1
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
2
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Riazi-Tabrizi N, Khalaj-Kondori M, Safaei S, Amini M, Hassanian H, Maghsoudi M, Hasani S, Baradaran B. NRF2 Suppression Enhances the Susceptibility of Pancreatic Cancer Cells, Miapaca-2 to Paclitaxel. Mol Biotechnol 2024; 66:2441-2454. [PMID: 37740817 DOI: 10.1007/s12033-023-00872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
Pancreatic cancer is one of the most deadly diseases, with a very high metastasis and low survival rate. High levels of NRF2 have been detected in numerous malignancies, including head, neck, lung, and colon cancers, promoting the expansion and survival of cancer cells and chemical resistance to stressful conditions and affecting the response to treatment. To evaluate the possibility that modulation of NRF2 expression could be effective in treating pancreatic cancer cells, we explored the effect of knockdown of the NRF2 gene by NRF2-specific siRNA and its influence in combination with paclitaxel on pancreatic cancer cells. Miapaca-2 cell line, due to the high expression of the NRF2 gene, was selected for this study. Then, Miapaca-2 cells in different groups were treated with NRF2 siRNA and paclitaxel separately and in combination. After that, cell viability was measured by MTT assay and apoptosis induction by Annexin V-FITC/PI staining test. Cell cycle and autophagy were examined by flow cytometry, and cell migration was assessed by wound-healing assay. Finally, the expression of genes involved in apoptosis, Bax, Caspase-3, Caspase-9, and genes related to migration pathway, MMP-2, and MMP-9 in different groups were measured using qRT-PCR. Combined use of NRF2-specific siRNA with paclitaxel significantly reduced NRF2 gene expression in pancreatic cancer cells. NRF2 siRNA transfection significantly reduced cell viability. In addition, paclitaxel combination therapy with NRF2 siRNA strengthens the anti-tumor effects, such as inhibiting cell migration and provoking apoptosis, and autophagy and the cell cycle arrest in the G2 phase. NRF2 suppression augmented the expression of Bax, Caspase-3, and Caspase-9 genes and lowered the expression of Bcl-2, MMP-2, and MMP-9 genes, which play crucial roles in the pathways of apoptosis and cell migration, respectively. NRF2 siRNA enhances the susceptibility of Miapaca-2 cells to paclitaxel in pancreatic cancer cells. Thereby, suppressing NRF2 in combination with paclitaxel can be a new and efficacious treatment approach in treating pancreatic cancer.
Collapse
Affiliation(s)
- Negin Riazi-Tabrizi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohadeseh Maghsoudi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shima Hasani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Ajuwon OR, Nsole-Biteghe FA, Ndong JD, Davids LM, Ajiboye BO, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke BO, Ntwasa M, Lebelo SL, Ayeleso AO. Nrf2-Mediated Antioxidant Response and Drug Efflux Transporters Upregulation as Possible Mechanisms of Resistance in Photodynamic Therapy of Cancers. Onco Targets Ther 2024; 17:605-627. [PMID: 39131905 PMCID: PMC11313505 DOI: 10.2147/ott.s457749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Photodynamic therapy (PDT) is a groundbreaking approach involving the induction of cytotoxic reactive oxygen species (ROS) within tumors through visible light activation of photosensitizers (PS) in the presence of molecular oxygen. This innovative therapy has demonstrated success in treating various cancers. While PDT proves highly effective in most solid tumors, there are indications that certain cancers exhibit resistance, and some initially responsive cancers may develop intrinsic or acquired resistance to PDT. The molecular mechanisms underlying this resistance are not fully understood. Recent evidence suggests that, akin to other traditional cancer treatments, the activation of survival pathways, such as the KEAP1/Nrf2 signaling pathway, is emerging as an important mechanism of post-PDT resistance in many cancers. This article explores the dual role of Nrf2, highlighting evidence linking aberrant Nrf2 expression to treatment resistance across a range of cancers. Additionally, it delves into the specific role of Nrf2 in the context of photodynamic therapy for cancers, emphasizing evidence that suggests Nrf2-mediated upregulation of antioxidant responses and induction of drug efflux transporters are potential mechanisms of resistance to PDT in diverse cancer types. Therefore, understanding the specific role(s) of Nrf2 in PDT resistance may pave the way for the development of more effective cancer treatments using PDT.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | | | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Ekiti-State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, Osun State, Nigeria
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
- Biochemistry Programme, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
5
|
Benzo Y, Prada JG, Dattilo MA, Bigi MM, Castillo AF, Mori Sequeiros Garcia MM, Poderoso C, Maloberti PM. Acyl-CoA synthetase 4 modulates mitochondrial function in breast cancer cells. Heliyon 2024; 10:e30639. [PMID: 38756582 PMCID: PMC11096749 DOI: 10.1016/j.heliyon.2024.e30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Mitochondria are dynamic organelles that respond to cellular stress through changes in global mass, interconnection, and subcellular location. As mitochondria play an important role in tumor development and progression, alterations in energy metabolism allow tumor cells to survive and spread even in challenging conditions. Alterations in mitochondrial bioenergetics have been recently proposed as a hallmark of cancer, and positive regulation of lipid metabolism constitutes one of the most common metabolic changes observed in tumor cells. Acyl-CoA synthetase 4 (ACSL4) is an enzyme catalyzing the activation of long chain polyunsaturated fatty acids with a strong substrate preference for arachidonic acid (AA). High ACSL4 expression has been related to aggressive cancer phenotypes, including breast cancer, and its overexpression has been shown to positively regulate the mammalian Target of Rapamycin (mTOR) pathway, involved in the regulation of mitochondrial metabolism genes. However, little is known about the role of ACSL4 in the regulation of mitochondrial function and metabolism in cancer cells. In this context, our objective was to study whether mitochondrial function and metabolism, processes usually altered in tumors, are modulated by ACSL4 in breast cancer cells. Using ACSL4 overexpression in MCF-7 cells, we demonstrate that this enzyme can increase the mRNA and protein levels of essential mitochondrial regulatory proteins such as nuclear respiratory factor 1 (NRF-1), voltage-dependent anion channel 1 (VDAC1) and respiratory chain Complex III. Furthermore, respiratory parameters analysis revealed an increase in oxygen consumption rate (OCR) and in spare respiratory capacity (SRC), among others. ACSL4 knockdown in MDA-MB-231 cells led to the decrease in OCR and in SCR, supporting the role of ACSL4 in the regulation of mitochondrial bioenergetics. Moreover, ACSL4 overexpression induced an increase in glycolytic function, in keeping with an increase in mitochondrial respiratory activity. Finally, there was a decrease in mitochondrial mass detected in cells that overexpressed ACSL4, while the knockdown of ACSL4 expression in MDA-MB-231 cells showed the opposite effect. Altogether, these results unveil the role of ACSL4 in mitochondrial function and metabolism and expand the knowledge of ACSL4 participation in pathological processes such as breast cancer.
Collapse
Affiliation(s)
- Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G. Prada
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Melina A. Dattilo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Bigi
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana F. Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula M. Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
6
|
Bae T, Hallis SP, Kwak MK. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med 2024; 56:501-514. [PMID: 38424190 PMCID: PMC10985007 DOI: 10.1038/s12276-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Oxygen is crucial for life and acts as the final electron acceptor in mitochondrial energy production. Cells adapt to varying oxygen levels through intricate response systems. Hypoxia-inducible factors (HIFs), including HIF-1α and HIF-2α, orchestrate the cellular hypoxic response, activating genes to increase the oxygen supply and reduce expenditure. Under conditions of excess oxygen and resulting oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2) activates hundreds of genes for oxidant removal and adaptive cell survival. Hypoxia and oxidative stress are core hallmarks of solid tumors and activated HIFs and NRF2 play pivotal roles in tumor growth and progression. The complex interplay between hypoxia and oxidative stress within the tumor microenvironment adds another layer of intricacy to the HIF and NRF2 signaling systems. This review aimed to elucidate the dynamic changes and functions of the HIF and NRF2 signaling pathways in response to conditions of hypoxia and oxidative stress, emphasizing their implications within the tumor milieu. Additionally, this review explored the elaborate interplay between HIFs and NRF2, providing insights into the significance of these interactions for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Taegeun Bae
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
| |
Collapse
|
7
|
Engin AB, Engin A. Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:821-850. [PMID: 39287873 DOI: 10.1007/978-3-031-63657-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
8
|
Gjorgieva Ackova D, Maksimova V, Smilkov K, Buttari B, Arese M, Saso L. Alkaloids as Natural NRF2 Inhibitors: Chemoprevention and Cytotoxic Action in Cancer. Pharmaceuticals (Basel) 2023; 16:850. [PMID: 37375797 DOI: 10.3390/ph16060850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Being a controller of cytoprotective actions, inflammation, and mitochondrial function through participating in the regulation of multiple genes in response to stress-inducing endogenous or exogenous stressors, the transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is considered the main cellular defense mechanism to maintain redox balance at cellular and tissue level. While a transient activation of NRF2 protects normal cells under oxidative stress, the hyperactivation of NRF2 in cancer cells may help them to survive and to adapt under oxidative stress. This can be detrimental and related to cancer progression and chemotherapy resistance. Therefore, inhibition of NRF2 activity may be an effective approach for sensitizing cancer cells to anticancer therapy. In this review, we examine alkaloids as NRF2 inhibitors from natural origin, their effects on cancer therapy, and/or as sensitizers of cancer cells to anticancer chemotherapeutics, and their potential clinical applications. Alkaloids, as inhibitor of the NRF2/KEAP1 signaling pathway, can have direct (berberine, evodiamine, and diterpenic aconitine types of alkaloids) or indirect (trigonelline) therapeutic/preventive effects. The network linking alkaloid action with oxidative stress and NRF2 modulation may result in an increased NRF2 synthesis, nuclear translocation, as well in a downstream impact on the synthesis of endogenous antioxidants, effects strongly presumed to be the mechanism of action of alkaloids in inducing cancer cell death or promoting sensitivity of cancer cells to chemotherapeutic agents. In this regard, the identification of additional alkaloids targeting the NRF2 pathway is desirable and the information arising from clinical trials will reveal the potential of these compounds as a promising target for anticancer therapy.
Collapse
Affiliation(s)
- Darinka Gjorgieva Ackova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Katarina Smilkov
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazz. le A. Moro 5, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Li J, Zhang J, Zhu Y, Afolabi LO, Chen L, Feng X. Natural Compounds, Optimal Combination of Brusatol and Polydatin Promote Anti-Tumor Effect in Breast Cancer by Targeting Nrf2 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24098265. [PMID: 37175972 PMCID: PMC10179160 DOI: 10.3390/ijms24098265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has been clearly recognized as a heterogeneous tumor with the worst prognosis among the subtypes of breast cancer (BC). The advent and application of current small-molecule drugs for treating TNBC, as well as other novel inhibitors, among others, have made treatment options for TNBC more selective. However, there are still problems, such as poor patient tolerance, large administration doses, high dosing frequency, and toxic side effects, necessitating the development of more efficient and less toxic treatment strategies. High expression of Nrf2, a vital antioxidant transcription factor, often promotes tumor progression, and it is also one of the most effective targets in BC therapy. We found that in MDA-MB-231 cells and SUM159 cells, brusatol (BRU) combined with polydatin (PD) could significantly inhibit cell proliferation in vitro, significantly downregulate the expression of Nrf2 protein as well as the expression of downstream related target genes Heme Oxygenase-1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1), and promote reactive oxygen species (ROS) levels to further strengthen the anti-tumor effect. Furthermore, we discovered in our in vivo experiments that by reducing the drug dosage three times, we could significantly reduce tumor cell growth while avoiding toxic side effects, providing a treatment method with greater clinical application value for TNBC treatment.
Collapse
Affiliation(s)
- Jing Li
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zhu
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lukman O Afolabi
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
10
|
Sargazi Z, Yazdani Y, Tahavvori A, Youshanlouei HR, Alivirdiloo V, Beilankouhi EAV, Valilo M. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep 2023; 50:5407-5414. [PMID: 37081307 DOI: 10.1007/s11033-023-08384-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
Breast cancer is one of the most serious malignancies among women, accounting for about 12% of all cancers. The inherent complexity and heterogeneity of breast cancer results in failure to respond to treatment in the advanced stages of the disease. Breast cancer is caused by several genetic and environmental factors. One of the significant factors involved in the development of breast cancer is oxidative stress, which is generally regulated by nuclear factor erythroid 2-related factor 2 (NRF2). The level of NRF2 expression is low in healthy cells, which maintains the balance of the antioxidant system; however, its expression is higher in cancer cells, which have correlation characteristics such as angiogenesis, stem cell formation, drug resistance, and metastasis. Drug resistance increases with the upregulation of NRF2 expression, which contributes to cell protection. NRF2 controls this mechanism by increasing the expression of ATP-binding cassettes (ABCs). Considering the growing number of studies in this field, we aimed to investigate the relationship between NRF2 and ABCs, as well as their role in the development of drug resistance in breast cancer.
Collapse
Affiliation(s)
- Zinat Sargazi
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Tahavvori
- Department of internal medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Rahmani Youshanlouei
- Department of internal medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Didier AJ, Stiene J, Fang L, Watkins D, Dworkin LD, Creeden JF. Antioxidant and Anti-Tumor Effects of Dietary Vitamins A, C, and E. Antioxidants (Basel) 2023; 12:632. [PMID: 36978880 PMCID: PMC10045152 DOI: 10.3390/antiox12030632] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Oxidative stress, a condition characterized by an imbalance between pro-oxidant molecules and antioxidant defense systems, is increasingly recognized as a key contributor to cancer development. This is because the reactive oxygen species (ROS) generated during oxidative stress can damage DNA, proteins, and lipids to facilitate mutations and other cellular changes that promote cancer growth. Antioxidant supplementation is a potential strategy for decreasing cancer incidence; by reducing oxidative stress, DNA damage and other deleterious cellular changes may be attenuated. Several clinical trials have been conducted to investigate the role of antioxidant supplements in cancer prevention. Some studies have found that antioxidant supplements, such as vitamin A, vitamin C, and vitamin E, can reduce the risk of certain types of cancer. On the other hand, some studies posit an increased risk of cancer with antioxidant supplement use. In this review, we will provide an overview of the current understanding of the role of oxidative stress in cancer formation, as well as the potential benefits of antioxidant supplementation in cancer prevention. Additionally, we will discuss both preclinical and clinical studies highlighting the potentials and limitations of preventive antioxidant strategies.
Collapse
Affiliation(s)
- Alexander J. Didier
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | | | | | | | | | - Justin F. Creeden
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
12
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Soghli N, Yousefi H, Naderi T, Fallah A, Moshksar A, Darbeheshti F, Vittori C, Delavar MR, Zare A, Rad HS, Kazemi A, Bitaraf A, Hussen BM, Taheri M, Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 243:154341. [PMID: 36739754 DOI: 10.1016/j.prp.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.
Collapse
Affiliation(s)
- Negin Soghli
- Babol University of Medical Sciences, Faculty of Dentistry, Babol, Iran
| | - Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA; Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moshksar
- University of Texas Medical Branch (UTMB), Interventional Radiology, Galveston, TX, USA
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cecilia Vittori
- Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Sadeghi Rad
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Abtin Kazemi
- Fasa University of Medical Sciences, School of Medicine, Fasa, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Afjei R, Sadeghipour N, Kumar SU, Pandrala M, Kumar V, Malhotra SV, Massoud TF, Paulmurugan R. A New Nrf2 Inhibitor Enhances Chemotherapeutic Effects in Glioblastoma Cells Carrying p53 Mutations. Cancers (Basel) 2022; 14:cancers14246120. [PMID: 36551609 PMCID: PMC9775980 DOI: 10.3390/cancers14246120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
TP53 tumor suppressor gene is a commonly mutated gene in cancer. p53 mediated senescence is critical in preventing oncogenesis in normal cells. Since p53 is a transcription factor, mutations in its DNA binding domain result in the functional loss of p53-mediated cellular pathways. Similarly, nuclear factor erythroid 2-related factor 2 (Nrf2) is another transcription factor that maintains cellular homeostasis by regulating redox and detoxification mechanisms. In glioblastoma (GBM), Nrf2-mediated antioxidant activity is upregulated while p53-mediated senescence is lost, both rendering GBM cells resistant to treatment. To address this, we identified novel Nrf2 inhibitors from bioactive compounds using a molecular imaging biosensor-based screening approach. We further evaluated the identified compounds for their in vitro and in vivo chemotherapy enhancement capabilities in GBM cells carrying different p53 mutations. We thus identified an Nrf2 inhibitor that is effective in GBM cells carrying the p53 (R175H) mutation, a frequent clinically observed hotspot structural mutation responsible for chemotherapeutic resistance in GBM. Combining this drug with low-dose chemotherapies can potentially reduce their toxicity and increase their efficacy by transiently suppressing Nrf2-mediated detoxification function in GBM cells carrying this important p53 missense mutation.
Collapse
Affiliation(s)
- Rayhaneh Afjei
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Negar Sadeghipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Sukumar Uday Kumar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Mallesh Pandrala
- Department of Radiation Oncology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Sanjay V. Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Tarik F. Massoud
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Correspondence: (T.F.M.); (R.P.); Tel.: +1-650-725-6097 (R.P.); Fax: +1-650-721-6921 (R.P.)
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Correspondence: (T.F.M.); (R.P.); Tel.: +1-650-725-6097 (R.P.); Fax: +1-650-721-6921 (R.P.)
| |
Collapse
|
15
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022; 13:924817. [PMID: 35754474 PMCID: PMC9218606 DOI: 10.3389/fphar.2022.924817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator kelch-like ECH-associated protein 1 (KEAP1) regulate various genes involved in redox homeostasis, which protects cells from stress conditions such as reactive oxygen species and therefore exerts beneficial effects on suppression of carcinogenesis. In addition to their pivotal role in cellular physiology, accumulating innovative studies indicated that NRF2/KEAP1-governed pathways may conversely be oncogenic and cause therapy resistance, which was profoundly modulated by epigenetic mechanism. Therefore, targeting epigenetic regulation in NRF2/KEAP1 signaling is a potential strategy for cancer treatment. In this paper, the current knowledge on the role of NRF2/KEAP1 signaling in cancer oxidative stress is presented, with a focus on how epigenetic modifications might influence cancer initiation and progression. Furthermore, the prospect that epigenetic changes may be used as therapeutic targets for tumor treatment is also investigated.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sining Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanlin Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Department of Stomatology, Panzhihua Central Hospital, Panzhihua, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Rao J, Qiu J, Ni M, Wang H, Wang P, Zhang L, Wang Z, Liu M, Cheng F, Wang X, Lu L. Macrophage nuclear factor erythroid 2-related factor 2 deficiency promotes innate immune activation by tissue inhibitor of metalloproteinase 3-mediated RhoA/ROCK pathway in the ischemic liver. Hepatology 2022; 75:1429-1445. [PMID: 34624146 PMCID: PMC9300153 DOI: 10.1002/hep.32184] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of reactive oxygen species (ROS) and inflammation and has been implicated in both human and murine inflammatory disease models. We aimed to characterize the roles of macrophage-specific Nrf2 in liver ischemia/reperfusion injury (IRI). APPROACH AND RESULTS First, macrophage Nrf2 expression and liver injury in patients undergoing OLT or ischemia-related hepatectomy were analyzed. Subsequently, we created a myeloid-specific Nrf2-knockout (Nrf2M-KO ) strain to study the function and mechanism of macrophage Nrf2 in a murine liver IRI model. In human specimens, macrophage Nrf2 expression was significantly increased in liver tissues after transplantation or hepatectomy. Interestingly, lower Nrf2 expressions correlated with more severe liver injury postoperatively. In a mouse model, we found Nrf2M-KO mice showed worse hepatocellular damage than Nrf2-proficient controls based on serum biochemistry, pathology, ROS, and inflammation. In vitro, Nrf2 deficiency promoted innate immune activation and migration in macrophages on toll-like receptor (TLR) 4 stimulation. Microarray profiling showed Nrf2 deletion caused markedly lower transcriptional levels of tissue inhibitor of metalloproteinase 3 (Timp3). ChIP-seq, PCR, and luciferase reporter assay further demonstrated Nrf2 bound to the promoter region of Timp3. Moreover, a disintegrin and metalloproteinase (ADAM) 10/ROCK1 was specifically increased in Nrf2-deficient macrophages. Increasing Timp3 expression effectively inhibited ADAM10/ROCK1 expression and rescued the Nrf2M-KO -mediated inflammatory response on TLR4 stimulation in vitro. Importantly, Timp3 overexpression, recombinant Timp3 protein, or ROCK1 knockdown rescued Nrf2M-KO -related liver IRI by inhibiting macrophage activation. CONCLUSIONS In conclusion, macrophage Nrf2 mediates innate proinflammatory responses, attenuates liver IRI by binding to Timp3, and inhibits the RhoA/ROCK pathway, which provides a therapeutic target for clinical organ IRI.
Collapse
Affiliation(s)
- Jianhua Rao
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| | - Jiannan Qiu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Ming Ni
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Hao Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Peng Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lei Zhang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Zeng Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Mu Liu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Feng Cheng
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Xuehao Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| | - Ling Lu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| |
Collapse
|
19
|
Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol 2022; 13:720076. [PMID: 35571115 PMCID: PMC9098811 DOI: 10.3389/fphar.2022.720076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the second leading cancer among all types of cancers. It accounts for 12% of the total cases of cancers. The complex and heterogeneous nature of breast cancer makes it difficult to treat in advanced stages. The expression of various enzymes and proteins is regulated by several molecular pathways. Oxidative stress plays a vital role in cellular events that are generally regulated by nuclear factor erythroid 2-related factor 2 (Nrf2). The exact mechanism of Nrf2 behind cytoprotective and antioxidative properties is still under investigation. In healthy cells, Nrf2 expression is lower, which maintains antioxidative stress; however, cancerous cells overexpress Nrf2, which is associated with various phenomena, such as the development of drug resistance, angiogenesis, development of cancer stem cells, and metastasis. Aberrant Nrf2 expression diminishes the toxicity and potency of therapeutic anticancer drugs and provides cytoprotection to cancerous cells. In this article, we have discussed the attributes associated with Nrf2 in the development of drug resistance, angiogenesis, cancer stem cell generation, and metastasis in the specific context of breast cancer. We also discussed the therapeutic strategies employed against breast cancer exploiting Nrf2 signaling cascades.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
20
|
Foroutan-Ghaznavi M, Mazloomi SM, Montazeri V, Pirouzpanah S. Dietary patterns in association with the expression of pro-metastatic genes in primary breast cancer. Eur J Nutr 2022; 61:3267-3284. [PMID: 35484415 DOI: 10.1007/s00394-022-02884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Metastasis is a major leading cause of mortality in female breast cancer (BrCa). Cellular motility is a pathological process of metastasis remarked by the overexpression of cortactin (CTTN), Ras homolog family member-A (RhoA), and Rho-associated kinase (ROCK) genes. Their balance is responsible for upholding the integrity of healthy epithelial cell junctions. This study aimed to explore the associations between a posteriori dietary patterns and the expression levels of pro-metastatic genes in primary BrCa. METHODS In this consecutive case series, 215 eligible women, newly diagnosed with histologically confirmed non-metastatic BrCa (stage I-IIIA), were recruited from Hospitals in Tabriz, Northwestern Iran (2015-2017). The tumoral expression levels of genes were quantified using real-time reverse transcription-polymerase chain reaction. Dietary data assessment was carried out using a validated food frequency questionnaire. RESULTS Three dietary patterns were identified using principal component analysis (KMO = 0.699). Adherence to the "vegan" pattern (vegetables, fruits, legumes, nuts, seeds, and whole grains) was inversely associated with the expression levels of RhoA (ORAdj.T3vs.T1 = 0.24, 95%CI 0.07-0.79) and ROCK (ORAdj.T3vs.T1 = 0.26, 95%CI 0.08-0.87). In addition, the highest adherence to the "prudent" pattern (spices, seafood, dairy, and vegetable oils) decreased the odds of overexpressions at RhoA (ORAdj.T3vs.T1 = 0.26, 95%CI 0.08-0.84) and ROCK genes (ORAdj.T3vs.T1 = 0.29, 95%CI 0.09-0.95). The highest adherence to "Western" pattern (meat, processed meat, hydrogenated fat, fast food, refined cereals, sweets, and soft drinks) was a risk factor associated with the overexpression of RhoA (ORAdj.T3vs.T1 = 3.15, 95%CI 1.12-8.85). CONCLUSION Adherence to healthy dietary patterns was significantly associated with the downregulation of pro-metastatic genes. Findings provided new implications to advance the nutrigenomic knowledge to prevent the odds of over-regulations in pro-metastatic genes of the primary BrCa.
Collapse
Affiliation(s)
- Mitra Foroutan-Ghaznavi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, 7134814336, Shiraz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran.,Department of Clinical Nutrition, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, 7194815711, Shiraz, Iran
| | - Seyed-Mohammad Mazloomi
- Nutrition Research Center, Shiraz University of Medical Sciences, 7193635899, Shiraz, Iran.,Department of Food Hygiene and Quality Control, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, 7134814336, Shiraz, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, 5166414766, Tabriz, Iran.,Department of Surgery, Nour-Nejat Hospital, 5138665793, Tabriz, Iran
| | - Saeed Pirouzpanah
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran. .,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, 5166414766, Tabriz, Iran.
| |
Collapse
|
21
|
Wang P, Long F, Lin H, Wang T. Dietary phytochemicals targeting Nrf2 for chemoprevention in breast cancer. Food Funct 2022; 13:4273-4285. [PMID: 35373233 DOI: 10.1039/d2fo00186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer accounts for 11.7% of all newly diagnosed cancer cases and has become the leading cause of cancer worldwide. Currently, more effective and less toxic chemopreventive strategies for breast cancer are urgently needed. Notably, naturally occurring dietary phytochemical compounds, such as curcumin and resveratrol, are generally considered to be the most promising breast cancer preventive agents. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a key regulatory role in the expression of multiple antioxidant and anti-inflammatory enzymes, which can effectively suppress the excessive accumulation of carcinogens and their metabolites. Therefore, modulation of Nrf2 by dietary phytochemicals appears to be a promising approach for breast cancer prevention, which further removes excessive carcinogenic metabolites by inducing Phase II cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). In this review, we summarize recently published findings on the prevention of breast cancer with potential natural phytochemical compounds targeting Nrf2, as well as a mechanistic discussion of Nrf2 activation and its contribution in inhibiting breast cancer carcinogenesis. The epigenetic regulation of Nrf2 by phytochemicals is also explored.
Collapse
Affiliation(s)
- Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Hong Lin
- b. Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ting Wang
- b. Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
22
|
Ali R, Mir HA, Hamid R, Bhat B, Shah RA, Khanday FA, Bhat SS. Actin Modulation Regulates the Alpha-1-Syntrophin/p66Shc Mediated Redox Signaling Contributing to the RhoA GTPase Protein Activation in Breast Cancer Cells. Front Oncol 2022; 12:841303. [PMID: 35273919 PMCID: PMC8904154 DOI: 10.3389/fonc.2022.841303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
SNTA1 signaling axis plays an essential role in cytoskeletal organization and is also implicated in breast cancers. In this study, we aimed to investigate the involvement of actin cytoskeleton in the propagation of SNTA1/p66shc mediated pro-metastatic cascade in breast cancer cells.The effect of actin filament depolymerization on SNTA1-p66Shc interaction and the trimeric complex formation was analyzed using co-immunoprecipitation assays. Immunofluorescence and RhoA activation assays were used to show the involvement of SNTA1-p66Shc interaction in RhoA activation and F-actin organization. Cellular proliferation and ROS levels were assessed using MTT assay and Amplex red catalase assay. The migratory potential was evaluated using transwell migration assay and wound healing assay.We found that cytochalasin D mediated actin depolymerization significantly declines endogenous interaction between SNTA1 and p66Shc protein in MDA-MB-231 cells. Results indicate that SNTA1 and p66Shc interact with RhoA protein under physiological conditions. The ROS generation and RhoA activation were substantially enhanced in cells overexpressing SNTA1 and p66Shc, promoting proliferation and migration in these cells. In addition, we found that loss of SNTA1-p66Shc interaction impaired actin organization, proliferation, and migration in breast cancer cells. Our results demonstrate a novel reciprocal regulatory mechanism between actin modulation and SNTA1/p66Shc/RhoA signaling cascade in human metastatic breast cancer cells.
Collapse
Affiliation(s)
- Roshia Ali
- Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Hilal Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Basharat Bhat
- National Agricultural Higher Education Project (NAHEP) Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| | - Riaz A Shah
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | | | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| |
Collapse
|
23
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
24
|
Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. The role of polyphenols in overcoming cancer drug resistance: a comprehensive review. Cell Mol Biol Lett 2022; 27:1. [PMID: 34979906 PMCID: PMC8903685 DOI: 10.1186/s11658-021-00301-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapeutic drugs are used to treat advanced stages of cancer or following surgery. However, cancers often develop resistance against drugs, leading to failure of treatment and recurrence of the disease. Polyphenols are a family of organic compounds with more than 10,000 members which have a three-membered flavan ring system in common. These natural compounds are known for their beneficial properties, such as free radical scavenging, decreasing oxidative stress, and modulating inflammation. Herein, we discuss the role of polyphenols (mainly curcumin, resveratrol, and epigallocatechin gallate [EGCG]) in different aspects of cancer drug resistance. Increasing drug uptake by tumor cells, decreasing drug metabolism by enzymes (e.g. cytochromes and glutathione-S-transferases), and reducing drug efflux are some of the mechanisms by which polyphenols increase the sensitivity of cancer cells to chemotherapeutic agents. Polyphenols also affect other targets for overcoming chemoresistance in cancer cells, including cell death (i.e. autophagy and apoptosis), EMT, ROS, DNA repair processes, cancer stem cells, and epigenetics (e.g. miRNAs).
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Weitzenböck HP, Gschwendtner A, Wiesner C, Depke M, Schmidt F, Trautinger F, Hengstschläger M, Hundsberger H, Mikula M. Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Med 2021; 11:956-967. [PMID: 34951143 PMCID: PMC8855890 DOI: 10.1002/cam4.4506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer and NRF2 has been proposed as a main regulator of tumor cell malignancy. Still the mechanisms how NRF2 is contributing to melanoma progression are incompletely understood. Here we analyzed the effects of either NRF2 induction or depletion, and we also quantified changes on the whole cell proteome level. Our results showed that inhibition of NRF2 leads to a loss of reactive oxygen species protection, but at the same time to an induction of an epithelial mesenchymal transition (EMT) phenotype and an up‐regulation of the stem cell marker CD44. Additionally, cells devoid of NRF2 showed increased cell viability after treatment with a MYC and a BRAF inhibitor. Importantly, survival upon vemurafenib treatment was dependent on CD44 expression. Finally, analysis of archival melanoma patient samples confirmed a vice versa relationship of NRF2 and CD44 expression. In summary, we recorded changes in the proteome after NRF2 modulation in melanoma cells. Surprisingly, we identified that NRF2 inhibition lead to induction of an EMT phenotype and an increase in survival of cells after apoptosis induction. Therefore, we propose that it is important for future therapies targeting NRF2 to consider blocking EMT promoting pathways in order to achieve efficient tumor therapy.
Collapse
Affiliation(s)
- Hans Peter Weitzenböck
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Anna Gschwendtner
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Christoph Wiesner
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Franz Trautinger
- Department of Dermatology and Venereology, University Hospital of St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria.,Karl Landsteiner Institute of Dermatological Research, St. Pölten, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Harald Hundsberger
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems, Austria.,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Maleki Dana P, Sadoughi F, Mansournia MA, Mirzaei H, Asemi Z, Yousefi B. Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology 2021; 22:479-494. [PMID: 34480268 DOI: 10.1007/s10522-021-09934-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Age is an important risk factor for different diseases. The same mechanisms that promote aging are involved in the development and progression of age-associated diseases. Polyphenols are organic compounds found in fruits and vegetables. Due to their beneficial properties (e.g. antioxidant and anti-inflammatory), polyphenols have been extensively used for treating chronic diseases. To exert their functions, polyphenols target various molecular mechanisms and signaling pathways, such as mTOR, NF-κB, and Wnt/β-catenin. Wnt signaling is a critical pathway for developmental processes. Besides, dysregulation of this signaling pathway has been observed in various diseases. Several investigations have been conducted on Wnt inhibitors at pre-clinical stages, showing promising results. Herein, we review the studies dealing with the role of polyphenols in targeting the Wnt signaling pathways in aging processes and age-associated diseases, including cancer, diabetes, Alzheimer's disease, osteoporosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
27
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
28
|
Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS, Balakrishna JP, Madhunapantula SV. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo. Biomedicines 2021; 9:1119. [PMID: 34572304 PMCID: PMC8471069 DOI: 10.3390/biomedicines9091119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor erythroid-2 related factor-2 (Nrf2) is an oxidative stress-response transcriptional activator that promotes carcinogenesis through metabolic reprogramming, tumor promoting inflammation, and therapeutic resistance. However, the extension of Nrf2 expression and its involvement in regulation of breast cancer (BC) responses to chemotherapy remain largely unclear. This study determined the expression of Nrf2 in BC tissues (n = 46) and cell lines (MDA-MB-453, MCF-7, MDA-MB-231, MDA-MB-468) with diverse phenotypes. Immunohistochemical (IHC)analysis indicated lower Nrf2 expression in normal breast tissues, compared to BC samples, although the difference was not found to be significant. However, pharmacological inhibition and siRNA-induced downregulation of Nrf2 were marked by decreased activity of NADPH quinone oxidoreductase 1 (NQO1), a direct target of Nrf2. Silenced or inhibited Nrf2 signaling resulted in reduced BC proliferation and migration, cell cycle arrest, activation of apoptosis, and sensitization of BC cells to cisplatin in vitro. Ehrlich Ascites Carcinoma (EAC) cells demonstrated elevated levels of Nrf2 and were further tested in experimental mouse models in vivo. Intraperitoneal administration of pharmacological Nrf2 inhibitor brusatol slowed tumor cell growth. Brusatol increased lymphocyte trafficking towards engrafted tumor tissue in vivo, suggesting activation of anti-cancer effects in tumor microenvironment. Further large-scale BC testing is needed to confirm Nrf2 marker and therapeutic capacities for chemo sensitization in drug resistant and advanced tumors.
Collapse
Affiliation(s)
- Venugopal R. Bovilla
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Public Health Research Institute of India (PHRII), Mysuru 570020, Karnataka, India
| | - Mahadevaswamy G. Kuruburu
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Vidya G. Bettada
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Jayashree Krishnamurthy
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India;
| | - Olga A. Sukocheva
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Rajesh K. Thimmulappa
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, JSS Technical Institutions Campus, JSS Science and Technology University, Mysore 570006, Karnataka, India;
| | | | - SubbaRao V. Madhunapantula
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| |
Collapse
|
29
|
Ford KM, Panwala R, Chen DH, Portell A, Palmer N, Mali P. Peptide-tiling screens of cancer drivers reveal oncogenic protein domains and associated peptide inhibitors. Cell Syst 2021; 12:716-732.e7. [PMID: 34051140 PMCID: PMC8298269 DOI: 10.1016/j.cels.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Gene fragments derived from structural domains mediating physical interactions can modulate biological functions. Utilizing this, we developed lentiviral overexpression libraries of peptides comprehensively tiling high-confidence cancer driver genes. Toward inhibiting cancer growth, we assayed ~66,000 peptides, tiling 65 cancer drivers and 579 mutant alleles. Pooled fitness screens in two breast cancer cell lines revealed peptides, which selectively reduced cellular proliferation, implicating oncogenic protein domains important for cell fitness. Coupling of cell-penetrating motifs to these peptides enabled drug-like function, with peptides derived from EGFR and RAF1 inhibiting cell growth at IC50s of 27-63 μM. We anticipate that this peptide-tiling (PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated interfering peptides.
Collapse
Affiliation(s)
- Kyle M Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Dai-Hua Chen
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Nathan Palmer
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
30
|
Nutrition Strategy and Life Style in Polycystic Ovary Syndrome-Narrative Review. Nutrients 2021; 13:nu13072452. [PMID: 34371961 PMCID: PMC8308732 DOI: 10.3390/nu13072452] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Here we present an extensive narrative review of the broadly understood modifications to the lifestyles of women with polycystic ovary syndrome (PCOS). The PubMed database was analyzed, combining PCOS entries with causes, diseases, diet supplementation, lifestyle, physical activity, and use of herbs. The metabolic pathways leading to disturbances in lipid, carbohydrate, and hormonal metabolism in targeted patients are described. The article refers to sleep disorders, changes in mental health parameters, and causes of oxidative stress and inflammation. These conditions consistently lead to the occurrence of severe diseases in patients suffering from diabetes, the fatty degeneration of internal organs, infertility, atherosclerosis, cardiovascular diseases, dysbiosis, and cancer. The modification of lifestyles, diet patterns and proper selection of nutrients, pharmacological and natural supplementation in the form of herbs, and physical activity have been proposed. The progress and consequences of PCOS are largely modifiable and depend on the patient’s approach, although we have to take into account also the genetic determinants.
Collapse
|
31
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
32
|
Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021; 76:110-119. [PMID: 34020028 DOI: 10.1016/j.semcancer.2021.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
The complex role of NRF2 in the context of cancer continues to evolve. As a transcription factor, NRF2 regulates various genes involved in redox homeostasis, protein degradation, DNA repair, and xenobiotic metabolism. As such, NRF2 is critical in preserving cell function and viability, particularly during stress. Importantly, NRF2 itself is regulated via a variety of mechanisms, and the mode of NRF2 activation often dictates the duration of NRF2 signaling and its role in either preventing cancer initiation or promoting cancer progression. Herein, different modes of NRF2 regulation, including oxidative stress, autophagy dysfunction, protein-protein interactions, and epigenetics, as well as pharmacological modulators targeting this cascade in cancer, are explored. Specifically, how the timing and duration of these different mechanisms of NRF2 induction affect tumor initiation, progression, and metastasis are discussed. Additionally, progress in the discovery and development of NRF2 inhibitors for the treatment of NRF2-addicted cancers is highlighted, including modulators that inhibit specific NRF2 downstream targets. Overall, a better understanding of the intricate nature of NRF2 regulation in specific cancer contexts should facilitate the generation of novel therapeutics designed to not only prevent tumor initiation, but also halt progression and ultimately improve patient wellbeing and survival.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Aryatara Shakya
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew Dodson
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
33
|
Xiong J, Kuang X, Lu T, Yu K, Liu X, Zhang Z, Wang W, Zhao L, Fang Q, Wu D, Wang J. C3a and C5a facilitates the metastasis of myeloma cells by activating Nrf2. Cancer Gene Ther 2021; 28:265-278. [PMID: 32873871 DOI: 10.1038/s41417-020-00217-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) is still an incurable hematological malignancy, with even poorer prognosis in MM patients with distant invasion. The present study was designed to explore the effects of C3a and C5a on the migration, invasion, and adhesion of MM tumor cells and to investigate the underlying mechanisms. As a result, the levels of C3a and C5a in plasma of MM patients were significantly higher than those of healthy donors. Consistently, the expression of C3a and C5a receptors on myeloma cells of MM patients was also significantly higher than that on sorted plasma cells of normal donors. C3a and C5a have been confirmed to increase the migration, invasion and adhesion of MM cell lines by activating the MEK/ERK pathway and increasing the nuclear transfer of Nrf2 in vitro. Moreover, the MM cell line U266 with Nrf2 downregulation was incubated with C3a and C5a, followed by injection into the tail vein of NOD-SCID mice. We found that Nrf2 downregulation attenuated the migration of anaphylatoxin C3a and C5a to MM tumor cells in bone marrow, liver and lung in vivo. In conclusion, our results indicate that activation of the complement cascade in MM patients may contribute to the migration, invasion and adhesion of MM cells, and this type of tumor cells dissemination in MM is, at least partially, regulated by Nrf2. Thereby, complement suppression or Nrf2 downregulation might offer a novel therapeutic opportunity for MM.
Collapse
Affiliation(s)
- Jie Xiong
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation, 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Xingyi Kuang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Tingting Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Kunlin Yu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Xu Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, China
| | - Zhaoyuan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Weili Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Lu Zhao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation, 188 Shizi Street, 215006, Suzhou, Jiangsu, China.
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, 550001, Guiyang, China.
| |
Collapse
|
34
|
Involvement of NRF2 in Breast Cancer and Possible Therapeutical Role of Polyphenols and Melatonin. Molecules 2021; 26:molecules26071853. [PMID: 33805996 PMCID: PMC8038098 DOI: 10.3390/molecules26071853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is defined as a disturbance in the prooxidant/antioxidant balance in favor of the former and a loss of control over redox signaling processes, leading to potential biomolecular damage. It is involved in the etiology of many diseases, varying from diabetes to neurodegenerative diseases and cancer. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor and reported as one of the most important oxidative stress regulators. Due to its regulatory role in the expression of numerous cytoprotective genes involved in the antioxidant and anti-inflammatory responses, the modulation of NRF2 seems to be a promising approach in the prevention and treatment of cancer. Breast cancer is the prevalent type of tumor in women and is the leading cause of death among female cancers. Oxidative stress-related mechanisms are known to be involved in breast cancer, and therefore, NRF2 is considered to be beneficial in its prevention. However, its overactivation may lead to a negative clinical impact on breast cancer therapy by causing chemoresistance. Some known “oxidative stress modulators”, such as melatonin and polyphenols, are suggested to play an important role in the prevention and treatment of cancer, where the activation of NRF2 is reported as a possible underlying mechanism. In the present review, the potential involvement of oxidative stress and NRF2 in breast cancer will be reviewed, and the role of the NRF2 modulators—namely, polyphenols and melatonin—in the treatment of breast cancer will be discussed.
Collapse
|
35
|
Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021; 44:263-280. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NEF2L2; NRF2) plays crucial roles in the defense system against electrophilic or oxidative stress by upregulating an array of genes encoding antioxidant proteins, electrophile/reactive oxygen species (ROS) detoxifying enzymes, and drug efflux transporters. In contrast to the protective roles in normal cells, the multifaceted role of NRF2 in tumor growth and progression, resistance to therapy and intratumoral stress, and metabolic adaptation is rapidly expanding, and the complex association of NRF2 with cancer signaling networks is being unveiled. In particular, the implication of NRF2 signaling in cancer stem cells (CSCs), a small population of tumor cells responsible for therapy resistance and tumor relapse, is emerging. Here, we described the dark side of NRF2 signaling in cancers discovered so far. A particular focus was put on the role of NRF2 in CSCs maintenance and therapy resistance, showing that low ROS levels and refractory drug response of CSCs are mediated by the activation of NRF2 signaling. A better understanding of the roles of the NRF2 pathway in CSCs will allow us to develop a novel therapeutic approach to control tumor relapse after therapy.
Collapse
Affiliation(s)
- Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, 42472, Republic of Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
36
|
Sandström J, Balian A, Lockowandt R, Fornander T, Nordenskjöld B, Lindström L, Pérez-Tenorio G, Stål O. IP6K2 predicts favorable clinical outcome of primary breast cancer. Mol Clin Oncol 2021; 14:94. [PMID: 33767863 PMCID: PMC7976380 DOI: 10.3892/mco.2021.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/09/2021] [Indexed: 01/15/2023] Open
Abstract
The inositol hexakisphosphate kinase (IP6K) 1 and 2 genes are localized at 3p21.31, a highly altered gene-dense chromosomal region in cancer. The IP6Ks convert IP6 to IP7, which inhibits activation of the tumor-promoting PI3K/Akt/mTOR signaling pathway. IP6K2 has been suggested to be involved in p53-induced apoptosis, while IP6K1 may stimulate tumor growth and migration. The present study aimed to elucidate the role of the two IP6Ks in predicting outcome in patients with breast cancer. To the best of our knowledge, the role of IP6K was analyzed for the first time in tumors from three cohorts of patients with breast cancer; one Swedish low-risk cohort, one Dutch cohort and the TCGA dataset. Analyses of gene -and protein expression and subcellular localization were included. IP6K2 gene expression was associated with ER positivity and nuclear p-Akt. Improved prognosis was detected with high IP6K2 gene expression compared with low IP6K2 gene expression in systemically untreated patients in the Swedish low-risk and Dutch cohorts. In the TCGA dataset, IP6K2 prognostic value was significant when selecting for tumors with wild-type TP53. A multivariable analysis testing IP6K2 against other cancer-related genes at 3p.21.31, including IP6K1 and clinical biomarkers, revealed that IP6K2 was associated with decreased risk of distant recurrence. IP6K1 was associated with increased risk of distant recurrence in the multivariable test and protein analysis revealed trends of worse prognosis with high IP6K1 in the cytoplasm. The expression levels of IP6K1 and IP6K2 were associated to a high extent; however, a diverging prognostic value of the two genes was observed in breast cancer. The present data suggest that IP6K2 can be a favorable prognostic factor, while IP6K1 may not be.
Collapse
Affiliation(s)
- Josefine Sandström
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Alien Balian
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Rebecca Lockowandt
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Linda Lindström
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Stockholm, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
37
|
Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L. Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer. Molecules 2021; 26:1417. [PMID: 33808001 PMCID: PMC7961421 DOI: 10.3390/molecules26051417] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.
Collapse
Affiliation(s)
- Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey; (P.T.-A.); (D.C.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dilek Cevik
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey; (P.T.-A.); (D.C.)
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
| | - Luciano Saso
- Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
38
|
Garufi A, Giorno E, Gilardini Montani MS, Pistritto G, Crispini A, Cirone M, D’Orazi G. P62/SQSTM1/Keap1/NRF2 Axis Reduces Cancer Cells Death-Sensitivity in Response to Zn(II)-Curcumin Complex. Biomolecules 2021; 11:biom11030348. [PMID: 33669070 PMCID: PMC7996602 DOI: 10.3390/biom11030348] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
The hyperactivation of nuclear factor erythroid 2 p45-related factor 2 (NRF2), frequently found in many tumor types, can be responsible for cancer resistance to therapies and poor patient prognosis. Curcumin has been shown to activate NRF2 that has cytotprotective or protumorigenic roles according to tumor stage. The present study aimed at investigating whether the zinc–curcumin Zn(II)–curc compound, which we previously showed to display anticancer effects through multiple mechanisms, could induce NRF2 activation and to explore the underlying molecular mechanisms. Biochemical studies showed that Zn(II)–curc treatment increased the NRF2 protein levels along with its targets, heme oxygenase-1 (HO-1) and p62/SQSTM1, while markedly reduced the levels of Keap1 (Kelch-like ECH-associated protein 1), the NRF2 inhibitor, in the cancer cell lines analyzed. The silencing of either NRF2 or p62/SQSTM1 with specific siRNA demonstrated the crosstalk between the two molecules and that the knockdown of either molecule increased the cancer cell sensitivity to Zn(II)–curc-induced cell death. This suggests that the crosstalk between p62/SQSTM1 and NRF2 could be therapeutically exploited to increase cancer patient response to therapies.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- School of Medicine, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Eugenia Giorno
- Laboratory MAT_IN LAB, Department of Chemistry and Chemical Technologies, Calabria University, 87036 Rende, Italy; (E.G.); (A.C.)
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, 00185 Rome, Italy; (M.S.G.M.); (M.C.)
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Alessandra Crispini
- Laboratory MAT_IN LAB, Department of Chemistry and Chemical Technologies, Calabria University, 87036 Rende, Italy; (E.G.); (A.C.)
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, 00185 Rome, Italy; (M.S.G.M.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- Correspondence:
| |
Collapse
|
39
|
Kong Q, Deng H, Li C, Wang X, Shimoda Y, Tao S, Kato K, Zhang J, Yamanaka K, An Y. Sustained high expression of NRF2 and its target genes induces dysregulation of cellular proliferation and apoptosis is associated with arsenite-induced malignant transformation of human bronchial epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143840. [PMID: 33261869 DOI: 10.1016/j.scitotenv.2020.143840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
In arsenic toxicity, activation of the erythroid 2-related factor 2 (NRF2) pathway is regarded as a driver of cancer development and progression; however, the mechanisms by which NRF2 gene expression regulates cell cycle progression and mediates pathways of cellular proliferation and apoptosis in arsenic-induced lung carcinogenesis are poorly understood. In this study, we explored the regulatory functions of NRF2 expression and its target genes in immortalized human bronchial epithelial (HBE) cells continuously exposed to 1.0 μM sodium arsenite over approximately 43 passages (22 weeks). The experimental treatment induced malignant transformation in HBE cells, characterized by increased cellular proliferation and soft agar clone formation, as well as cell migration, and accelerated cell cycle progression from G0/G1 to S phase with increased levels of cyclin E-CDK2 complex,decreased cellular apoptosis rate. Moreover, we observed a sustained increase in NRF2 protein levels and those of its target gene products (NQO1, BCL-2) with concurrently decreased expression of apoptosis-related proteins (BAX, Cleaved-caspase-3/Caspase-3 and CHOP) and increased expression of the anti-apoptotic protein MCL-1. Silencing NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HBE) cells was shown to reverse the malignant phenotype. Further, siRNA silencing of NQO1 significantly decreased levels of the cyclin E-CDK2 complex, inhibiting G0/G1 to S phase cell cycle progression and transformation to the T-HBE phenotypes. This study demonstrated a novel role for the NRF2/NQO1 signaling pathway in mediating arsenite-induced cell transformation by increasing the expression of cyclin E-CDK2, and accelerating the cell cycle and cell proliferation. Arsenite promotes activation of the NRF2/BCL-2 signaling pathway inhibited CHOP increasing cellular resistance to apoptosis and further promoting malignant transformation.
Collapse
Affiliation(s)
- Qi Kong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, Jiangsu, China
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
40
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
41
|
Nrf2 regulates cell motility through RhoA-ROCK1 signalling in non-small-cell lung cancer cells. Sci Rep 2021; 11:1247. [PMID: 33441941 PMCID: PMC7806835 DOI: 10.1038/s41598-021-81021-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator of several antioxidant and anti-inflammatory enzymes. It binds to its endogenous inhibitor Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm under normal conditions. Various endogenous or environmental oxidative stresses can disrupt the Nrf2/Keap1 complex, allowing Nrf2 to translocate into the nucleus, where it induces the transcription of various cytoprotective enzymes by binding to antioxidant responsive elements. These enzymes have been reported to play a role in regulating tumour growth, angiogenesis, and chemoprevention. Invasion and migration are the most harmful aspects of cancer; they directly impacts the patients’ survival. Although the roles of Keap1/Nrf2 and their downstream genes in various cancers have been widely documented, their role in regulating cell motility still remains unclear, particularly in cancer cells. We observed that Nrf2 suppression following treatment with brusatol in non-small-cell lung cancer (NSCLC) cells with either exogenously introduced Keap1 or siNrf2 resulted in the inhibition of cell migration and invasion, with shrinking cell morphology due to decreased focal adhesions via inhibition of the RhoA–ROCK1 pathway. Nrf2 overexpression showed opposite results. Thus, the Nrf2/Keap1 pathway may affect cell motility by dysregulating the RhoA–ROCK1 signalling pathway in NSCLC.
Collapse
|
42
|
Mazloomi SM, Foroutan-Ghaznavi M, Montazeri V, Tavoosidana G, Fakhrjou A, Nozad-Charoudeh H, Pirouzpanah S. Profiling the expression of pro-metastatic genes in association with the clinicopathological features of primary breast cancer. Cancer Cell Int 2021; 21:6. [PMID: 33407452 PMCID: PMC7789694 DOI: 10.1186/s12935-020-01708-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastasis accounts for ninety percent of breast cancer (BrCa) mortality. Cortactin, Ras homologous gene family member A (RhoA), and Rho-associated kinase (ROCK) raise cellular motility in favor of metastasis. Claudins (CLDN) belong to tight junction integrity and are dysregulated in BrCa. Thus far, epidemiologic evidence regarding the association of different pro-metastatic genes with pathological phenotypes of BrCa is largely inconsistent. This study aimed to determine the possible transcriptional models of pro-metastatic genes incorporate in holding the integrity of epithelial cell-cell junctions (CTTN, RhoA, ROCK, CLDN-1, CLDN-2, and CLDN-4), for the first time, in association with clinicopathological features of primary BrCa. METHODS In a consecutive case-series design, 206 newly diagnosed non-metastatic eligible BrCa patients with histopathological confirmation (30-65 years) were recruited in Tabriz, Iran (2015-2017). Real-time RT-PCR was used. Then fold changes in the expression of target genes were measured. RESULTS ROCK amplification was associated with the involvement of axillary lymph node metastasis (ALNM; ORadj. = 3.05, 95%CI 1.01-9.18). Consistently, inter-correlations of CTTN-ROCK (β = 0.226, P < 0.05) and RhoA-ROCK (β = 0.311, P < 0.01) were determined among patients diagnosed with ALNM+ BrCa. In addition, the overexpression of CLDN-4 was frequently observed in tumors identified by ALNM+ or grade III (P < 0.05). The overexpression of CTTN, CLDN-1, and CLDN-4 genes was correlated positively with the extent of tumor size. CTTN overexpression was associated with the increased chance of luminal-A positivity vs. non-luminal-A (ORadj. = 1.96, 95%CI 1.02-3.77). ROCK was also expressed in luminal-B BrCa tumors (P < 0.05). The estrogen receptor-dependent transcriptions were extended to the inter-correlations of RhoA-ROCK (β = 0.280, P < 0.01), ROCK-CLDN-2 (β = 0.267, P < 0.05), and CLDN-1-CLDN-4 (β = 0.451, P < 0.001). CONCLUSIONS For the first time, our findings suggested that the inter-correlations of CTTN-ROCK and RhoA-ROCK were significant transcriptional profiles determined in association with ALNM involvement; therefore the overexpression of ROCK may serve as a potential molecular marker for lymphatic metastasis. The provided binary transcriptional profiles need more approvals in different clinical features of BrCa metastasis.
Collapse
Affiliation(s)
- Seyed-Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, 7193635899 Iran
| | - Mitra Foroutan-Ghaznavi
- Students’ Research Committee, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, 7134814336 Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 5166414766 Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756 Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Surgery Ward, Nour-Nejat Hospital, Tabriz, 5166614766 Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469 Iran
| | - Ashraf Fakhrjou
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766 Iran
| | | | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 5166414766 Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756 Iran
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711 Iran
| |
Collapse
|
43
|
Liu Y, Lang F, Yang C. NRF2 in human neoplasm: Cancer biology and potential therapeutic target. Pharmacol Ther 2021; 217:107664. [DOI: 10.1016/j.pharmthera.2020.107664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
|
44
|
Influence of ARHGAP29 on the Invasion of Mesenchymal-Transformed Breast Cancer Cells. Cells 2020; 9:cells9122616. [PMID: 33291460 PMCID: PMC7762093 DOI: 10.3390/cells9122616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Aggressive and mesenchymal-transformed breast cancer cells show high expression levels of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression significantly increased after the induction of mesenchymal transformation in breast cancer cells. Therefore, we investigated the influence of ARHGAP29 on the invasiveness of aggressive and mesenchymal-transformed breast cancer cells. After knock-down of ARHGAP29 using siRNA, invasion of HCC1806, MCF-7-EMT, and T-47D-EMT breast cancer cells was significantly reduced. This could be explained by reduced inhibition of RhoA and a consequent increase in stress fiber formation. Proliferation of the breast cancer cell line T-47D-EMT was slightly increased by reduced expression of ARHGAP29, whereas that of HCC1806 and MCF-7-EMT significantly increased. Using interaction analyses we found that AKT1 is a possible interaction partner of ARHGAP29. Therefore, the expression of AKT1 after siRNA knock-down of ARHGAP29 was tested. Reduced ARHGAP29 expression was accompanied by significantly reduced AKT1 expression. However, the ratio of active pAKT1 to total AKT1 remained unchanged or was significantly increased after ARHGAP29 knock-down. Our results show that ARHGAP29 could be an important factor in the invasion of aggressive and mesenchymal-transformed breast cancer cells. Further research is required to fully understand the underlying mechanisms.
Collapse
|
45
|
Ryu D, Lee JH, Kwak MK. NRF2 level is negatively correlated with TGF-β1-induced lung cancer motility and migration via NOX4-ROS signaling. Arch Pharm Res 2020; 43:1297-1310. [PMID: 33242180 DOI: 10.1007/s12272-020-01298-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is a multifaceted factor in cancer biology that regulates cell proliferation and migration. Overactivation of nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) in cancers has been associated with facilitated tumor growth and therapy resistance; however, role in cancer migration has not been clearly explained yet. In this study, we investigated the role of NRF2 on TGF-β1-induced cell motility/migration. In NRF2-silenced lung cancer A549 cells, both basal and TGF-β1-inducible cell motility/migration increased compared to those in A549. SMAD transcription activity and phosphorylated SMAD2/3 levels were higher in TGF-β1-treated NRF2-low A549 cells than those in A549. Notably, the levels of reactive oxygen species (ROS) that were elevated by TGF-β1 treatment were higher in the NRF2-low A549 than those in control cells, and treatment with ROS scavenger blocked TGF-β1-induced cell motility. As an underlying molecular link, NADPH oxidase 4 (NOX4) was associated with higher ROS elevation and cell motility of NRF2-low A549. NOX4 and TGF-β1-inducible NOX4 levels were higher in NRF2-low A549 cells than those in A549. Moreover, the pharmacological inhibition of NOX4 blocked the TGF-β1-induced motility of NRF2-low A549 cells. Collectively, these results indicate that TGF-β1-induced cell motility/migration is facilitated in NRF2-inhibited lung cancer cells and that high levels of NOX4/ROS are associated with enhanced motility/migration.
Collapse
Affiliation(s)
- Dayoung Ryu
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of the Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Jin-Hee Lee
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of the Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea. .,Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea. .,College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
46
|
Brockway S, Wang G, Jackson JM, Amici DR, Takagishi SR, Clutter MR, Bartom ET, Mendillo ML. Quantitative and multiplexed chemical-genetic phenotyping in mammalian cells with QMAP-Seq. Nat Commun 2020; 11:5722. [PMID: 33184288 PMCID: PMC7661543 DOI: 10.1038/s41467-020-19553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Chemical-genetic interaction profiling in model organisms has proven powerful in providing insights into compound mechanism of action and gene function. However, identifying chemical-genetic interactions in mammalian systems has been limited to low-throughput or computational methods. Here, we develop Quantitative and Multiplexed Analysis of Phenotype by Sequencing (QMAP-Seq), which leverages next-generation sequencing for pooled high-throughput chemical-genetic profiling. We apply QMAP-Seq to investigate how cellular stress response factors affect therapeutic response in cancer. Using minimal automation, we treat pools of 60 cell types—comprising 12 genetic perturbations in five cell lines—with 1440 compound-dose combinations, generating 86,400 chemical-genetic measurements. QMAP-Seq produces precise and accurate quantitative measures of acute drug response comparable to gold standard assays, but with increased throughput at lower cost. Moreover, QMAP-Seq reveals clinically actionable drug vulnerabilities and functional relationships involving these stress response factors, many of which are activated in cancer. Thus, QMAP-Seq provides a broadly accessible and scalable strategy for chemical-genetic profiling in mammalian cells. Identifying chemical-genetic interactions in mammalian cells is limited to low-throughput or computational methods. Here, the authors present QMAP-Seq, a broadly accessible and scalable approach that uses NGS for pooled high-throughput chemical-genetic profiling in mammalian cells.
Collapse
Affiliation(s)
- Sonia Brockway
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Geng Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jasen M Jackson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seesha R Takagishi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew R Clutter
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
47
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
48
|
Crevet L, Vanacker JM. Regulation of the expression of the estrogen related receptors (ERRs). Cell Mol Life Sci 2020; 77:4573-4579. [PMID: 32448995 PMCID: PMC11104921 DOI: 10.1007/s00018-020-03549-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/23/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Estrogen related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several tissues and cells and they display various physiological and pathological functions, controlling, amongst others and depending on the receptor, bone homeostasis, energy metabolism, embryonic stem cell pluripotency, and cancer progression. In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus rely on other means such as post-translational modification or availability of transcriptional co-regulators. In addition, regulation of their mere expression under given physiological or pathological conditions is a particularly important level of control. Here we discuss the mechanisms involved in the regulation of ERRs expression and the reported means to impact on it using pharmacological approaches.
Collapse
Affiliation(s)
- Lucile Crevet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
49
|
Ibrahim HIM, Ismail MB, Ammar RB, Ahmed EA. Thidiazuron suppresses breast cancer via targeting miR-132 and dysregulation of the PI3K-Akt signaling pathway mediated by the miR-202-5p-PTEN axis. Biochem Cell Biol 2020; 99:374-384. [PMID: 33103467 DOI: 10.1139/bcb-2020-0377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chemo-resistance and metastasis are the most common causes of breast cancer recurrence and death. Thidiazuron (TDZ) is a plant growth regulator (phytohormone) whose biological effects on humans and animals has not yet been determined. In this study, we investigated the anticancer activity of this phytohormone on the drug resistant-triple negative breast cancer cell line MDA-MB-231. Treatment of the breast cancer cells with TDZ (1-50 μmol/L) caused more stressful environment and induced a significant increase in active caspase-positive cells. In addition, TDZ treatment (5 and 10 μmol/L) significantly attenuated the migration and the invasiveness of these highly metastatic cancer cells. Mechanistically, TDZ reduces cancer progression and invasiveness by targeting miR-202-5p, which stimulates the expression of phosphatase and tensin homolog (PTEN), the tumor suppressor that downregulates the PI3K-Akt signaling pathway. Treatment with TDZ significantly upregulates miRNA-132, the suppressor of breast cancer proliferation, which is also implicated in dysregulation of the TEN-Akt-NFκB signaling pathway. Interestingly, our molecular docking analysis revealed a potential non-covalent interaction between TDZ and Akt, PTEN, and PI3K. These findings suggest that TDZ suppresses breast cancer metastasis by targeting miRNA-132, the miR-202-5p-PTEN axis, and the PI3K-Akt signaling pathway downstream.
Collapse
Affiliation(s)
- Hairul-Islam Mohamed Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia.,Pondicherry Centre for Biological Science and Educational Trust, Pondicherry 605005, India
| | - Mohammad Bani Ismail
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia
| | - Rebai Ben Ammar
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia.,Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, PBOX 901, Hammam-lif 2050, Tunisia
| | - Emad A Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia.,Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Egypt
| |
Collapse
|
50
|
Liu C, Zhao Q, Yu X. Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Front Oncol 2020; 10:561595. [PMID: 33123472 PMCID: PMC7566900 DOI: 10.3389/fonc.2020.561595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating discoveries highlight the importance of interaction between marrow stromal cells and cancer cells for bone metastasis. Bone is the most common metastatic site of breast cancer and bone marrow adipocytes (BMAs) are the most abundant component of the bone marrow microenvironment. BMAs are unique in their origin and location, and recently they are found to serve as an endocrine organ that secretes adipokines, cytokines, chemokines, and growth factors. It is reasonable to speculate that BMAs contribute to the modification of bone metastatic microenvironment and affecting metastatic breast cancer cells in the bone marrow. Indeed, BMAs may participate in bone metastasis of breast cancer through regulation of recruitment, invasion, survival, colonization, proliferation, angiogenesis, and immune modulation by their production of various adipocytokines. In this review, we provide an overview of research progress, focusing on adipocytokines secreted by BMAs and their potential roles for bone metastasis of breast cancer, and investigating the mechanisms mediating the interaction between BMAs and metastatic breast cancer cells. Based on current findings, BMAs may function as a pivotal modulator of bone metastasis of breast cancer, therefore targeting BMAs combined with conventional treatment programs might present a promising therapeutic option.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|