1
|
Zhu H, Huang Y, Chen J. FAM122A functions as a tumor suppressor in oral squamous cell carcinoma. Exp Cell Res 2024; 441:114165. [PMID: 39009214 DOI: 10.1016/j.yexcr.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Family with sequence similarity 122a (FAM122A), identified as an endogenous inhibitor of protein phosphatase 2A (PP2A) previously, is involved in multiple important physiological processes, and essential for the growth of acute myeloid leukemia and hepatocellular carcinoma cells. However, the function of FAM122A in oral squamous cell carcinoma (OSCC) is undetermined. In this study, by analyzing TCGA and GEO databases, we found that the expression of FAM122A was significantly down-regulated in head and neck squamous cell carcinoma and OSCC patients, meanwhile this low expression was tightly associated with the poor prognosis and advanced clinical stage during OSCC development. The similar low expression pattern of FAM122A could also been seen in OSCC cell lines compared with normal human oral keratinocytes. Further, we demonstrated that FAM122A knockdown significantly promoted the growth, clonogenic potential as well as migration capabilities of OSCC cells, while these alterations could be rescued by the re-expression of FAM122A. Over-expression of FAM122A suppressed OSCC cell proliferation and migration. FAM122A also inhibited the epithelial-mesenchymal transition (EMT) in OSCC cells by the up-regulation of epithelial marker E-cadherin and down-regulation of mesenchymal markers Fibronectin and Vimentin, which is presumably mediated by transforming growth factor β receptor 3 (TGFBR3), a novel tumor suppressor. In addition, FAM122A could induce T cell infiltration in OSCC, indicating that FAM122A might influence the immune cell activity of tumor environment and further interfere the tumor development. Collectively, our results suggest that FAM122A functions as a tumor suppressor in OSCC and possibly acts as a predictive biomarker for the diagnosis and/or treatment of OSCC.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jing Chen
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Wasserman JS, Faezov B, Patel KR, Kurimchak AM, Palacio SM, Glass DJ, Fowle H, McEwan BC, Xu Q, Zhao Z, Cressey L, Johnson N, Duncan JS, Kettenbach AN, Dunbrack RL, Graña X. FAM122A ensures cell cycle interphase progression and checkpoint control by inhibiting B55α/PP2A through helical motifs. Nat Commun 2024; 15:5776. [PMID: 38982062 PMCID: PMC11233601 DOI: 10.1038/s41467-024-50015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The Ser/Thr protein phosphatase 2 A (PP2A) regulates the dephosphorylation of many phosphoproteins. Substrate recognition are mediated by B regulatory subunits. Here, we report the identification of a substrate conserved motif [RK]-V-x-x-[VI]-R in FAM122A, an inhibitor of B55α/PP2A. This motif is necessary for FAM122A binding to B55α, and computational structure prediction suggests the motif, which is helical, blocks substrate docking to the same site. In this model, FAM122A also spatially constrains substrate access by occluding the catalytic subunit. Consistently, FAM122A functions as a competitive inhibitor as it prevents substrate binding and dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. FAM122A deficiency in human cell lines reduces the proliferation rate, cell cycle progression, and hinders G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells attenuates CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a short helical motif (SHeM)-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.
Collapse
Affiliation(s)
- Jason S Wasserman
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bulat Faezov
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kishan R Patel
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Seren M Palacio
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - David J Glass
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Holly Fowle
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Brennan C McEwan
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center Drive, Lebanon, NH, USA
| | - Qifang Xu
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Ziran Zhao
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Lauren Cressey
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center Drive, Lebanon, NH, USA
| | - Neil Johnson
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - James S Duncan
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Arminja N Kettenbach
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Medical Center Drive, Lebanon, NH, USA
| | | | - Xavier Graña
- Fels Cancer Institute for Personalized Medicine. Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Lacroix B, Vigneron S, Labbé JC, Pintard L, Lionne C, Labesse G, Castro A, Lorca T. Increases in cyclin A/Cdk activity and in PP2A-B55 inhibition by FAM122A are key mitosis-inducing events. EMBO J 2024; 43:993-1014. [PMID: 38378890 PMCID: PMC10943098 DOI: 10.1038/s44318-024-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Suzanne Vigneron
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Jean Claude Labbé
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Lionel Pintard
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Institut Jacques Monod, F-75013, Paris, France
| | - Corinne Lionne
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France.
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France.
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France.
- Programme équipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
4
|
Padi SKR, Vos MR, Godek RJ, Fuller JR, Kruse T, Hein JB, Nilsson J, Kelker MS, Page R, Peti W. Cryo-EM structures of PP2A:B55-FAM122A and PP2A:B55-ARPP19. Nature 2024; 625:195-203. [PMID: 38123684 PMCID: PMC10765524 DOI: 10.1038/s41586-023-06870-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation1. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases2, whereas mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B553. Although the role of kinases in mitotic entry is well established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited4. Inhibition of PP2A:B55 is achieved by the intrinsically disordered proteins ARPP195,6 and FAM122A7. Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the single-particle cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies, both intrinsically disordered proteins bind PP2A:B55, but do so in highly distinct manners, leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provide a molecular roadmap for the development of therapeutic interventions for PP2A:B55-related diseases.
Collapse
Affiliation(s)
- Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Margaret R Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Rachel J Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B Hein
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
5
|
High-resolution structures of two phosphatase-inhibitor complexes. Nature 2023:10.1038/d41586-023-03833-6. [PMID: 38123854 DOI: 10.1038/d41586-023-03833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
|
6
|
Padi SK, Vos MR, Godek RJ, Fuller JR, Kruse T, Hein JB, Nilsson J, Kelker MS, Page R, Peti W. Cryo-EM structures of PP2A:B55-FAM122A and PP2A:B55-ARPP19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555365. [PMID: 37693408 PMCID: PMC10491220 DOI: 10.1101/2023.08.31.555365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation.1 Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases,2 while mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55.3 While the role of kinases in mitotic entry is well-established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.4 For PP2A:B55, inhibition is achieved by the two intrinsically disordered proteins (IDPs), ARPP19 (phosphorylation-dependent)6,7 and FAM122A5 (inhibition is phosphorylation-independent). Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies both IDPs bind PP2A:B55, but do so in highly distinct manners, unexpectedly leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provides a molecular roadmap for the development of therapeutic interventions for PP2A:B55 related diseases.
Collapse
Affiliation(s)
- Sathish K.R. Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| | - Margaret R. Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | - Rachel J. Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | | | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B. Hein
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| |
Collapse
|
7
|
Gu W, Zheng H, Canessa CM. Phosphatases maintain low catalytic activity of SGK1: DNA damage resets the balance in favor of phosphorylation. J Biol Chem 2023; 299:104941. [PMID: 37343701 PMCID: PMC10372406 DOI: 10.1016/j.jbc.2023.104941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
The serum- and glucocorticoid-induced kinase 1 (SGK1) promotes cell survival under stress conditions and facilitates the emergence of drug resistance in cancer. The underlying mechanisms of these observations are not fully understood. In this study, we found that SGK1 activity is suppressed by the action of the S/T phosphatases PP5 and PP2A, which constantly dephosphorylate SGK1. Using newly developed anti-phospho SGK1 antibodies and inhibitors of phosphatases, we determined that the high degree of dephosphorylation is caused by two factors: the tendency of SGK1 to unfold, which makes it dependent on Hsp90 chaperone complexes composed of four proteins, Hsp90/CDC37/PP5/SGK1, and where the phosphatase PP5 persistently dephosphorylates SGK1 within the complex. SGK1 binding to PP2A regulatory subunits B55γ and B55δ brings PP2A catalytic subunit close to exposed SGK1 phosphoresidues. A further association of phosphorylated pS37-FAM122A-an endogenous inhibitor of PP2A-to the holoenzyme diminishes dephosphorylation of SGK1 mediated by PP2A. Our study also reveals that genotoxic stress can reverse the dominant impact of phosphatases over kinases by activating the DNA-dependent protein kinase, which enhances mTORC2 activity directed to SGK1. Thus, our results provide insight into a molecular pathway that enables SGK1 to gain phosphorylation and catalytic activity and promote cell survival, potentially diminishing the efficacy of cancer treatments. As the DNA damage response operates in many cancer cells and is further induced by chemotherapies, the findings of this study could have significant implications for the development of novel cancer therapies targeting SGK1.
Collapse
Affiliation(s)
- Wenxue Gu
- School of Medicine, Tsinghua University, Beijing, China
| | - Hongyan Zheng
- School of Medicine, Tsinghua University, Beijing, China
| | - Cecilia M Canessa
- School of Medicine, Tsinghua University, Beijing, China; Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, USA.
| |
Collapse
|
8
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 2023; 186:2977-2994.e23. [PMID: 37343560 PMCID: PMC10461406 DOI: 10.1016/j.cell.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge, MA 02142, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zhao HG, Deininger M. Always stressed but never exhausted: how stem cells in myeloid neoplasms avoid extinction in inflammatory conditions. Blood 2023; 141:2797-2812. [PMID: 36947811 PMCID: PMC10315634 DOI: 10.1182/blood.2022017152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis. Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long-term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, in which residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokine circuits that favor MPN cells, and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. Although eradicating the malignant cell clones remains the goal of therapy, rebalancing the ecosystem may be a more attainable objective in the short term.
Collapse
Affiliation(s)
- Helong Gary Zhao
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Michael Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
10
|
Yang YS, Liu MH, Yan ZW, Chen GQ, Huang Y. FAM122A Is Required for Mesendodermal and Cardiac Differentiation of Embryonic Stem Cells. Stem Cells 2023; 41:354-367. [PMID: 36715298 PMCID: PMC10498146 DOI: 10.1093/stmcls/sxad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/31/2023]
Abstract
Mesendodermal specification and cardiac differentiation are key issues for developmental biology and heart regeneration medicine. Previously, we demonstrated that FAM122A, a highly conserved housekeeping gene, is an endogenous inhibitor of protein phosphatase 2A (PP2A) and participates in multifaceted physiological and pathological processes. However, the in vivo function of FAM122A is largely unknown. In this study, we observed that Fam122 deletion resulted in embryonic lethality with severe defects of cardiovascular developments and significantly attenuated cardiac functions in conditional cardiac-specific knockout mice. More importantly, Fam122a deficiency impaired mesendodermal specification and cardiac differentiation from mouse embryonic stem cells but showed no influence on pluripotent identity. Mechanical investigation revealed that the impaired differentiation potential was caused by the dysregulation of histone modification and Wnt and Hippo signaling pathways through modulation of PP2A activity. These findings suggest that FAM122A is a novel and critical regulator in mesendodermal specification and cardiac differentiation. This research not only significantly extends our understanding of the regulatory network of mesendodermal/cardiac differentiation but also proposes the potential significance of FAM122A in cardiac regeneration.
Collapse
Affiliation(s)
- Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Zhao-Wen Yan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit (2019RU043, Stress and Tumor), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, People’s Republic of China
| |
Collapse
|
11
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533346. [PMID: 36993685 PMCID: PMC10055274 DOI: 10.1101/2023.03.19.533346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether changes in human cells alter requirements for essential genes. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells, providing support for the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells can reshape the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Nathan K. Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J. Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| | - Alex A. Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
12
|
Wasserman JS, Faezov B, Patel KR, Kurimchak AN, Palacio SM, Fowle H, McEwan BC, Xu Q, Zhao Z, Cressey L, Johnson N, Duncan JS, Kettenbach AN, Dunbrack RL, Graña X. FAM122A ensures cell cycle interphase progression and checkpoint control as a SLiM-dependent substrate-competitive inhibitor to the B55⍺/PP2A phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531310. [PMID: 36945596 PMCID: PMC10028791 DOI: 10.1101/2023.03.06.531310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The Ser/Thr protein phosphatase 2A (PP2A) is a highly conserved collection of heterotrimeric holoenzymes responsible for the dephosphorylation of many regulated phosphoproteins. Substrate recognition and the integration of regulatory cues are mediated by B regulatory subunits that are complexed to the catalytic subunit (C) by a scaffold protein (A). PP2A/B55 substrate recruitment was thought to be mediated by charge-charge interactions between the surface of B55α and its substrates. Challenging this view, we recently discovered a conserved SLiM [ RK ]- V -x-x-[ VI ]- R in a range of proteins, including substrates such as the retinoblastoma-related protein p107 and TAU (Fowle et al. eLife 2021;10:e63181). Here we report the identification of this SLiM in FAM122A, an inhibitor of B55α/PP2A. This conserved SLiM is necessary for FAM122A binding to B55α in vitro and in cells. Computational structure prediction with AlphaFold2 predicts an interaction consistent with the mutational and biochemical data and supports a mechanism whereby FAM122A uses the 'SLiM' in the form of a short α-helix to dock to the B55α top groove. In this model, FAM122A spatially constrains substrate access by occluding the catalytic subunit with a second α-helix immediately adjacent to helix 1. Consistently, FAM122A functions as a competitive inhibitor as it prevents binding of substrates in in vitro competition assays and the dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. Ablation of FAM122A in human cell lines reduces the rate of proliferation, progression through cell cycle transitions and abrogates G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells results in attenuation of CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a 'SLiM'-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.
Collapse
|
13
|
Hutter K, Rülicke T, Szabo TG, Andersen L, Villunger A, Herzog S. The miR-15a/16-1 and miR-15b/16-2 clusters regulate early B cell development by limiting IL7R receptor expression. Front Immunol 2022; 13:967914. [PMID: 36110849 PMCID: PMC9469637 DOI: 10.3389/fimmu.2022.967914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Tamas G. Szabo
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Lill Andersen
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- *Correspondence: Sebastian Herzog,
| |
Collapse
|
14
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
15
|
Liu MH, Chen J, Yang YS, Wang YQ, Chen GQ, Zhang Y, Huang Y. FAM122A promotes acute myeloid leukemia cell growth through inhibiting PP2A activity and sustaining MYC expression. Haematologica 2021; 106:903-907. [PMID: 32354864 PMCID: PMC7928003 DOI: 10.3324/haematol.2020.251462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Man-Hua Liu
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Qi Wang
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Dept. of Obstetrics-Gynecology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
FAM122A is required for hematopoietic stem cell function. Leukemia 2020; 35:2130-2134. [PMID: 33262527 DOI: 10.1038/s41375-020-01099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 11/08/2022]
|
17
|
Abstract
Li et al. (2020) elucidate the resistance mechanisms to small-molecule inhibitors targeting the G2/M cell cycle checkpoint kinase, CHK1, in a variety of non-small cell lung cancer cell lines using CRISPR-mediated genetic approaches and identify biomarkers of response.
Collapse
Affiliation(s)
- Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
18
|
Wang YQ, Yang YS, Chen J, Liu MH, Chen GQ, Huang Y. FAM122A maintains DNA stability possibly through the regulation of topoisomerase IIα expression. Exp Cell Res 2020; 396:112242. [PMID: 32866497 DOI: 10.1016/j.yexcr.2020.112242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
FAM122A is a housekeeping gene and highly conserved in mammals. More recently, we have demonstrated that FAM122A is essential for maintaining the growth of hepatocellular carcinoma cells, in which we unexpectedly found that FAM122A deletion increases γH2AX protein level, suggesting that FAM122A may participate in the regulation of DNA homeostasis or stability. In this study, we continued to investigate the potential role of FAM122A in DNA damage and/or repair. We found that CRISPR/Cas9-mediated FAM122A deletion enhances endogenous DNA damages in cancer cells but not in normal cells, demonstrating a significant increase in γH2AX protein and foci formation of γH2AX and 53BP1, as well as DNA breaks by comet assay. Further, we found that FAM122A deletion greatly increases TOP2α protein level, and significantly and specifically enhances TOP2 poisons (etoposide and doxorubicin)-induced DNA damage effects in cancer cells. Moreover, FAM122A is found to be interacted with TOP2α, instead of TOP2β. However, FAM122A knockout doesn't affect the intracellular ROS levels and the process of DNA repair after removal of etoposide with short-term stimulation, suggesting that FAM122A deletion-enhanced DNA damage does not result from endogenous overproduction of ROS and/or impairment of DNA repair ability. Collectively, our study provides the first demonstration that FAM122A is critical for maintaining DNA stability probably by modulating TOP2α protein, and FAM122A deletion combined with TOP2-targeted drugs may represent a potential novel chemotherapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Yin-Qi Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Li F, Kozono D, Deraska P, Branigan T, Dunn C, Zheng XF, Parmar K, Nguyen H, DeCaprio J, Shapiro GI, Chowdhury D, D'Andrea AD. CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. Mol Cell 2020; 80:410-422.e6. [PMID: 33108758 DOI: 10.1016/j.molcel.2020.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
While effective anti-cancer drugs targeting the CHK1 kinase are advancing in the clinic, drug resistance is rapidly emerging. Here, we demonstrate that CRISPR-mediated knockout of the little-known gene FAM122A/PABIR1 confers cellular resistance to CHK1 inhibitors (CHK1is) and cross-resistance to ATR inhibitors. Knockout of FAM122A results in activation of PP2A-B55α, a phosphatase that dephosphorylates the WEE1 protein and rescues WEE1 from ubiquitin-mediated degradation. The resulting increase in WEE1 protein expression reduces replication stress, activates the G2/M checkpoint, and confers cellular resistance to CHK1is. Interestingly, in tumor cells with oncogene-driven replication stress, CHK1 can directly phosphorylate FAM122A, leading to activation of the PP2A-B55α phosphatase and increased WEE1 expression. A combination of a CHK1i plus a WEE1 inhibitor can overcome CHK1i resistance of these tumor cells, thereby enhancing anti-cancer activity. The FAM122A expression level in a tumor cell can serve as a useful biomarker for predicting CHK1i sensitivity or resistance.
Collapse
Affiliation(s)
- Feng Li
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Peter Deraska
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Timothy Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115
| | - Connor Dunn
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Feng Zheng
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115; Early Drug Development Center, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
20
|
FAM122A Inhibits Erythroid Differentiation through GATA1. Stem Cell Reports 2020; 15:721-734. [PMID: 32763160 PMCID: PMC7486200 DOI: 10.1016/j.stemcr.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
FAM122A is a highly conserved housekeeping gene, but its physiological and pathophysiological roles remain greatly elusive. Based on the fact that FAM122A is highly expressed in human CD71+ early erythroid cells, herein we report that FAM122A is downregulated during erythroid differentiation, while its overexpression significantly inhibits erythrocytic differentiation in primary human hematopoietic progenitor cells and erythroleukemia cells. Mechanistically, FAM122A directly interacts with the C-terminal zinc finger domain of GATA1, a critical transcriptional factor for erythropoiesis, and reduces GATA1 chromatin occupancy on the promoters of its target genes, thus resulting in the decrease of GATA1 transcriptional activity. The public datasets show that FAM122A is abnormally upregulated in patients with β-thalassemia. Collectively, our results demonstrate that FAM122A plays an inhibitory role in the regulation of erythroid differentiation, and it would be a potentially therapeutic target for GATA1-related dyserythropoiesis or an important regulator for amplifying erythroid cells ex vivo. FAM122A inhibits terminal erythroid differentiation FAM122A directly interacts with GATA1 FAM122A suppresses the DNA binding and transcriptional activities of GATA1 FAM122A is downregulated during terminal erythroid differentiation
Collapse
|
21
|
Akiyama H, Iwasaki Y, Yamada S, Kamiguchi H, Sakakibara SI. Control of cell migration by the novel protein phosphatase-2A interacting protein inka2. Cell Tissue Res 2020; 380:527-537. [DOI: 10.1007/s00441-020-03169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
22
|
Zhou Y, Shi WY, He W, Yan ZW, Liu MH, Chen J, Yang YS, Wang YQ, Chen GQ, Huang Y. FAM122A supports the growth of hepatocellular carcinoma cells and its deletion enhances Doxorubicin-induced cytotoxicity. Exp Cell Res 2019; 387:111714. [PMID: 31711919 DOI: 10.1016/j.yexcr.2019.111714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
FAM122A is a highly conserved protein in mammals, however its function is still largely unknown so far. In this study, we investigated the potential role of FAM122A in hepatocellular carcinoma (HCC). By analyzing HCC patient cohorts from RNA sequencing datasets, we found the expression level of FAM122A mRNA is significantly upregulated in HCC patients. Moreover, this abnormally higher expression pattern of FAM122A protein was also found in partial HCC tumor tissues, compared with the normal parts. Further, we demonstrated that CRISPR/Cas9-mediated FAM122A knockout significantly inhibits the growth, clonogenic potential and xenografts of HCC cells, induces cell cycle arrest and reduces the expression of proliferation-related genes. Interestingly, FAM122A deletion significantly enhances the cytotoxicity effect of Doxorubicin (Dox), a drug used in standard chemotherapy in HCC patients. In contrary, overexpression of FAM122A not only promotes HCC cell growth, but also inhibits Dox-induced DNA damage and cell death. Considering that FAM122A is previously identified as an endogenous inhibitor of PP2A, we asked whether FAM122A regulating HCC cell growth is associated with PP2A. The results showed FAM122A can also modulate PP2A activity in HCC cells although the modulated effect is relatively slight, however, treatment with a PP2A inhibitor okadaic acid did not rescue the inhibitory effects of cell growth and proliferation in FAM122A deletion cells, indicating that FAM122A may support HCC cell growth independent of its ability to modulate PP2A. Collectively, these results suggest that FAM122A is required for maintaining HCC cell growth, and its elimination combined with chemotherapy may represent a potential novel therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen-Yang Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei He
- Department of Pathology, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200027, China
| | - Zhao-Wen Yan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yin-Qi Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
24
|
Schleicher K, Porter M, Ten Have S, Sundaramoorthy R, Porter IM, Swedlow JR. The Ndc80 complex targets Bod1 to human mitotic kinetochores. Open Biol 2018; 7:rsob.170099. [PMID: 29142109 PMCID: PMC5717335 DOI: 10.1098/rsob.170099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores.
Collapse
Affiliation(s)
- Katharina Schleicher
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Porter
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Iain M Porter
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jason R Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
25
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
26
|
Fan F, Zhao J, Liu Y, Zhao H, Weng L, Li Q, Chen G, Xu Y. Identifying the SUMO1 modification of FAM122A leading to the degradation of PP2A-Cα by ubiquitin-proteasome system. Biochem Biophys Res Commun 2018; 500:676-681. [PMID: 29678583 DOI: 10.1016/j.bbrc.2018.04.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
FAM122A is a highly conserved protein in mammals. Here, we identify that FAM122A can be sumoylated at lysine 89, which can be de-conjugated by SENP1. Furthermore, the sumoylation of FAM122A reduces the PP2A-Cα protein level together with the reduced phosphatase activity of PP2A, which suppresses cell proliferation. Collectively, our results suggest that the sumoylation of FAM122A may have a significant role in cellular function.
Collapse
Affiliation(s)
- Fangzhi Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxing Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yali Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Hongfang Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China
| | - Lietao Weng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingqing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|