1
|
Chen JC, Yeh KT, Lin YM, Cheng YW. Mutations of the Cx43 Gene in Non-Small Cell Lung Cancer: Association with Aberrant Localization of Cx43 Protein Expression and Tumor Progression. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1641. [PMID: 39459427 PMCID: PMC11509097 DOI: 10.3390/medicina60101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: The Connexin43 (Cx43) gene is a suspected tumor suppressor gene, as re-expressed wild-type Cx43 genes reduce the malignancy potential of tumor cells. However, the role of Cx43 gene expression in human lung tumorigenesis remains unclear. Materials and Methods: Tumor tissues from 165 primary lung cancer patients were collected to study Cx43 protein expression and gene mutations using immunohistochemistry and direct DNA sequencing. In addition, Cx43 genes with or without mutations were transfected to CL-3 human lung cancer cells to confirm the function of these mutant forms of the Cx43 gene. Results: Aberrant localization of Cx43 protein in the nucleus and cytoplasm of tumor cells was detected in 14 out of 165 non-small cell lung cancer (NSCLC) patients. Mutations in the Cx43 gene were also found in patients with aberrant Cx43 localization, and transfection of these mutant genes into lung cancer cells enhanced their proliferation. Conclusions: To our knowledge, this is the first study to demonstrate Cx43 gene mutations in human lung neoplasm, supporting the hypothesis that Cx43 may function as a tumor suppressor in some lung cancer patients. Additionally, the findings suggest an association between aberrant localization of Cx43 protein expression and tumor progression.
Collapse
Affiliation(s)
- Jung-Chien Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Department of General Surgery, Minimally invasive surgical center, Min-Sheng General Hospital, Taoyuan 330, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ya-Wen Cheng
- Department of R&D, Stem Biotechnology Inc., 12F-2, Building F, No. 3, Park Street, Nangang District, Taipei 115, Taiwan
| |
Collapse
|
2
|
Della Morte E, Giannasi C, Valenza A, Cadelano F, Aldegheri A, Zagra L, Niada S, Brini AT. Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders. Int J Mol Sci 2024; 25:8547. [PMID: 39126115 PMCID: PMC11313680 DOI: 10.3390/ijms25158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.
Collapse
Affiliation(s)
- Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Chiara Giannasi
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alice Valenza
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Francesca Cadelano
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alessandro Aldegheri
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Anna Teresa Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| |
Collapse
|
3
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Ma L, Wang W, Xu G, Li H, Liu F, Shao H, Zhang X, Ma Y, Li G, Li H, Gao S, Ling P. Connexin 43 in the function and homeostasis of osteocytes: a narrative review. ANNALS OF JOINT 2023; 9:10. [PMID: 38529291 PMCID: PMC10929443 DOI: 10.21037/aoj-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixuan Xu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Liu
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Huarong Shao
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xiuhua Zhang
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yuxia Ma
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuzhong Gao
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixue Ling
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
5
|
Guo D, Kan S, Zhang L, Niu Z, Duan M, Liu Y, Pu X, Bai M, Pi C, Zhang D, Zhou C, Xie J. IL-10 enhances cell-to-cell communication in chondrocytes via STAT3 signaling pathway. Cell Signal 2023; 105:110605. [PMID: 36681291 DOI: 10.1016/j.cellsig.2023.110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Gap junction intercellular communication (GJIC) allows the transfer of material, message and energy between cells, which influences cell behaviors including cell proliferation, migration, differentiation and apoptosis and determines cell fate. Interleukin-10 (IL-10), a versatile cytokine, attracts more and more attention in the cartilage pathology such as osteoarthritis (OA) due to its potential in anti-inflammation and wound repair. However, whether IL-10 can mediate GJIC in chondrocytes remains elusive. In the current study, we aimed to explore the role of IL-10 on GJIC and its underlying mechanism. We found that IL-10 can promote GJIC in living chondrocytes. IL-10-enhanced GJIC in chondrocytes was dependent on the up-regulation of connexin 43 (Cx43). Knockdown experiment based on siRNA interference then confirmed that IL-10-enhanced GJIC required participation of IL-10 receptor 1 (IL-10R1). IL-10 activated signal transducer and activator of transcription 3 (STAT3) signaling and promoted the nuclear accumulation of p-STAT3 through IL-10 receptor 1. Inhibitor experiment further confirmed the importance of STAT3 signaling in IL-10-mediated GJIC. Taking together, our results provided a thorough process of IL-10-modulated cell-to-cell communication in chondrocytes and established a bridge between inflammatory factor, IL-10, and GJIC, which can increase our understanding about the physiology and pathology of cartilage.
Collapse
Affiliation(s)
- Daimo Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Tuerlings M, Janssen GMC, Boone I, van Hoolwerff M, Rodriguez Ruiz A, Houtman E, Suchiman HED, van der Wal RJP, Nelissen RGHH, Coutinho de Almeida R, van Veelen PA, Ramos YFM, Meulenbelt I. WWP2 confers risk to osteoarthritis by affecting cartilage matrix deposition via hypoxia associated genes. Osteoarthritis Cartilage 2023; 31:39-48. [PMID: 36208715 DOI: 10.1016/j.joca.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the co-expression network of the osteoarthritis (OA) risk gene WWP2 in articular cartilage and study cartilage characteristics when mimicking the effect of OA risk allele rs1052429-A on WWP2 expression in a human 3D in vitro model of cartilage. METHOD Co-expression behavior of WWP2 with genes expressed in lesioned OA articular cartilage (N = 35 samples) was explored. By applying lentiviral particle mediated WWP2 upregulation in 3D in vitro pellet cultures of human primary chondrocytes (N = 8 donors) the effects of upregulation on cartilage matrix deposition was evaluated. Finally, we transfected primary chondrocytes with miR-140 mimics to evaluate whether miR-140 and WWP2 are involved in similar pathways. RESULTS Upon performing Spearman correlations in lesioned OA cartilage, 98 highly correlating genes (|ρ| > 0.7) were identified. Among these genes, we identified GJA1, GDF10, STC2, WDR1, and WNK4. Subsequent upregulation of WWP2 on 3D chondrocyte pellet cultures resulted in a decreased expression of COL2A1 and ACAN and an increase in EPAS1 expression. Additionally, we observed a decreased expression of GDF10, STC2, and GJA1. Proteomics analysis identified 42 proteins being differentially expressed with WWP2 upregulation, which were enriched for ubiquitin conjugating enzyme activity. Finally, upregulation of miR-140 in 2D chondrocytes resulted in significant upregulation of WWP2 and WDR1. CONCLUSIONS Mimicking the effect of OA risk allele rs1052429-A on WWP2 expression initiates detrimental processes in the cartilage shown by a response in hypoxia associated genes EPAS1, GDF10, and GJA1 and a decrease in anabolic markers, COL2A1 and ACAN.
Collapse
Affiliation(s)
- M Tuerlings
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - I Boone
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M van Hoolwerff
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - A Rodriguez Ruiz
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - E Houtman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - H E D Suchiman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - R J P van der Wal
- Dept. Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands.
| | - R G H H Nelissen
- Dept. Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands.
| | - R Coutinho de Almeida
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Y F M Ramos
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - I Meulenbelt
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
An S, Zheng S, Cai Z, Chen S, Wang C, Li Y, Deng Z. Connexin43 in Musculoskeletal System: New Targets for Development and Disease Progression. Aging Dis 2022; 13:1715-1732. [PMID: 36465186 PMCID: PMC9662276 DOI: 10.14336/ad.2022.0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 03/16/2025] Open
Abstract
Connexin43, which is the most highly expressed connexin subtype in the musculoskeletal system, exists in a variety of bone cells, synovial tissue, and cartilage tissue. Connexin43 has been suggested to be a key regulator of bone homeostasis. Studies have shown aberrant Connexin43 expression in musculoskeletal disorders, such as osteoporosis, osteoarthritis, and rheumatoid arthritis. During cellular activities, Connexin43 can participate in the formation of functionally specific gap junctions and hemichannels and can exert independent cellular regulatory and signaling functions through special C-termini. The critical role of Connexin43 in physiological development and disease progression has been gradually revealed. In this article, the function of Connexin43 in musculoskeletal tissues is summarized, revealing the potential role of Connexin43 as a key target in the treatment of related bone and muscle disorders and the need for further discovery.
Collapse
Affiliation(s)
- Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China.
| | - Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Chen Wang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Casanellas I, Lagunas A, Vida Y, Pérez-Inestrosa E, Rodríguez-Pereira C, Magalhaes J, Andrades JA, Becerra J, Samitier J. Nanoscale ligand density modulates gap junction intercellular communication of cell condensates during chondrogenesis. Nanomedicine (Lond) 2022; 17:775-791. [PMID: 35642556 DOI: 10.2217/nnm-2021-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Materials & methods: Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. In vitro chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns. Cohesion and GJIC were evaluated in cell condensates. Results: Mechanical stability and GJIC are enhanced by a nanopattern configuration in which 90% of the surface area presents adhesion sites separated less than 70 nm, thus providing an onset for cell signaling. Conclusion: Cell-matrix adhesions regulate GJIC of mesenchymal cell condensates during in vitro chondrogenesis from a threshold configuration at the nanoscale.
Collapse
Affiliation(s)
- Ignasi Casanellas
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science &Technology (BIST). c/Baldiri Reixac, 10-12, Barcelona, 08028, Spain.,Department of Electronics & Biomedical Engineering, University of Barcelona (UB). c/Martí i Franquès, 1, 08028, Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science &Technology (BIST). c/Baldiri Reixac, 10-12, Barcelona, 08028, Spain.,Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Yolanda Vida
- Universidad de Málaga-IBIMA, Dpto. Química Orgánica. Campus de Teatinos s/n, Málaga, 29071, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain
| | - Ezequiel Pérez-Inestrosa
- Universidad de Málaga-IBIMA, Dpto. Química Orgánica. Campus de Teatinos s/n, Málaga, 29071, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain
| | - Cristina Rodríguez-Pereira
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC). c/Xubias de Arriba, 84, A Coruña, 15006, Spain
| | - Joana Magalhaes
- Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.,Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC). c/Xubias de Arriba, 84, A Coruña, 15006, Spain
| | - José A Andrades
- Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain.,Department of Cell Biology, Genetics & Physiology, Universidad de Málaga (UMA), Instituto de Investigación Biomédica de Málaga (IBIMA). Av. Cervantes, 2, Málaga, 29071, Spain
| | - José Becerra
- Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND. Parque Tecnológico de Andalucía, c/Severo Ochoa 35, C,ampanillas, Málaga, 29590, Spain.,Department of Cell Biology, Genetics & Physiology, Universidad de Málaga (UMA), Instituto de Investigación Biomédica de Málaga (IBIMA). Av. Cervantes, 2, Málaga, 29071, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science &Technology (BIST). c/Baldiri Reixac, 10-12, Barcelona, 08028, Spain.,Department of Electronics & Biomedical Engineering, University of Barcelona (UB). c/Martí i Franquès, 1, 08028, Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering,Biomaterials & Nanomedicine (CIBER-BBN). Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| |
Collapse
|
9
|
Dynamics of Connexin 43 Down Modulation in Human Articular Chondrocytes Stimulated by Tumor Necrosis Factor Alpha. Int J Mol Sci 2022; 23:ijms23105575. [PMID: 35628386 PMCID: PMC9142923 DOI: 10.3390/ijms23105575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) exerts pivotal functions in articular chondrocytes (CH). It is involved in the communication among cells and between cells and the extracellular environment, and it contributes to the maintenance of the correct cell phenotype. The pro-inflammatory cytokine TNFα induces a reduction in Cx43 expression in CH. Here, we studied the dynamics of this decrease in expression. We evaluated Cx43 protein and gene expression and the involvement of C-terminal domain (CTD) cleavage and proteasomal degradation. Treatments able to counteract TNFα action were also examined, together with Gap Junction (GJ) functionality and Cx43 localization. TNFα induced a significant reduction in Cx43 expression already at day 1, and the down modulation reached a peak at day 3 (−46%). The decrease was linked to neither gene expression modulation nor CTD cleavage. Differently, the proteasome inhibitor MG132 reverted TNFα effect, indicating the involvement of proteasomal degradation in Cx43 reduction. In addition, the co-treatment with the anabolic factor TGF-β1 restored Cx43 levels. Cx43 decrease occurred both at the membrane level, where it partially influenced GJ communication, and in the nucleus. In conclusion, TNFα induced a rapid and lasting reduction in Cx43 expression mostly via the proteasome. The down modulation could be reverted by cartilage-protective factors such as MG132 and TGF-β1. These findings suggest a possible involvement of Cx43 perturbation during joint inflammation.
Collapse
|
10
|
Larrañaga-Vera A, Marco-Bonilla M, Largo R, Herrero-Beaumont G, Mediero A, Cronstein B. ATP transporters in the joints. Purinergic Signal 2021; 17:591-605. [PMID: 34392490 PMCID: PMC8677878 DOI: 10.1007/s11302-021-09810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracellularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited. Both form intercellular channels, known as gap junctions, that facilitate the transport of various small molecules between cells and mediate cell-cell communication. Connexins and pannexins also form pores, or hemichannels, that are permeable to certain molecules, including ATP. All joint tissues express one or more connexins and pannexins, and their expression is altered in some pathological conditions, such as osteoarthritis (OA) and rheumatoid arthritis (RA), indicating that they may be involved in the onset and progression of these pathologies. The aging of the global population, along with increases in the prevalence of obesity and metabolic dysfunction, is associated with a rising frequency of joint diseases along with the increased costs and burden of related illness. The modulation of connexins and pannexins represents an attractive therapeutic target in joint disease, but their complex regulation, their combination of gap-junction-dependent and -independent functions, and their interplay between gap junction and hemichannel formation are not yet fully elucidated. In this review, we try to shed light on the regulation of these proteins and their roles in ATP transport to the extracellular space in the context of joint disease, and specifically OA and RA.
Collapse
Affiliation(s)
- Ane Larrañaga-Vera
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| | - Miguel Marco-Bonilla
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain.
| | - Bruce Cronstein
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
11
|
Giannasi C, Niada S, Magagnotti C, Ragni E, Andolfo A, Brini AT. Comparison of two ASC-derived therapeutics in an in vitro OA model: secretome versus extracellular vesicles. Stem Cell Res Ther 2020; 11:521. [PMID: 33272318 PMCID: PMC7711257 DOI: 10.1186/s13287-020-02035-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the last years, several clinical trials have proved the safety and efficacy of adipose-derived stem/stromal cells (ASC) in contrasting osteoarthritis (OA). Since ASC act mainly through paracrine mechanisms, their secretome (conditioned medium, CM) represents a promising therapeutic alternative. ASC-CM is a complex cocktail of proteins, nucleic acids, and lipids released as soluble factors and/or conveyed into extracellular vesicles (EV). Here, we investigate its therapeutic potential in an in vitro model of OA. METHODS Human articular chondrocytes (CH) were induced towards an OA phenotype by 10 ng/ml TNFα in the presence of either ASC-CM or EV, both deriving from 5 × 105 cells, to evaluate the effect on hypertrophic, catabolic, and inflammatory markers. RESULTS Given the same number of donor cells, our data reveal a higher therapeutic potential of ASC-CM compared to EV alone that was confirmed by its enrichment in chondroprotective factors among which TIMP-1 and -2 stand out. In details, only ASC-CM significantly decreased MMP activity (22% and 29% after 3 and 6 days) and PGE2 expression (up to 40% at day 6) boosted by the inflammatory cytokine. Conversely, both treatments down-modulated of ~ 30% the hypertrophic marker COL10A1. CONCLUSIONS These biological and molecular evidences of ASC-CM beneficial action on CH with an induced OA phenotype may lay the basis for its future clinical translation as a cell-free therapeutic in the management of OA.
Collapse
Affiliation(s)
- Chiara Giannasi
- Laboratorio di Applicazioni Biotecnologiche, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| | - Stefania Niada
- Laboratorio di Applicazioni Biotecnologiche, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Ragni
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Teresa Brini
- Laboratorio di Applicazioni Biotecnologiche, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY) 2020; 12:15882-15905. [PMID: 32745074 PMCID: PMC7485729 DOI: 10.18632/aging.103801] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Agustín Sánchez-Temprano
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Adrián Varela-Vázquez
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Carlos Luis Paíno
- Neurobiology-Research Service, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Antonio Casado-Díaz
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Calañas Continente
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Virginia Mato
- Centre for Medical Informatics and Radiological Diagnosis, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| |
Collapse
|
13
|
Cai L, Liu W, Cui Y, Liu Y, Du W, Zheng L, Pi C, Zhang D, Xie J, Zhou X. Biomaterial Stiffness Guides Cross-talk between Chondrocytes: Implications for a Novel Cellular Response in Cartilage Tissue Engineering. ACS Biomater Sci Eng 2020; 6:4476-4489. [PMID: 33455172 DOI: 10.1021/acsbiomaterials.0c00367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exquisite cartilage architecture maintains an orderly dynamic equilibrium as a result of the interplay between chondrocyte functions and the unique extracellular matrix (ECM) microenvironment. Numerous studies have demonstrated that extracellular cues, including topological, mechanical, and biochemical properties of the underlying substrates, dictate the chondrocyte behaviors. Consequently, developing advanced biomaterials with the desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot in bioengineering. However, how the substrate stiffness influences the intercellular communication among chondrocytes is still poorly reported. We used polydimethylsiloxane with varied stiffnesses as a cell culture substrate to elucidate a novel cell-to-cell communication in a collective of chondrocytes. First, morphological images collected using scanning electron microscopy revealed that the tunable substrate stiffnesses directed the changes in intercellular links among chondrocytes. Next, fibronectin, which played a vital role in the connection of ECM components or linkage of ECM to chondrocytes, was shown to be gathered along cell-cell contact areas and was changed with the tunable substrate stiffnesses. Furthermore, transmembrane junctional proteins including connexin 43 (Cx43) and pannexin 1 (Panx1), which are responsible for gap junction formation in cell-to-cell communication, were mediated by the tunable substrate stiffnesses. Finally, through a scrape loading/dye transfer assay, we revealed cell-to-cell communication changes in a living chondrocyte population in response to the tunable substrate stiffnesses via cell-to-cell fluorescent molecule transport. Taken together, this novel cell-to-cell communication regulated by biomaterial stiffness could help us to increase the understanding of cell behaviors under biomechanical control and may ultimately lead to refining cell-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Ruez R, Dubrot J, Zoso A, Bacchetta M, Molica F, Hugues S, Kwak BR, Chanson M. Dendritic Cell Migration Toward CCL21 Gradient Requires Functional Cx43. Front Physiol 2018; 9:288. [PMID: 29636699 PMCID: PMC5880903 DOI: 10.3389/fphys.2018.00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) travel through lymphatic vessels to transport antigens and present them to T cells in lymph nodes. DCs move directionally toward lymphatics by virtue of their CCR7 and a CCL21 chemotactic gradient. We evaluated in vivo and in bone marrow-derived dendritic cells (BMDCs) whether the gap junction protein Cx43 contributes to CCL21/CCR7-dependent DC migration in wild-type (WT) mice, heterozygous (Cx43+/−) mice and mice expressing a truncated form of Cx43 lacking its regulatory C-terminus (Cx43K258/−). In a model of flank skin inflammation, we found that the recruitment of myeloid DCs (mDCs) to skin draining lymph nodes was reduced in Cx43K258/− mice as compared to WT and Cx43+/− mice. In addition, the migration of Cx43K258/− BMDCs toward CCL21 was abolished in an in vitro chemotactic assay while it was only reduced in Cx43+/− cells. Both mutant genotypes showed defects in the directionality of BMDC migration as compared to WT BMDCs. No difference was found between the three populations of BMDCs in terms of expression of surface markers (CD11c, CD86, CD80, CD40, MHC-II, and CCR7) after differentiation and TLR activation. Finally, examination of the CCR7-induced signaling pathways in BMDCs revealed normal receptor-induced mobilization of intracellular Ca2+. These results demonstrate that full expression of an intact Cx43 is critical to the directionality and rate of DC migration, which may be amenable to regulation of the immune response.
Collapse
Affiliation(s)
- Richard Ruez
- Department of Pediatrics, Cell Physiology, and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alice Zoso
- Department of Pediatrics, Cell Physiology, and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Marc Bacchetta
- Department of Pediatrics, Cell Physiology, and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Department of Pediatrics, Cell Physiology, and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, Collado M, Mayan MD. Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Res Rev 2018; 42:56-71. [PMID: 29258883 DOI: 10.1016/j.arr.2017.12.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/20/2017] [Accepted: 12/15/2017] [Indexed: 01/15/2023]
Abstract
Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Jesus Loureiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | | | - Jose R Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
16
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|
17
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
18
|
Stout RF, Spray DC. Cysteine residues in the cytoplasmic carboxy terminus of connexins dictate gap junction plaque stability. Mol Biol Cell 2017; 28:2757-2764. [PMID: 28835376 PMCID: PMC5638580 DOI: 10.1091/mbc.e17-03-0206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
Cysteine residues within the cytoplasmic carboxyl-terminus of gap junction–forming proteins are required to stabilize gap junction plaque organization. The stability of gap junction plaque organization can be modified. Gap junction stability may provide a stable supramolecular platform for modulation of gap junction functions. Gap junctions are cellular contact sites composed of clustered connexin transmembrane proteins that act in dual capacities as channels for direct intercellular exchange of small molecules and as structural adhesion complexes known as gap junction nexuses. Depending on the connexin isoform, the cluster of channels (the gap junction plaque) can be stably or fluidly arranged. Here we used confocal microscopy and mutational analysis to identify the residues within the connexin proteins that determine gap junction plaque stability. We found that stability is altered by changing redox balance using a reducing agent—indicating gap junction nexus stability is modifiable. Stability of the arrangement of connexins is thought to regulate intercellular communication by establishing an ordered supramolecular platform. By identifying the residues that establish plaque stability, these studies lay the groundwork for exploration of mechanisms by which gap junction nexus stability modulates intercellular communication.
Collapse
Affiliation(s)
- Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000 .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
19
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|