1
|
Sanusi KO, Abubakar MB, Ibrahim KG, Imam MU. Transgenerational Effects of Maternal Zinc Deficiency on Zinc Transporters in Drosophila melanogaster. Biol Trace Elem Res 2024; 202:5276-5287. [PMID: 38277121 DOI: 10.1007/s12011-024-04071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Maternal nutrition, including the availability of micronutrients such as zinc, influences the health of the offspring. Using Drosophila melanogaster, we studied the impact of zinc deficiency on development and reproduction, as well as the effects of maternal zinc status on the offspring's expression of zinc transporters across F1 to F3 generations. Zinc deficiency was induced by adding N,N,N',N'-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) to the diet on which the eggs representing the F0 generation flies were laid. Then, virgin F0 females were mated with control males to produce F1, and subsequently thereafter to generate F2 and F3. Offspring from F1 to F3 were analyzed for body zinc status and zinc transporter mRNA levels. We found that zinc deficiency significantly (p < 0.05) impaired the development of flies, as evidenced by a reduced eclosion rate of zinc-deficient flies. Similarly, zinc deficiency significantly (p < 0.05) reduced the egg-laying rate in F0 flies, highlighting its impact on reproductive functions. Also, zinc levels were consistently lower in the F0 and persisted in subsequent generations for both male and female offspring, indicating transgenerational alterations in zinc status. Furthermore, gene expression analysis revealed significant (p < 0.05) variations in the mRNA levels of dZip42C.1, dZnT63C, dZip71B, and dZnT35C genes across different generations and between male and female offspring. These findings indicate gender-specific dynamics of gene expression in response to zinc deficiency, suggesting potential regulatory mechanisms involved in maintaining zinc homeostasis. Our study emphasizes the detrimental effects of zinc deficiency on development and reproduction in Drosophila and highlights potential implications for offspring and human health.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Basic Medical and Dental Sciences, Zarqa University, Zarqa, 13110, Jordan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, Republic of South Africa
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria.
- Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria.
| |
Collapse
|
2
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Scheiermann E, Puppa MA, Rink L, Wessels I. Zinc Status Impacts the Epidermal Growth Factor Receptor and Downstream Protein Expression in A549 Cells. Int J Mol Sci 2022; 23:ijms23042270. [PMID: 35216384 PMCID: PMC8876057 DOI: 10.3390/ijms23042270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Zinc has been suggested to play a role in carcinogenesis and tumor progression. Serum zinc levels of lung cancer patients are for example lower than in healthy individuals. The activation and expression of the epidermal growth factor receptor (EGFR), which plays a role in tumor biology, are presumably influenced by zinc. EGFR activation influences cell adhesion and immune escape. This study provides insights into the impacts of zinc on the EGFR activation and expression of downstream proteins such as E-cadherin and PD-L1 in the alveolar carcinoma cell line A549. To model chronic changes in zinc homeostasis, A549 cells were cultured in media with different zinc contents. EGFR surface expression of unstimulated and stimulated A549 cells was determined by flow cytometry. EGFR phosphorylation as well as the protein expression of E-cadherin and PD-L1 were analyzed by Western blot. In our hands, chronic zinc deficiency led to increased EGFR surface expression, decreased E-cadherin protein expression and increased PD-L1 protein expression. Zinc supplementation decreased EGFR surface expression and PD-L1 protein expression. In summary, zinc-deficient A549 cells may display a more malignant phenotype. Thus, future clinical research should further focus on the possible benefits of restoring disturbed zinc homeostasis, especially in lung cancer patients.
Collapse
Affiliation(s)
| | | | - Lothar Rink
- Correspondence: (L.R.); (I.W.); Tel.: +49-241-808-0208 (L.R.); +49-241-808-0205 (I.W.)
| | - Inga Wessels
- Correspondence: (L.R.); (I.W.); Tel.: +49-241-808-0208 (L.R.); +49-241-808-0205 (I.W.)
| |
Collapse
|
4
|
Jiang Y, Zhan H, Zhang Y, Yang J, Liu M, Xu C, Fan X, Zhang J, Zhou Z, Shi X, Ramesh R, Li M. ZIP4 promotes non-small cell lung cancer metastasis by activating snail-N-cadherin signaling axis. Cancer Lett 2021; 521:71-81. [PMID: 34450198 DOI: 10.1016/j.canlet.2021.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most critical health problems worldwide, with high incidence and poor survival rate. A zinc importer ZIP4 has been implicated in the process of tumor growth and metastasis of many cancers. However, its exact role and the underlying mechanism in NSCLC remains to be elucidated. In the present study, we found that human ZIP4 was substantially overexpressed in NSCLC tissues and was correlated with poor overall survival (OS) and progression-free survival (PFS). Overexpression of ZIP4 promoted cell migration, invasion and metastasis both in vitro and in a mouse lung metastasis model. Silencing of ZIP4 attenuated migration, invasion and metastasis. Mechanistically, overexpression of ZIP4 increased the expression of Snail, Slug and N-cadherin while genetic inactivation of ZIP4 downregulated the expression of above-mentioned genes. Further analysis showed that transcriptional factor Snail which modulates N-cadherin was involved in the process of ZIP4-mediated NSCLC migration and invasion. We also demonstrated that ZIP4 positively correlates with the levels of Snail, Slug and N-cadherin in mice lung metastasis tumors. Together, these results suggest that ZIP4 acts as an important regulator of Snail-N-cadherin signaling axis in promoting NSCLC progression and may serve as a novel predictive marker and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hanxiang Zhan
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuqing Zhang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jingxuan Yang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mingyang Liu
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiao Fan
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhijun Zhou
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuhui Shi
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Davis DN, Strong MD, Chambers E, Hart MD, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W. A role for zinc transporter gene SLC39A12 in the nervous system and beyond. Gene 2021; 799:145824. [PMID: 34252531 DOI: 10.1016/j.gene.2021.145824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
The SLC39A12 gene encodes the zinc transporter protein ZIP12, which is expressed across many tissues and is highly abundant in the vertebrate nervous system. As a zinc transporter, ZIP12 functions to transport zinc across cellular membranes, including cellular zinc influx across the plasma membrane. Genome-wide association and exome sequencing studies have shown that brain susceptibility-weighted magnetic resonance imaging (MRI) intensity is associated with ZIP12 polymorphisms and rare mutations. ZIP12 is required for neural tube closure and embryonic development in Xenopus tropicalis. Frog embryos depleted of ZIP12 by antisense morpholinos develop an anterior neural tube defect and lack viability. ZIP12 is also necessary for neurite outgrowth and mitochondrial function in mouse neural cells. ZIP12 mRNA is increased in brain regions of schizophrenic patients. Outside of the nervous system, hypoxia induces ZIP12 expression in multiple mammalian species, including humans, which leads to endothelial and smooth muscle thickening in the lung and contributes towards pulmonary hypertension. Other studies have associated ZIP12 with other diseases such as cancer. Given that ZIP12 is highly expressed in the brain and that susceptibility-weighted MRI is associated with brain metal content, ZIP12 may affect neurological diseases and psychiatric illnesses such as Parkinson's disease, Alzheimer's disease, and schizophrenia. Furthermore, the induction of ZIP12 and resultant zinc uptake under pathophysiological conditions may be a critical component of disease pathology, such as in pulmonary hypertension. Drug compounds that bind metals like zinc may be able to treat diseases associated with impaired zinc homeostasis and altered ZIP12 function.
Collapse
Affiliation(s)
- Danielle N Davis
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Morgan D Strong
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Emily Chambers
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Matthew D Hart
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Ahmed Bettaieb
- University of Tennessee, Department of Nutrition, Knoxville, TN 37996, USA
| | - Stephen L Clarke
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Barbara J Stoecker
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Dingbo Lin
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Winyoo Chowanadisai
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA.
| |
Collapse
|
6
|
Chen W, Mou KY, Solomon P, Aggarwal R, Leung KK, Wells JA. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2018861118. [PMID: 33483421 PMCID: PMC7848737 DOI: 10.1073/pnas.2018861118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA 91320
| | - Kurt Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA 94158
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
7
|
ZIP4 Is a Novel Cancer Stem Cell Marker in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123692. [PMID: 33316986 PMCID: PMC7764492 DOI: 10.3390/cancers12123692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is functionally involved in cancer stem cell (CSC)-related cellular activities in HGSOC. Here, we identified ZIP4 as a novel CSC marker in HGSOC. Fluorescence-activated cell sorter (FACS)-sorted ZIP4+, but not ZIP4- cells, formed spheroids and displayed self-renewing and differentiation abilities. Over-expression of ZIP4 conferred drug resistance properties in vitro. ZIP4+, but not ZIP4- cells, formed tumors/ascites in vivo. We conducted limiting dilution experiments and showed that 100-200 ZIP4+ cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Genetic compensation studies showed that NOTCH3, but not NOTCH1, was a critical downstream mediator of ZIP4. Furthermore, NOTCH3, but not NOTCH1, physically bound to ZIP4. Collectively, our data suggest that ZIP4 is a novel CSC marker and the new ZIP4-NOTCH3 axis represents important therapeutic targets in HGSOC.
Collapse
|
8
|
Hu J. Toward unzipping the ZIP metal transporters: structure, evolution, and implications on drug discovery against cancer. FEBS J 2020; 288:5805-5825. [PMID: 33296542 DOI: 10.1111/febs.15658] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The Zrt-/Irt-like protein (ZIP) family consists of divalent metal transporters, ubiquitous in all kingdoms of life. Since the discovery of the first ZIPs in the 1990s, the ZIP family has been expanding to contain tens of thousands of members playing key roles in uptake and homeostasis of life-essential trace elements, primarily zinc, iron and manganese. Some family members are also responsible for toxic metal (particularly cadmium) absorption and distribution. Their central roles in trace element biology, and implications in many human diseases, including cancers, have elicited interest across multiple disciplines for potential applications in biomedicine, agriculture and environmental protection. In this review and perspective, selected areas under rapid progress in the last several years, including structural biology, evolution, and drug discovery against cancers, are summarised and commented. Future research to address the most prominent issues associated with transport and regulation mechanisms are also discussed.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Growth Modulatory Role of Zinc in Prostate Cancer and Application to Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21082991. [PMID: 32340289 PMCID: PMC7216164 DOI: 10.3390/ijms21082991] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability. Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer development. The underlying mechanism of this loss is not clearly understood. The knowledge that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics could be an effective approach for cancer prevention and treatment, although challenges remain. This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer. The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in detail in an effort to understand the role of zinc in prostate cancer.
Collapse
|
10
|
Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020; 12:E762. [PMID: 32183116 PMCID: PMC7146416 DOI: 10.3390/nu12030762] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc absorption in the small intestine is one of the main mechanisms regulating the systemic homeostasis of this essential trace element. This review summarizes the key aspects of human zinc homeostasis and distribution. In particular, current knowledge on human intestinal zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed. Their investigation is increasingly performed using in vitro cellular intestinal models, which are continually being refined and keep gaining importance for studying zinc uptake and transport via the human intestinal epithelium. The vast majority of these models is based on the human intestinal cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis is placed on summarizing previous applications as well as key results of these models, comparing their results to data obtained in humans, and discussing their advantages and limitations.
Collapse
Affiliation(s)
- Maria Maares
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| |
Collapse
|
11
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
12
|
Jin H, Liu P, Wu Y, Meng X, Wu M, Han J, Tan X. Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci 2018; 109:2946-2956. [PMID: 30007115 PMCID: PMC6125444 DOI: 10.1111/cas.13737] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers with rapid disease progression. Further elucidation of its underlying molecular mechanisms and novel biomarkers for early detection is necessary. Exosomes are small extracellular vesicles that are released by multiple cell types acting as message carriers during intercellular communication and are promising biomarker candidates. However, the role of pancreatic cancer cell‐derived exosomes in cancer progression and the application of these vesicles as novel diagnostic biomarkers have not been fully studied. In this study, we found that PC‐1.0 (a highly malignant pancreatic cell line) cell‐derived exosomes could be taken up by and enhance PC‐1 (a moderately malignant pancreatic cell line) cell proliferation, migration and invasion abilities. We identified ZIP4 as the most upregulated exosomal protein in PC‐1.0 cells from our proteomic analysis. In vitro and in vivo (a subcutaneous BALB/c nude mouse model) studies showed that exosomal ZIP4 can significantly promote pancreatic cancer growth. Using clinical blood samples, we compared the diagnostic values of serum exosomal ZIP4 levels between malignant pancreatic cancer patients (n = 24) and benign pancreatic disease patients (n = 32, AUC = .89), and between biliary disease patients (n = 32, AUC = .8112) and healthy controls (n = 46, AUC = .8931). In conclusion, exosomal ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Haoyi Jin
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Liu
- Thyroid and Pancreatic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangli Meng
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengwei Wu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahong Han
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Tan
- Thyroid and Pancreatic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Mei Z, Yan P, Wang Y, Liu S, He F. Knockdown of zinc transporter ZIP8 expression inhibits neuroblastoma progression and metastasis in vitro. Mol Med Rep 2018; 18:477-485. [PMID: 29749445 DOI: 10.3892/mmr.2018.8944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 06/30/2017] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is one of the leading causes of cancer‑associated mortality worldwide, particularly in children, partially due to the absence of effective therapeutic targets and diagnostic biomarkers. Therefore, novel molecular targets are critical to the development of therapeutic approaches for neuroblastoma. In the present study, the functions of zinc transporter ZIP8 (Zip8), a member of the zinc transporting protein family, were investigated as novel molecular targets in neuroblastoma cancer cells. The proliferation rates of neuroblastoma cancer cells were significantly decreased when Zip8 was knocked down by lentiviral‑mediated RNA interference. Study of the molecular mechanism suggested that Zip8 modulated the expression of key genes involved in the nuclear factor‑κB signaling pathway. Furthermore, Zip8 depletion suppressed the migratory potential of neuroblastoma cancer cells by reducing the expression levels of matrix metalloproteinases. In conclusion, the results of the present study suggested that Zip8 was an important regulator of neuroblastoma cell proliferation and migration, indicating that Zip8 may be a potential anticancer therapeutic target and a promising diagnostic biomarker for human neuroblastoma.
Collapse
Affiliation(s)
- Zhengrong Mei
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Pengke Yan
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Ying Wang
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shaozhi Liu
- Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Fang He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|