, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Chao Liu
- Department of Laboratory Animal Science, Hebei Key Lab of Hebei Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Baowen Zhang
- Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Moleculor and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Mingfa Wu
- Department of Gastrointestinal Surgery, Dingzhou City People's Hospital, Dingzhou, Hebei, 073000, China
| | - Gang Wang
- Department of Third General Surgery, Cangzhou City People's Hospital, Cangzhou, Hebei, 061000, China
| | - Zhenya Zhang
- Department of Second General Surgery, Hebei Medical University Fourth hospital, Shijiazhuang, Hebei, 050011, China
| | - Wenqi Zhang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 500017, China
| | - Jianming Huang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Huaxing Zhang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| |
Collapse
|
9
|
Key Role of CD151-integrin Complex in Lung Cancer Metastasis and Mechanisms Involved. Curr Med Sci 2021; 40:1148-1155. [PMID: 33428143 DOI: 10.1007/s11596-020-2297-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 09/13/2020] [Indexed: 10/22/2022]
Abstract
Tetraspanin CD151 was found to be upregulated in malignant cell types and has been identified as a tumor metastasis promoter. In this study, we aimed to examine the role of the CD151-integrin complex in lung cancer metastasis and the underlying mechanisms. CD151 QRD194-196 →AAA194-196 mutant was generated and used to transfect A549 human lung adenocarcinoma cells. We found that there was no significant difference in CD151 protein expression between CD151 and CD151-AAA mutant groups. In vitro, CD151-AAA mutant delivery abrogated the migration and invasion of A549 cells, which was promoted by CD151 gene transfer. Furthermore, CD151-AAA delivery failed to activate FAK and p130Cas signaling pathways. Western blot and immunohistochemical staining showed strong CD151 expression in lung cancerous tissues but not in adjacent normal tissues. Increased level of CD151 protein was observed in 20 of the patients and the positive rate of CD151 protein in specimens was 62.5% (20/32). In addition, CD151 was co-localized with α3 integrin at the cell-cell contact site in carcinoma tissues. These results suggested that the disruption of the CD151-α3 integrin complex may impair the metastasis-promoting effects and signaling events induced by CD151 in lung cancer. Our findings identified a key role for CD151-α3 integrin complex as a promoter in the lung cancer.
Collapse
|
10
|
Li Q, Liang J, Chen B. Identification of CDCA8, DSN1 and BIRC5 in Regulating Cell Cycle and Apoptosis in Osteosarcoma Using Bioinformatics and Cell Biology. Technol Cancer Res Treat 2020; 19:1533033820965605. [PMID: 33153400 PMCID: PMC7673055 DOI: 10.1177/1533033820965605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: Osteosarcoma is the most common primary tumor of bone, although some molecular markers have been identified, the detailed molecular mechanisms underlying osteosarcoma are currently not fully understood. In the present study, we attempted to identify the potential key genes and pathways in osteosarcoma using bioinformatics analysis. Methods: GSE14359 was downloaded from the GEO database, and analyzed using Limma package. Gene Ontology and pathway enrichment analyses of the DEGs were performed in the DAVID database, followed by the construction of a protein–protein interaction (PPI) network with software Cytoscape, subnetwork modules were subsequently identified and analyzed, and further validation in human osteosarcoma tissues and osteosarcoma cells line was performed. Results: 964 Differentially expressed genes (DEGs) identified, of which 222 were up-regulated and 742 were down-regulated. Among them, 10 genes (including BIRC5, MAD2L1, Bub1, DSN1, SPC24, CDCA8, STAG2, CENPA, MLF1IP and Mis12) were identified as hub genes and they were mainly enriched in pathways, including mRNA surveillance, RNA transport and PI3K-Akt signaling pathways. Further validation indicated 6 gene (DSN1, BIRC5, CDCA8, MLF1IP, MAD2L1 and SPC24) is highly expressed in osteosarcoma tissues. Among them, CDCA8, DSN1 and BIRC5 significantly promoted the proliferation of osteosarcoma cells in vitro. In terms of mechanism, DSN1 and CDCA8 were mainly involved in cell cycle regulation, while BIRC5 was mainly involved in the regulation of apoptosis pathway. Conclusions: We identified some key genes and pathways in osteosarcoma, which might be used as molecular targets or diagnostic biomarker for the diagnosis and therapy of osteosarcoma.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, 117899The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang City, Hubei, China
| | - Jie Liang
- Department of Orthopedics, 117899The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang City, Hubei, China
| | - Bo Chen
- Department of Orthopedics, 117899The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang City, Hubei, China
| |
Collapse
|
11
|
Jankovicova J, Frolikova M, Palenikova V, Valaskova E, Cerny J, Secova P, Bartokova M, Horovska L, Manaskova-Postlerova P, Antalikova J, Komrskova K. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci Rep 2020; 10:4374. [PMID: 32152440 PMCID: PMC7062741 DOI: 10.1038/s41598-020-61334-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological importance of CD151 tetraspanin is known from somatic cells and its outside-in signalling through integrins was described. In male germ cells, two tetraspanins, CD9 and CD81, are involved in sperm-egg membrane fusion, and similarly to integrins, they occupy characteristic regions. We report here on a newly discovered presence of CD151 in sperm, and present its expression and distribution during spermatogenesis and sperm transition during the acrosome reaction. We traced CD151 gene and protein expression in testicular cell subpopulations, with strong enrichment in spermatogonia and spermatids. The testicular and epididymal localization pattern is designated to the sperm head primary fusion site called the equatorial segment and when compared to the acrosome vesicle status, CD151 was located into the inner acrosomal membrane overlying the nucleus. Moreover, we show CD151 interaction with α6 integrin subunit, which forms a dimer with β4 as a part of cis-protein interactions within sperm prior to gamete fusion. We used mammalian species with distinct sperm morphology and sperm maturation such as mouse and bull and compared the results with human. In conclusion, the delivered findings characterise CD151 as a novel sperm tetraspanin network member and provide knowledge on its physiology in male germ cells.
Collapse
Affiliation(s)
- J Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - V Palenikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 40, Prague 2, Czech Republic
| | - E Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - P Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - L Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - P Manaskova-Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - J Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - K Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic. .,Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
12
|
Kawashima K, Saigo C, Kito Y, Hanamatsu Y, Egawa Y, Takeuchi T. CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model. Oncol Lett 2019; 17:4811-4818. [PMID: 31186687 PMCID: PMC6507424 DOI: 10.3892/ol.2019.10164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cluster of differentiation 151 (CD151) is a potent therapeutic target for regulating tumor metastasis. In the present study, the role of CD151 in clear cell sarcoma of soft tissue was examined using a xenoplanted tumor model, which had high rates of metastasis. A clear cell sarcoma cell line, HS-MM, which was transplanted to the aponeuroses of the thighs, the most affected sites of human clear cell sarcoma, exhibited robust lymphatic invasion and nodal metastasis in SCID-beige mice. Serial in vivo passaging of peritoneally disseminated tumor cells accelerated the metastatic activity, which was accompanied by increased CD151 expression, and were designated as HS-MMhigh. Notably, inoculation of anti-CD151 antibody significantly suppressed the lymphatic invasion, peritoneal dissemination and distant metastasis of the present clear cell sarcoma model without affecting local tumor growth at the transplantation site. Small interfering RNA (siRNA)-mediated downregulation of CD151 did not alter cell proliferation, but significantly inhibited Matrigel invasion activity of HS-MMhigh cells. Downregulation of CD151 impaired matrix metalloproteinase-9 activity and phosphorylation of SMAD3 protein in HS-MMhigh cells. The present results suggest that CD151 may contribute to invasion and metastasis of clear cell sarcoma of soft tissue. Therefore, CD151 may serve as a potent target to regulate metastasis of clear cell sarcoma.
Collapse
Affiliation(s)
- Keisuke Kawashima
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuki Egawa
- Division of Pathology, Shizuoka City Shizuoka Hospital, Shizuoka 420-630, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
13
|
Wang Z, Wang C, Zuo D, Zhang T, Yin F, Zhou Z, Wang H, Xu J, Mao M, Wang G, Hua Y, Sun W, Cai Z. Attenuation of STAT3 Phosphorylation Promotes Apoptosis and Chemosensitivity in Human Osteosarcoma Induced by Raddeanin A. Int J Biol Sci 2019; 15:668-679. [PMID: 30745853 PMCID: PMC6367581 DOI: 10.7150/ijbs.30168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in adolescents. One major obstacle for current OS treatment is drug-resistance. Raddeanin A (RA), an oleanane-type triterpenoid saponin, exerts anti-tumor effects in several tumor models, but the effect of RA in human drug-resistant OS remained to be elucidated. In the present study, we investigated the anti-tumor effects of RA in both drug-sensitive and drug-resistant OS cells and its underlying mechanism. RA inhibited cell proliferation and colony formation and induced apoptotic cell death in a dose-dependent manner in both drug-sensitive and drug-resistant cells. Moreover, RA exposure resulted in the inhibition of interleukin-6 (IL-6)-induced JAK2/STAT3 signaling pathway activation and target gene expression in both drug-sensitive and drug-resistant cells. Meanwhile, we observed significantly increased MDR1 and STAT3 expression in drug-resistant OS cells compared with parental cells. STAT3 overexpression promoted chemo-resistance and MDR1 protein expression in both drug-sensitive OS cells and drug-resistant OS cells, while inhibiting STAT3 with siRNA sensitized OS cells to doxorubicin treatment. In addition, RA synergistically increased doxorubicin toxicity by increasing its cellular uptake, ablating efflux and downregulating MDR1 in drug-resistant cells with attenuation of STAT3 Phosphorylation. Finally, RA suppressed in vivo tumor growth and induced apoptosis in nude mouse using drug-resistant OS tibia orthotopic model. Taken together, RA is a promising potential therapeutic for the treatment of doxorubicin resistance in OS.
Collapse
Affiliation(s)
- Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Fei Yin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zifei Zhou
- Shanghai Bone Tumor Institution, Shanghai, China
| | | | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Min Mao
- Shanghai Bone Tumor Institution, Shanghai, China
| | | | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
14
|
Jiang M, Wang Y, Xu N, Zhou L, An Q. Long noncoding RNA MEG3 play an important role in osteosarcoma development through sponging microRNAs. J Cell Biochem 2018; 120:5151-5159. [PMID: 30324678 DOI: 10.1002/jcb.27791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ming Jiang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yi‐Ran Wang
- Shanghai Medical College Fudan University Shanghai China
| | - Nan Xu
- Department of Traditional Chinese Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Liyang Zhou
- Department of Respiratory Medicine Huai'an Second People's Hospital of Jiangsu Huai'an China
| | - Qing An
- Department of Traditional Chinese Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
15
|
Li G, Li L, Sun Q, Wu J, Ge W, Lu G, Cai M. MicroRNA-3200-5p Promotes Osteosarcoma Cell Invasion via Suppression of BRMS1. Mol Cells 2018; 41:523-531. [PMID: 29890825 PMCID: PMC6030248 DOI: 10.14348/molcells.2018.2200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/31/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023] Open
Abstract
Tumour metastasis is one of the most serious challenges of cancer as it is the major cause of mortality in patients with solid tumours, including osteosarcoma (OS). In this regard, anti-metastatic genes have potential for metastasis inhibition strategies. Recent evidence showed the importance of breast cancer metastasis suppressor 1 (BRMS1) in control of OS invasiveness, but the regulation of BRMS1 in OS remains largely unknown. Here, we used bioinformatics analyses to predict BRMS1-targeting microRNAs (miRNAs), and the functional binding of miRNAs to BRMS1 mRNA was evaluated using a dual luciferase reporter assay. Among all BRMS1-targeting miRNAs, only miR-151b, miR-7-5p and miR-3200-5p showed significant expression in OS specimens. Specifically, we found that only miR-3200-5p significantly inhibited protein translation of BRMS1 via pairing to the 3'-UTR of the BRMS1 mRNA. Moreover, we detected significantly lower BRMS1 and significantly higher miR-3200-5p in the OS specimens compared to the paired adjacent non-tumour bone tissues. Furthermore, BRMS1 and miR-3200-5p levels were inversely correlated to each other. Low BRMS1 was correlated with metastasis and poor patient survival. In vitro, overexpression of miR-3200-5p significantly decreased BRMS1 levels and promoted OS cell invasion and migration, while depletion of miR-3200-5p significantly increased BRMS1 levels and inhibited OS cell invasion and migration. Thus, our study revealed that miR-3200-5p may be a critical regulator of OS cell invasiveness.
Collapse
Affiliation(s)
- Gen Li
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
China
| | - Li Li
- Department of Orthopedics, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai 200433,
China
| | - Qi Sun
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
China
| | - Jiezhou Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
China
| | - Wei Ge
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
China
| | - Guanghua Lu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
China
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072,
China
| |
Collapse
|
16
|
Wang H, Sun W, Sun M, Fu Z, Zhou C, Wang C, Zuo D, Zhou Z, Wang G, Zhang T, Xu J, Chen J, Wang Z, Yin F, Duan Z, Hornicek FJ, Cai Z, Hua Y. HER4 promotes cell survival and chemoresistance in osteosarcoma via interaction with NDRG1. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29524631 DOI: 10.1016/j.bbadis.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. The abilities of chemotherapy resistance are major roadblock in the successful treatment of OS. The clarification of mechanism regarding cell survival during OS chemotherapy are important. Here, we examined HER4 expression by immunohistochemistry in a large series of OS tissues, and found HER4 expression correlated with tumor characteristics and patient survival rates. HER4 knockdown by shRNA inhibited OS cell growth and tumorigenesis, and induced cell senescence and apoptosis in vitro and in vivo. We demonstrated that HER4 expression upregulated in the adverse conditions, such as serum starvation and sphere culture. Moreover, HER4 knockdown cells became more sensitive in stressful conditions such as loss of attachment, cytotoxic agents or nutrition insufficiency. Mechanism studies revealed that HER4 interacted with NDRG1, and NDRG1 overexpression could antagonize HER4 knockdown-mediated cell growth and apoptosis in stressed conditions. There was a positive correlation between HER4 and NDRG1 immunoreactivity in OS patients. Together, our present study shows that HER4 and/or NDRG1 might play a critical role for the cell survival and chemo-resistance of OS, and could be used as potential therapeutic targets in OS.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China; Department of Orthopedics, Yangpu Hospital, Tongji University, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zeze Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jian Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Fei Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery David Geffen School of Medicine at UCLA Los Angeles, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
17
|
Yu Y, Liang C, Wang S, Zhu J, Miao C, Hua Y, Bao M, Cao Q, Qin C, Shao P, Wang Z. CD151 promotes cell metastasis via activating TGF-β1/Smad signaling in renal cell carcinoma. Oncotarget 2018; 9:13313-13323. [PMID: 29568359 PMCID: PMC5862580 DOI: 10.18632/oncotarget.24028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Tetraspanin CD151 has been identified as a tumor promoter, which is upregulated in various malignant cell types. However, the function of CD151 and its underlying mechanism in renal cell carcinoma is still unknown. In this study, we detected the expression of CD151 in RCC cells and tissues and explored its regulatory mechanism. We found that CD151 was upregulated in renal cell carcinoma tissues and cells and its expression was significantly associated with tumor stage (p=0.019) and survival (p=0.001) by analyzing tissue microarrays. After silencing of CD151 via lentivirus vector in Caki-1 and Caki-2 cells, reduced ability of migration and invasion were detected with downregulation of CD151. The opposite results were observed in cells with CD151 overexpression. Furthermore, western blotting was performed to investigate the influence of CD151 on epithelial-to-mesenchymal transition, matrix metalloproteinase 9 and TGF-β1/Smad signaling pathway in RCC. Subsequently, upregulating the protein level of transforming growth factor-β1 in cells with silencing of CD151 could rescue the malignant behaviors inhibited, which indicated that CD151 may play its promoting role in RCC partially by stimulating the expression of TGF-β1. Conclusively, CD151 might exhibit a prominent role in migration and invasion of RCC cells via activating TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yibo Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|