1
|
Santos-Álvarez JC, Velázquez-Enríquez JM, Reyes-Jiménez E, Ramírez-Hernández AA, Iñiguez-Palomares R, Rodríguez-Beas C, Canseco SP, Aguilar-Ruiz SR, Castro-Sánchez L, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Allium sativum nanovesicles exhibit anti-inflammatory and antifibrotic activity in a bleomycin-induced lung fibrosis model. Mol Biol Rep 2024; 51:1166. [PMID: 39560703 DOI: 10.1007/s11033-024-10104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and highly fatal disease characterized by excessive accumulation of extracellular matrix (ECM), foci of myofibroblasts, and a usual pattern of interstitial pneumonia. As suggested by international guidelines, the treatment for this disease involves supportive therapies, as there is currently no effective treatment. Plant-derived nanovesicles have emerged as a new treatment for various diseases and have been tested in cellular and murine models. METHODS AND RESULTS This research aimed to test the use of Allium sativum nanovesicles (AS-NV) in a murine model of IPF induced by bleomycin. AS-NV reduced the amount of collagen and restored lung architecture in the mouse model. AS-NV was tested on human lung fibroblasts, which do not affect the viability of healthy cells. AS-NV treatment decreases the mRNA levels of genes related to fibrosis, inflammation, and ECM deposition (Mmp2,Timp-2,Vegf,Pcna,Col1a1,Tgf-β,α-Sma,IL-1β,and Hif1a) in bleomycin-induced idiopathic pulmonary fibrosis. CONCLUSIONS This research highlights the anti-inflammatory and antifibrotic activity of AS-NV, which contributes to plant nanovesicle mechanisms in IPF; however, more AS-NV studies are needed to identify alternative treatments for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Ramon Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, 83000, Mexico
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, 83000, Mexico
| | - Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina, UNAM-UABJO, Oaxaca de Juárez, 68120, Mexico
| | - Sergio Roberto Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico
| | - Luis Castro-Sánchez
- CONAHCYT-Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, 28045, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico.
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico.
| |
Collapse
|
2
|
Wang H, Sun K, Peng H, Wang Y, Zhang L. Emerging roles of noncoding RNAs in idiopathic pulmonary fibrosis. Cell Death Discov 2024; 10:443. [PMID: 39433746 PMCID: PMC11494106 DOI: 10.1038/s41420-024-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with limited treatment options and efficacy. Evidence suggests that IPF arises from genetic, environmental, and aging-related factors. The pathogenic mechanisms of IPF primarily involve dysregulated repeated microinjuries to epithelial cells, abnormal fibroblast/myofibroblast activation, and extracellular matrix (ECM) deposition, but thus far, the exact etiology remains unclear. Noncoding RNAs (ncRNAs) play regulatory roles in various biological processes and have been implicated in the pathophysiology of multiple fibrotic diseases, including IPF. This review summarizes the roles of ncRNAs in the pathogenesis of IPF and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Kai Sun
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Hao Peng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
3
|
Sarrafi O, Kariminik A, Arababadi MK. Systematic levels of IL-29 and microRNA185-5p were not associated with severe COVID-19 in the Iranian population. Virol J 2023; 20:88. [PMID: 37147714 PMCID: PMC10160707 DOI: 10.1186/s12985-023-02046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/22/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Increased systematic pro-inflammatory cytokines is the main cause of the inflammatory conditions of the hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. In this project, serum levels of IL-29 and whole blood levels of microRNA-185-5p (miR-185-5p) were evaluated in the hospitalized SARS-CoV-2 infected patients. METHODS This project was performed on the 60 hospitalized SARS-CoV-2 infected patients and 60 healthy controls to evaluate IL-29 and miR185-5p expression levels. IL-29 expression was explored using enzyme linked immunoassay (ELISA), while miR185-5p was evaluated using Real-Time PCR techniques. RESULTS The results demonstrated that neither IL-29 serum levels nor relative expressions of miR-185-5p were significantly different between patients and healthy controls. CONCLUSION Due to the results that are presented here, systematic levels of IL-29 and miR-185-5p cannot be considered as the main risk factors for induction of inflammation in the hospitalized SARS-CoV-2 infected patients.
Collapse
Affiliation(s)
- Omidreza Sarrafi
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Guiot J, Henket M, Remacle C, Cambier M, Struman I, Winandy M, Moermans C, Louis E, Malaise M, Ribbens C, Louis R, Njock MS. Systematic review of overlapping microRNA patterns in COVID-19 and idiopathic pulmonary fibrosis. Respir Res 2023; 24:112. [PMID: 37061683 PMCID: PMC10105547 DOI: 10.1186/s12931-023-02413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is an emerging complication of SARS-CoV-2 infection. In this study, we speculate that patients with COVID-19 and idiopathic pulmonary fibrosis (IPF) may share aberrant expressed microRNAs (miRNAs) associated to the progression of lung fibrosis. OBJECTIVE To identify miRNAs presenting similar alteration in COVID-19 and IPF, and describe their impact on fibrogenesis. METHODS A systematic review of the literature published between 2010 and January 2022 (PROSPERO, CRD42022341016) was conducted using the key words (COVID-19 OR SARS-CoV-2) AND (microRNA OR miRNA) or (idiopathic pulmonary fibrosis OR IPF) AND (microRNA OR miRNA) in Title/Abstract. RESULTS Of the 1988 references considered, 70 original articles were appropriate for data extraction: 27 studies focused on miRNAs in COVID-19, and 43 on miRNAs in IPF. 34 miRNAs were overlapping in COVID-19 and IPF, 7 miRNAs presenting an upregulation (miR-19a-3p, miR-200c-3p, miR-21-5p, miR-145-5p, miR-199a-5p, miR-23b and miR-424) and 9 miRNAs a downregulation (miR-17-5p, miR-20a-5p, miR-92a-3p, miR-141-3p, miR-16-5p, miR-142-5p, miR-486-5p, miR-708-3p and miR-150-5p). CONCLUSION Several studies reported elevated levels of profibrotic miRNAs in COVID-19 context. In addition, the balance of antifibrotic miRNAs responsible of the modulation of fibrotic processes is impaired in COVID-19. This evidence suggests that the deregulation of fibrotic-related miRNAs participates in the development of fibrotic lesions in the lung of post-COVID-19 patients.
Collapse
Affiliation(s)
- Julien Guiot
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Monique Henket
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Claire Remacle
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Maureen Cambier
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Marie Winandy
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Catherine Moermans
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Edouard Louis
- Laboratory of Gastroenterology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Michel Malaise
- Laboratory of Rheumatology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Clio Ribbens
- Laboratory of Rheumatology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Renaud Louis
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Makon-Sébastien Njock
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
5
|
Non-Coding RNAs in Pulmonary Diseases: Comparison of Different Airway-Derived Biosamples. Int J Mol Sci 2023; 24:ijms24032006. [PMID: 36768329 PMCID: PMC9916756 DOI: 10.3390/ijms24032006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Due to their structural conservation and functional role in critical signalling pathways, non-coding RNA (ncRNA) is a promising biomarker and modulator of pathological conditions. Most research has focussed on the role of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules have been investigated both in a cellular and an extracellular context. Sources of ncRNAs may include organ-specific body fluids. Therefore, studies on ncRNAs in respiratory diseases include those on sputum, bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC). It is worth identifying the limitations of these biosamples in terms of ncRNA abundance, processing and diagnostic potential. This review describes the progress in the literature on the role of ncRNAs in the pathogenesis and progression of severe respiratory diseases, including cystic fibrosis, asthma and interstitial lung disease. We showed that there is a deficit of information on lncRNAs and circRNAs in selected diseases, despite attempts to functionally bind them to miRNAs. miRNAs remain the most well-studied, but only a few investigations have been conducted on the least invasive biosample material, i.e., EBC. To summarise the studies conducted to date, we also performed a preliminary in silico analysis of the reported miRNAs, demonstrating the complexity of their role and interactions in selected respiratory diseases.
Collapse
|
6
|
Bu N, Gao Y, Zhao Y, Xia H, Shi X, Deng Y, Wang S, Li Y, Lv J, Liu Q, Wang S. LncRNA H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by neodymium oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114173. [PMID: 36326553 DOI: 10.1016/j.ecoenv.2022.114173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The occupational and environmental health safety of rare earths has attracted considerable attention. In China, the rare earth neodymium oxide (Nd2O3) is extensively refined and utilized. However, the mechanisms of Nd2O3-induced lung injury are elusive. In the present study, we found that exposure of mice to Nd2O3 caused an inflammatory reaction and fibrosis in lung tissues, which was in relation to the Nd2O3-induced higher levels of the lncRNA H19 (H19), tumor necrosis factor receptor 1 (TNFRSF1A), p-p65, and p-IKKβ and lower levels of miR-29a-3p. Further, in mouse monocyte macrophage leukemia cells (RAW264.7), Nd2O3 induced an inflammatory reaction, increases of H19 and TNFRSF1A levels, decreases of miR-29a-3p levels, and activation of the nuclear factor (NF)-κB signaling pathway. Further, we established that miR-29a-3p regulates TNFRSF1A expression. Up-regulation of miR-29a-3p and down-regulation of H19 blocked the Nd2O3-induced secretion of TNF-α, MIP-1α, and IL-6; the increases of TNFRSF1A levels; and activation of the NF-κB signaling pathway in RAW264.7 cells. Further, in Nd2O3-treated RAW26.4 cells, H19 inhibited the expression of miR-29a-3p, which targets TNFRSF1A, and activated the NF-κB signaling pathway to enhance the expression of TNF-α, MIP-1α, and IL-6. Moreover, for mice, up-regulation of miR-29a-3p reversed lung tissue inflammation, pulmonary fibrosis, and activation of the NF-κB signaling pathway induced by Nd2O3. In sum, the present investigation shows that H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by Nd2O3, which is a mechanism for the Nd2O3-induced lung inflammatory response and pulmonary fibrosis. This information is useful for development of a biomarker of Nd2O3-induced lung injury.
Collapse
Affiliation(s)
- Ning Bu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xuemin Shi
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yang Deng
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Shurui Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yibo Li
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Jialing Lv
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China.
| |
Collapse
|
7
|
Chioccioli M, Roy S, Newell R, Pestano L, Dickinson B, Rigby K, Herazo-Maya J, Jenkins G, Ian S, Saini G, Johnson SR, Braybrooke R, Yu G, Sauler M, Ahangari F, Ding S, DeIuliis J, Aurelien N, Montgomery RL, Kaminski N. A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. EBioMedicine 2022; 85:104304. [PMID: 36265417 PMCID: PMC9587275 DOI: 10.1016/j.ebiom.2022.104304] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported that systemically delivered miR-29 mimic MRG-201 reduced fibrosis in animal models, supporting the consideration of miR-29-based therapies for idiopathic pulmonary fibrosis (IPF). METHODS We generated MRG-229, a next-generation miR-29 mimic based on MRG-201 with improved chemical stability due to additional sugar modifications and conjugation with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide)1. We investigated the anti-fibrotic efficacy of MRG-229 on TGF-β1 treated human lung fibroblasts (NHLFs), human precision cut lung slices (hPCLS), and in vivo bleomycin studies; toxicology was assessed in two animal models, rats, and non-human primates. Finally, we examined miR-29b levels in a cohort of 46 and 213 patients with IPF diagnosis recruited from Yale and Nottingham Universities (Profile Cohort), respectively. FINDINGS The peptide-conjugated MRG-229 mimic decreased expression of pro-fibrotic genes and reduced collagen production in each model. In bleomycin-treated mice, the peptide-conjugated MRG-229 mimic downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, the peptide-conjugated MRG-229 mimic was well tolerated at clinically relevant doses with no adverse findings observed. In human peripheral blood from IPF patients decreased miR-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. INTERPRETATION Collectively, our results provide support for the development of the peptide-conjugated MRG-229 mimic as a potential therapy in humans with IPF. FUNDING This work was supported by NIH NHLBI grants UH3HL123886, R01HL127349, R01HL141852, U01HL145567.
Collapse
Affiliation(s)
- Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Steward Ian
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | - Guying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, CN, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Joseph DeIuliis
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Zhang X, Duan XJ, Li LR, Chen YP. lncRNA NEAT1 promotes hypoxia-induced inflammation and fibrosis of alveolar epithelial cells via targeting miR-29a/NFATc3 axis. Kaohsiung J Med Sci 2022; 38:739-748. [PMID: 35708150 DOI: 10.1002/kjm2.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/09/2022] Open
Abstract
The objective of the present study was to explore the function and mechanism of long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in pulmonary fibrosis (PF) progression. HPAEpic cells and A549 cells were exposed to hypoxic conditions to establish an in vitro model. Cell apoptosis was detected by TUNEL assay, and inflammatory cytokine levels were detected by ELISA. Gene and protein expression levels were identified by qRT-PCR and Western blot assays, respectively. The interaction among NEAT1, miR-29a, and NFATc3 was identified by dual-luciferase reporter and RNA pull-down assays. In hypoxia-treated cells, hypoxia markers (HIF-1α and HIF-2α), cytokines (TNF-α, IL-1β, and IL-6) and fibrotic markers (α-SMA, collagen I and collagen III) were significantly enhanced. Consistently, the expression levels of NEAT1 and NFATc3 were increased, but miR-29a was decreased in hypoxia-stimulated cells. Knockdown of NEAT1 significantly decreased cell apoptosis and the releases of TNF-α, IL-1β, and IL-6 as well as reduced the levels of α-SMA, collagen I, and collagen III. Moreover, NEAT1 positively regulated NFATc3 expression by directly targeting miR-29a. Functional experiments showed that the anti-apoptotic, anti-inflammatory, and anti-fibrotic effects mediated by NETA1 silencing were impeded by miR-29a inhibition or NFATc3 overexpression in hypoxia-stimulated HPAEpic and A549 cells. Collectively, these data demonstrated that NEAT1 knockdown inhibited hypoxia-induced cell apoptosis, inflammation, and fibrosis by targeting the miR-29a/NFATc3 axis in PF, suggesting that NEAT1 might be a potential therapeutic target for relieving PF progression.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| | - Xiao-Jun Duan
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| | - Lin-Rui Li
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| | - Yan-Ping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| |
Collapse
|
9
|
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms23126613. [PMID: 35743055 PMCID: PMC9224458 DOI: 10.3390/ijms23126613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality and unclear etiology. Previous evidence supports that the origin of this disease is associated with epigenetic alterations, age, and environmental factors. IPF initiates with chronic epithelial lung injuries, followed by basal membrane destruction, which promotes the activation of myofibroblasts and excessive synthesis of extracellular matrix (ECM) proteins, as well as epithelial-mesenchymal transition (EMT). Due to miRNAs’ role as regulators of apoptosis, proliferation, differentiation, and cell-cell interaction processes, some studies have involved miRNAs in the biogenesis and progression of IPF. In this context, the analysis and discussion of the probable association of miRNAs with the signaling pathways involved in the development of IPF would improve our knowledge of the associated molecular mechanisms, thereby facilitating its evaluation as a therapeutic target for this severe lung disease. In this work, the most recent publications evaluating the role of miRNAs as regulators or activators of signal pathways associated with the pathogenesis of IPF were analyzed. The search in Pubmed was made using the following terms: “miRNAs and idiopathic pulmonary fibrosis (IPF)”; “miRNAs and IPF and signaling pathways (SP)”; and “miRNAs and IPF and SP and IPF pathogenesis”. Additionally, we focus mainly on those works where the signaling pathways involved with EMT, fibroblast differentiation, and synthesis of ECM components were assessed. Finally, the importance and significance of miRNAs as potential therapeutic or diagnostic tools for the treatment of IPF are discussed.
Collapse
Affiliation(s)
- Ana Ruth Cadena-Suárez
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Hilda Arely Hernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Claudia Rangel-Escareño
- Departamento de Genomica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col. Arenal Tepepan, Mexico City 14610, Mexico;
- Escuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Cristina Negrete-García
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
- Correspondence:
| |
Collapse
|
10
|
Guan S, Liu H, Zhou J, Zhang Q, Bi H. The MIR100HG/miR-29a-3p/Tab1 axis modulates TGF-β1-induced fibrotic changes in type II alveolar epithelial cells BLM-caused lung fibrogenesis in mice. Toxicol Lett 2022; 363:45-54. [PMID: 35472619 DOI: 10.1016/j.toxlet.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Transforming growth factor (TGF)-β1-induced fibrotic changes in alveolar epithelium is a critical event in pulmonary fibrosis. Herein, we recognized that lncRNA mir-100-let-7a-2-mir-125b-1 cluster host gene (MIR100HG) was abnormally upregulated within human idiopathic pulmonary fibrosis (IPF) lung tissue, bleomycin (BLM)-caused pulmonary fibrotic model mice and TGF-β1-stimulated mice type II alveolar epithelial cells. In vivo, MIR100HG knockdown attenuated BLM-caused lung fibrogenesis in mice; in vitro, MIR100HG knockdown attenuated TGF-β1-induced fibrotic changes in mice type II alveolar epithelial cells. Through direct binding, MIR100HG knockdown upregulated microRNA-29a-3p (miR-29a-3p) expression; through serving as competing endogenous RNA for miR-29a-3p, MIR100HG knockdown downregulated TGF-beta activated kinase 1/MAP3K7 binding protein 1 (Tab1) expression. Finally, under TGF-β1 stimulation, Tab1 knockdown attenuated TGF-β1-induced fibrotic changes and partially attenuated the effects of miR-29a-3p inhibition. In conclusion, we demonstrated the aberrant upregulation of lncRNA MIR100HG in BLM-caused lung fibrogenesis and TGF-β1-stimulated MLE 12 cells. The MIR100HG/miR-29a-3p/Tab1 axis could modulate TGF-β1-induced fibrotic changes in type II alveolar epithelial cells and, thus, might be promising targets for pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Shuhong Guan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, the Third Clinical Medicine School of Soochow University, Changzhou, Jiangsu 213000, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China.
| | - Qiudi Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| | - Hui Bi
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China
| |
Collapse
|
11
|
Alterations in plasma miR-21, miR-590, miR-192 and miR-215 in idiopathic pulmonary fibrosis and their clinical importance. Mol Biol Rep 2022; 49:2237-2244. [PMID: 35066768 DOI: 10.1007/s11033-021-07045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Many studies have revealed that microRNA (miRNA) molecules may take part in idiopathic pulmonary fibrosis (IPF). But, the role of miRNAs in the development of IPF is not yet clear. METHODS We investigated the plasma levels of miR-21, miR-590, miR-192, and miR-215 in IPF (n = 88) and healthy control (n = 20) groups in this study. We compared the expression levels of target miRNAs in patients with IPF and healthy participants. We grouped the patients with IPF according to age, forced vital capacity, carbon monoxide diffusing capacity (DLCO), gender-Age-pulmonary physiology (GAP) score, the presence of honeycombing and compared the expression levels of target miRNAs in these clinical subgroups. RESULTS 82 (93.18%) of the patients with IPF were male and the mean age was 66.6 ± 8.6 years. There was no significant difference between the gender and age distributions of IPF and the control group. The mean plasma miR-21 and miR-590 levels in IPF group were significantly higher than in the control group (p < 0.0001, p < 0.0001, respectively). There was no significant difference between the miR-192 and miR-215 expression levels of the IPF and control group. Both miR-21 and miR-590 correlated positively with age (p = 0.041, p = 0.007, respectively) while miR-192 and miR-215 displayed a negative correlation with age (p = 0.0002, p < 0.0001, respectively). The levels of miR-192 and miR-215 increased as the GAP score decreased. The levels of miR-192 in patients with honeycombing were significantly lower than in those without honeycombing (p = 0.003). CONCLUSIONS Our study showed that both miR-21 and miR-590 were overexpressed in IPF. The miR-21 and miR-590 were associated with DLCO, while miR-192 and miR-215 were associated with the GAP score and honeycombing.
Collapse
|
12
|
Tsitoura E, Trachalaki A, Vasarmidi E, Mastrodemou S, Margaritopoulos GA, Kokosi M, Fanidis D, Galaris A, Aidinis V, Renzoni E, Tzanakis N, Wells AU, Antoniou KM. Collagen 1a1 Expression by Airway Macrophages Increases In Fibrotic ILDs and Is Associated With FVC Decline and Increased Mortality. Front Immunol 2021; 12:645548. [PMID: 34867934 PMCID: PMC8635798 DOI: 10.3389/fimmu.2021.645548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Within the Interstitial Lung Diseases (ILD), patients with idiopathic pulmonary fibrosis (IPF) and a subset of those with non-IPF fibrotic ILD have a distinct clinical phenotype of progression despite management. This group of patients has been collectively termed the progressive fibrotic phenotype (PFP). Their early recognition may facilitate access to antifibrotic therapies to prevent or slow progression. Macrophages/monocytes within the lung orchestrate the progression and maintenance of fibrosis. A novel role for monocyte-derived macrophages during tissue damage and wound healing is the expression of collagens. We examined Collagen 1a1 expression in airway macrophages from ILD patients at diagnosis. COL1A1 mRNA levels from BAL cells were elevated in IPF and Non-IPF patients. The presence of a UIP pattern and a subsequent progressive phenotype were significantly associated with the higher BAL COL1A1 levels. In Non-IPF patients, higher COL1A1 levels were associated with a more than twofold increase in mortality. The intracellular localisation of COL1A1 in airway macrophages was demonstrated by confocal microscopy in CD45 and CD163 co-staining assays. Additionally, airway macrophages co-expressed COL1A1 with the profibrotic SPP1 gene product osteopontin. The levels of SPP1 mRNA and OPN in the BAL were significantly higher in IPF and Non-IPF patients relative to healthy. Our results suggest that profibrotic airway macrophages are increased in the BAL of patients with IPF and other ILDs and co-express COL1A1 and OPN. Importantly, COL1A1 expression by pro-fibrotic airway macrophages could be a marker of disease progression and poor survival in ILDs.
Collapse
Affiliation(s)
- Eliza Tsitoura
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Athina Trachalaki
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Eirini Vasarmidi
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Semeli Mastrodemou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - George A. Margaritopoulos
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Dionysios Fanidis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Centre, Athens, Greece
| | - Apostolos Galaris
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Centre, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Centre, Athens, Greece
| | - Elizabeth Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Nikos Tzanakis
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Athol U. Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
- *Correspondence: Katerina M. Antoniou,
| |
Collapse
|
13
|
Kishore A, Petrek M. Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis. Front Immunol 2021; 12:678457. [PMID: 34489932 PMCID: PMC8417529 DOI: 10.3389/fimmu.2021.678457] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This mini-review summarizes the current evidence for the role of macrophage activation and polarization in inflammation and immune response pertinent to interstitial lung disease, specifically pulmonary fibrosis. In the fibrosing lung, the production and function of inflammatory and fibrogenic mediators involved in the disease development have been reported to be regulated by the effects of polarized M1/M2 macrophage populations. The M1 and M2 macrophage phenotypes were suggested to correspond with the pro-inflammatory and pro-fibrogenic signatures, respectively. These responses towards tissue injury followed by the development and progression of lung fibrosis are further regulated by macrophage-derived microRNAs (miRNAs). Besides cellular miRNAs, extracellular exosomal-miRNAs derived from M2 macrophages have also been proposed to promote the progression of pulmonary fibrosis. In a future perspective, harnessing the noncoding miRNAs with a key role in the macrophage polarization is, therefore, suggested as a promising therapeutic strategy for this debilitating disease.
Collapse
Affiliation(s)
- Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Accuscript Consultancy, Ludhiana, India
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Departments of Experimental Medicine, and Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
14
|
Huang C, Wu YJ, He WF, Zhao SL, Ouyang YY, Ai XH, Liu ZQ, Tang SY. MiR-185-3p regulates epithelial mesenchymal transition via PI3K/Akt signaling pathway by targeting cathepsin D in gastric cancer cells. Transl Cancer Res 2020; 9:6988-7000. [PMID: 35117305 PMCID: PMC8799188 DOI: 10.21037/tcr-19-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recently research reported that miR-185-3p could serve as an independent prognosis factor in gastric cancer (GC). However, the functional role and underlying mechanism of miR-185-3p in GC and epithelial-mesenchymal transition (EMT) progression remains largely elusive. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to analyze the expression of miR-185-3p and cathepsin D in patient-derived GC samples and various GC cell lines. Scratch assay and Transwell assay were used to evaluate the migration ability. The influence of miR-185-3p on the cell cycle distribution and cell apoptosis was evaluated using flow cytometry. Western blotting assay was performed to detect the expression of EMT associated proteins and the activity of PI3K/Akt signaling pathway. Furthermore, the interaction between miR-185-3p and cathepsin D was explored by dual-luciferase reporter assay. RESULTS Our data revealed that miR-185-3p was down-regulated, while cathepsin D was up-regulated in both patient-derived GC samples and GC cells. Apart from inducing apoptosis, overexpression of miR-185-3p also inhibited EMT process and migration of GC cells. Mechanically, we firstly verified that miR-185-3p directly targeted the cathepsin D. Furthermore, miR-185-3p exerted its function on EMT process and migration via inhibiting cathepsin D to mediated PI3K/Akt signaling pathway. CONCLUSIONS Our findings suggested that miR-185-3p targeted cathepsin D inhibiting EMT process via PI3K/Akt signaling, which may serve as a potential prognosis factor and therapeutic target to reduce the malignancy of GCs.
Collapse
Affiliation(s)
- Cheng Huang
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | - Yang-Jie Wu
- Oncology Department of Medical, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wei-Feng He
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | - Shun-Li Zhao
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | | | - Xiao-Hong Ai
- Oncology Department of Medical, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhi-Qi Liu
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | - San-Yuan Tang
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| |
Collapse
|
15
|
Ni S, Song M, Guo W, Guo T, Shen Q, Peng H. Biomarkers and their potential functions in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:593-602. [PMID: 32187497 DOI: 10.1080/17476348.2020.1745066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating, and progressive lung disease that is characterized by fibrosis and respiratory failure. IPF holds high morbidity and poor prognosis and still faces considerable problems of reliable diagnosis and valid prognosis. A growing body of literature have reported changes in the level of various biomarkers in IPF patients, which means that they are expected to become a new tool for the clinical practice of IPF.Areas covered: We reviewed the recent literature about biomarkers and focus on the role they play in IPF. We systematically searched Medline/PubMed through February 2020. Many works of literature have shown that a variety of biomolecules and genomics played multiple roles in the diagnosis or differential diagnosis, prognosis, and indication of acute deterioration of IPF and so on.Expert opinion: Significant advances have been made in the role of biomarkers for IPF these years; however, current data indicate that a single biomarker is unlikely to have a transformative effect on clinical practice; therefore, the combined effect of various biomarkers can be considered to improve the accuracy of diagnosis and prognosis. Further research of biomarkers may provide new insights for the diagnosis, prognosis, and even therapy of IPF.
Collapse
Affiliation(s)
- Shanshan Ni
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Min Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Wei Guo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Ting Guo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Qinxue Shen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Hong Peng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
16
|
Chen Z, Zhang Z, Zhao D, Feng W, Meng F, Han S, Lin B, Shi X. Long Noncoding RNA (lncRNA) FOXD2-AS1 Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma by Regulating MiR-185/AKT Axis. Med Sci Monit 2019; 25:9618-9629. [PMID: 31841454 PMCID: PMC6929557 DOI: 10.12659/msm.918230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects and mechanisms of long noncoding (lnc) RNA FOXD2-AS1 in hepatocellular carcinoma development. MATERIAL AND METHODS Collecting the 3 pairs of adjacent and hepatocellular carcinoma tissue and analysis by gene chip. Evaluating the FOXD2-AS1 expression by in situ hybridization assay. Evaluating the FOXD2-AS1 to Bel-7402 biological activity in vitro study by Cell Counting Kit-8, flow cytometry, Transwell and wound healing assay and correlation between miR-185 by dual-luciferase reporter assay. The relative proteins expressions were evaluated by western blot assay. RESULTS FOXD2-AS1 was significantly upregulation in hepatocellular carcinoma tissues. FOXD2-AS1 knockdown suppressed Bel-7401 cell biological activities (proliferation, invasion, and migration) with miR-185 overexpression and AKT depressing in cell expression. CONCLUSIONS LncRNA FOXD2-AS1 promoted hepatocellular carcinoma development by regulation miR-185/AKT axis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Zhen Zhang
- Department of Anesthesiology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Dongbo Zhao
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Wei Feng
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Fanlai Meng
- Department of Pathology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Shihui Han
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Bin Lin
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| | - Xin Shi
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China (mainland)
| |
Collapse
|
17
|
Tsitoura E, Vasarmidi E, Bibaki E, Trachalaki A, Koutoulaki C, Papastratigakis G, Papadogiorgaki S, Chalepakis G, Tzanakis N, Antoniou KM. Accumulation of damaged mitochondria in alveolar macrophages with reduced OXPHOS related gene expression in IPF. Respir Res 2019; 20:264. [PMID: 31775876 PMCID: PMC6880424 DOI: 10.1186/s12931-019-1196-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Impaired mitochondria homeostasis and function are established hallmarks of aging and increasing evidence suggests a link with lung fibrosis. Mitochondria homeostasis may be also affected in alveolar macrophages (AMs) in idiopathic pulmonary fibrosis (IPF). In this study, we used bronchoalveolar lavage (BAL), a tool for both clinical and research purposes, and a rich source of AMs. METHODS BAL samples were examined from 52 patients with IPF and 19 healthy individuals. Measurements of mitochondria reactive oxygen species (mtROS), mitochondria morphology and related gene expression were performed. Additionally, autophagy and mitophagy levels were analysed. RESULTS Mitochondria in AMs from IPF patients had prominent morphological defects and impaired transcription paralleled to a significant reduction of mitochondria homeostasis regulators PINK1, PARK2 and NRF1. mtROS, was significantly higher in IPF and associated with reduced expression of mitochondria-encoded oxidative phosphorylation (OXPHOS) genes. Age and decline in lung function correlated with higher mtROS levels. Augmentation of damaged, oxidised mitochondria in IPF AMs however was not coupled to increased macroautophagy and mitophagy, central processes in the maintenance of healthy mitochondria levels. CONCLUSION Our results suggest a perturbation of mitochondria homeostasis in alveolar macrophages in IPF.
Collapse
Affiliation(s)
- Eliza Tsitoura
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Eirini Vasarmidi
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece.,Department of Respiratory Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Eleni Bibaki
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Athina Trachalaki
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece.,Department of Respiratory Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Chara Koutoulaki
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - George Papastratigakis
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - George Chalepakis
- Electron Microscopy Laboratory, University of Crete, Heraklion, Greece
| | - Nikos Tzanakis
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece.,Department of Respiratory Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Katerina M Antoniou
- Department of Respiratory Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece. .,Department of Respiratory Medicine, University Hospital of Heraklion, Heraklion, Greece.
| |
Collapse
|
18
|
Guo Y, Zhai J, Zhang J, Ni C, Zhou H. Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3'-UTR. Med Sci Monit 2019; 25:3161-3169. [PMID: 31034464 PMCID: PMC6503752 DOI: 10.12659/msm.915624] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Radio-resistance is an obstacle to the treatment of human nasopharyngeal carcinoma (NPC). However, how microRNAs (miRNA) are involved in this process remains unclear. In the present study we explored the role and possible molecular mechanism of miR-29a-3p, formerly known as tumor suppressors, in radio-sensitivity of NPC cells. Material/Methods A radio-resistant sub-cell line, CNE-2R, was established to detect the expression of miR-29a/b/c-3p using qRT-PCR. CCK-8 assay, colony formation assay, and single-cell gel electrophoresis (SCGE) assay were carried out to analyze the radio-sensitivity of NPC cells. qRT-PCR, luciferase reporter, and Western blot experiments were performed to validate the targeting of COL1A1 by miR-29a. Short interference RNAs (siRNAs) were used to investigate whether COL1A1 mediates the radio-sensitizer role of miR-29a. Expression of miR-29a and COL1A1 in radio-resistant NPC tissues was finally determined. Results miR-29a was decreased in the radio-resistant CNE-2R cells. Following a time-course irradiation (IR) exposure, miR-29a exhibited a time-dependent decrease. Cellular experiments confirmed that miR-29a induced radio-sensitivity of CNE-2R cells via suppressing cell viability and enhancing cell apoptosis after IR. We confirmed that COL1A1 is a direct target of miR-29a and can exert radio-resistance effects in NPC cells. We also found that knockdown of COL1A1 inhibits NPC cell viability and sensitivity to IR. Finally, we observed a downregulation of miR-29a in radio-resistant NPC tissues and its decrease was associated with upregulation of COL1A1. Conclusions miR-29a is a critical determinant of NPC radio-response for NPC patients, and its induction provides a promising therapeutic choice to elevate NPC radio-sensitivity.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jing Zhang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Changbao Ni
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huifang Zhou
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
19
|
Miao C, Xiong Y, Zhang G, Chang J. MicroRNAs in idiopathic pulmonary fibrosis, new research progress and their pathophysiological implication. Exp Lung Res 2018; 44:178-190. [DOI: 10.1080/01902148.2018.1455927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenggui Miao
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Youyi Xiong
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Guoxue Zhang
- School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei, China
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Bibaki E, Tsitoura E, Vasarmidi E, Margaritopoulos G, Trachalaki A, Koutoulaki C, Georgopoulou T, Spandidos DA, Tzanakis N, Antoniou KM. miR-185 and miR-29a are similarly expressed in the bronchoalveolar lavage cells in IPF and lung cancer but common targets DNMT1 and COL1A1 show disease specific patterns. Mol Med Rep 2018; 17:7105-7112. [PMID: 29568927 PMCID: PMC5928671 DOI: 10.3892/mmr.2018.8778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer (LC) constitute two progressively devastating lung diseases with common risk factors including aging and smoking. There is an increasing interest in the investigation of common pathogenic mechanisms between IPF and LC with therapeutic implications. Several oncomirs, microRNAs associated with malignancy, are also linked with IPF. miR-29a and miR-185 downregulation is probably involved both in carcinogenesis and fibrogenesis. We have previously observed miR-29a and miR-185 downregulation in IPF cells from bronchoalveolar lavage (BAL) and in this study we investigated their expression in LC BAL cells. Common targets of miR-29a and miR-185 such as DNA methyltransferase (DNMT)1, DNMT3b, COL1A1, AKT1 and AKT2 were measured. Potential correlations with pulmonary function tests, smoking status and endobronchial findings were investigated. Similar levels of miR-29a and miR-185 were detected in IPF and LC while their common targets AKT1 and DNMT3b were not found to differ, suggesting potential pathogenetic similarities at the level of key epigenetic regulators. By conrast, COL1A1 mRNA levels were increased in IPF suggesting a disease-specific mRNA signature. Notably, DNMT1 was downregulated in the LC group and its expression was further reduced in the presence of increasing malignant burden as it was implied by the endobronchial findings.
Collapse
Affiliation(s)
- Eleni Bibaki
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Eliza Tsitoura
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Eirini Vasarmidi
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - George Margaritopoulos
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Athina Trachalaki
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Chara Koutoulaki
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Theodora Georgopoulou
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikos Tzanakis
- Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, 71110 Heraklion, Crete, Greece
| | - Katerina M Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| |
Collapse
|
21
|
Xiao M, Li T, Ji Y, Jiang F, Ni W, Zhu J, Bao B, Lu C, Ni R. S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway. Oncol Lett 2017; 15:175-182. [PMID: 29375710 PMCID: PMC5766079 DOI: 10.3892/ol.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/22/2017] [Indexed: 01/12/2023] Open
Abstract
S100A11, a member of S100 calcium-binding protein family, is associated with the numerous processes of tumorigenesis and metastasis. In the present study, the role of S100A11, and its possible underlying mechanisms in cell proliferation, apoptosis and cell cycle distribution in human pancreatic cancer were explored. Immunohistochemical analyses of S100A11 and phosphorylated (p)-AKT serine/threonine kinase (AKT) were performed in 30 resected specimens from patients with pancreatic cancer. PANC-1 cells were transfected with pcDNA3.1-S100A11 or treated with 50 µmol/l LY294002 for 48 h. Cell proliferation was determined using a cell counting kit-8 assay, whereas apoptosis and cell cycle distribution were determined by flow cytometry analysis. The mRNA and protein levels of S100A11, and AKT were determined using semi quantitative reverse transcription-polymerase chain reaction and western blot analyses, respectively. Pearson correlation analysis revealed that the expression levels of S100A11 and p-AKT were positively correlated (r, 0.802; P<0.05). Compared with the control group, S100A11 overexpression significantly promoted PANC-1 cell proliferation and reduced the percentage of early apoptotic cells. Flow cytometric analysis indicated that the proportion of PANC-1 cells in the S phase was significantly elevated and cell percentage in the G0/G1 phase declined in response to S100A11 overexpression (all P<0.05). S100A11 overexpression also significantly increased AKT mRNA and p-AKT protein expression levels (both P<0.05). The phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, significantly inhibited PANC-1 cell proliferation, promoted apoptosis and caused G1/S phase arrest in PANC-1 cells (all P<0.05). These findings together suggest that S100A11 promotes the viability and proliferation of human pancreatic cancer PANC-1 cells through the upregulation of the PI3K/AKT signaling pathway. Thus, S100A11 may be considered as a novel drug target for targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Tao Li
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Yifei Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|