1
|
Kwon C, Cho W, Choi SW, Oh H, Abd El-Aty AM, Gecili I, Jeong JH, Jung TW. DEL-1: a promising treatment for AMD-associated ER stress in retinal pigment epithelial cells. J Transl Med 2024; 22:38. [PMID: 38195611 PMCID: PMC10775473 DOI: 10.1186/s12967-024-04858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is an irreversible eye disease that can cause blurred vision. Regular exercise has been suggested as a therapeutic strategy for treating AMD, but how exercise improves AMD is not yet understood. This study investigated the protective effects of developmental endothelial locus-1 (DEL-1), a myokine upregulated during exercise, on endoplasmic reticulum (ER) stress-induced injury in retinal pigment epithelial cells. METHODS We evaluated the levels of AMPK phosphorylation, autophagy markers, and ER stress markers in DEL-1-treated human retinal pigment epithelial cells (hRPE) using Western blotting. We also performed cell viability, caspase 3 activity assays, and autophagosome staining. RESULTS Our findings showed that treatment with recombinant DEL-1 dose-dependently reduced the impairment of cell viability and caspase 3 activity in tunicamycin-treated hRPE cells. DEL-1 treatment also alleviated tunicamycin-induced ER stress markers and VEGF expression. Moreover, AMPK phosphorylation and autophagy markers were increased in hRPE cells in the presence of DEL-1. However, the effects of DEL-1 on ER stress, VEGF expression, and apoptosis in tunicamycin-treated hRPE cells were reduced by AMPK siRNA or 3-methyladenine (3-MA), an autophagy inhibitor. CONCLUSIONS Our study suggests that DEL-1, a myokine, may have potential as a treatment strategy for AMD by attenuating ER stress-induced injury in retinal pigment epithelial cells.
Collapse
Affiliation(s)
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Türkiye
| | - Ibrahim Gecili
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Türkiye
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
2
|
Liu S, Fang X, Zhu R, Zhang J, Wang H, Lei J, Wang C, Wang L, Zhan L. Role of endoplasmic reticulum autophagy in acute lung injury. Front Immunol 2023; 14:1152336. [PMID: 37266445 PMCID: PMC10231642 DOI: 10.3389/fimmu.2023.1152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), the prime causes of morbidity and mortality in critically ill patients, are usually treated by general supportive treatments. Endoplasmic reticulum autophagy (ER-phagy) maintains cellular homeostasis by degrading damaged endoplasmic reticulum (ER) fragments and misfolded proteins. ER-phagy is crucial for maintaining ER homeostasis and improving the internal environment. ER-phagy has a particular role in some aspects, such as immunity, inflammation, cell death, pathogen infection, and collagen quality. In this review, we summarized the definition, epidemiology, and pathophysiology of ALI/ARDS and described the regulatory mechanisms and functions of ER-phagy as well as discussed the potential role of ER-phagy in ALI/ARDS from the perspectives of immunity, inflammation, apoptosis, pathogen infection, and fibrosis to provide a novel and effective target for improving the prognosis of ALI/ARDS.
Collapse
Affiliation(s)
- Shiping Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Fang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiyao Zhu
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huijuan Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxi Lei
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoqun Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Liu C, Xiao K, Xie L. Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Front Immunol 2022; 13:922702. [PMID: 36059534 PMCID: PMC9433910 DOI: 10.3389/fimmu.2022.922702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality that poses a major challenge in critical care medicine. The development of ALI/ARDS involves excessive inflammatory response, and macrophage autophagy plays an important role in regulating the inflammatory response in ALI/ARDS. In this paper, we review the effects of autophagy in regulating macrophage function, discuss the roles of macrophage autophagy in ALI/ARDS, and highlight drugs and other interventions that can modulate macrophage autophagy in ALI/ARDS to improve the understanding of the mechanism of macrophage autophagy in ALI/ARDS and provide new ideas and further research directions for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
4
|
Bone marrow-derived mesenchymal stem cells modulate autophagy in RAW264.7 macrophages via the phosphoinositide 3-kinase/protein kinase B/heme oxygenase-1 signaling pathway under oxygen-glucose deprivation/restoration conditions. Chin Med J (Engl) 2021; 134:699-707. [PMID: 33605598 PMCID: PMC7989993 DOI: 10.1097/cm9.0000000000001133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism. Methods We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditions in vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Results The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20 vs. 0.44 ± 0.08, t = 6.67, P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04 vs. 0.95 ± 0.10, t = 2.90, P < 0.05), and PI3K (0.40 ± 0.06 vs. 0.63 ± 0.10, t = 3.42, P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02 vs. 0.58 ± 0.03, t = 9.13, P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14 vs. 1.27 ± 0.20, t = 4.12, P < 0.05), up-regulated p62 expression (1.10 ± 0.20 vs. 0.77 ± 0.04, t = 2.80, P < 0.05), and up-regulated PI3K (0.54 ± 0.05 vs. 0.40 ± 0.06, t = 3.11, P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05 vs. 0.39 ± 0.02, t = 9.13, P < 0.05). A whole-genome microarray assay screened the differentially expressed gene HO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration of HO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway. Conclusions Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstances in vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
Collapse
|
5
|
Fan T, Yang S, Huang Z, Wang W, Guo X, Pan S, Zhang B, Xu Y, Fang Y, Mao Z, Hu H, Geng Q. Autophagy decreases alveolar epithelial cell injury by regulating the release of inflammatory mediators. J Cell Physiol 2020; 235:7982-7995. [PMID: 31960959 DOI: 10.1002/jcp.29453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/08/2020] [Indexed: 11/07/2022]
Abstract
To research the impact of autophagy on alveolar epithelial cell inflammation and its possible mechanism in the early stages of hypoxia, we established a cell hypoxia-reoxygenation model and orthotopic left lung ischemia-reperfusion model. Rat alveolar epithelial cells stably expressing GFP-LC3 were treated with an autophagy inhibitor (3-MA) or an autophagy promoter (rapamycin), followed by hypoxia-reoxygenation treatment for 2, 4, and 6 hr in vitro. In vivo, 20 male Sprague Dawley rats were randomly divided into four groups (model group: No blocking of the hilum in the left lung; control group: Blocking of the hilum in the left lung for 1 hr with dimethyl sulfoxide lavage; 3-MA group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of 3-MA (5 μmol/L) solution lavage; and rapamycin group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of rapamycin (250 nmol/L) solution lavage) to establish an orthotopic left lung ischemia model. This study demonstrated that rapamycin significantly suppressed the nuclear factor kappa B signaling pathway and limited the expression of proinflammatory factors. A contrary result was found after the 3-MA pretreatment. These findings indicate that autophagy reduces ischemia-reperfusion injury by repressing inflammatory signaling pathways in the early stages of hypoxia in vitro and in vivo. Autophagy could be a new protective method for application in lung ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital, Cardiovascular Research Institute of Wuhan University, Wuhan University, Wuhan, China
| | - Zhixin Huang
- Department of Gynecology and Obstetrics, Renmin Hospital, Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaobo Guo
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Boyou Zhang
- Department of Emergency, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yao Xu
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yifan Fang
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhangfan Mao
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hao Hu
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Díaz-Bulnes P, Saiz ML, López-Larrea C, Rodríguez RM. Crosstalk Between Hypoxia and ER Stress Response: A Key Regulator of Macrophage Polarization. Front Immunol 2020; 10:2951. [PMID: 31998288 PMCID: PMC6961549 DOI: 10.3389/fimmu.2019.02951] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Macrophage activation and polarization are closely linked with metabolic rewiring, which is required to sustain their biological functions. These metabolic alterations allow the macrophages to adapt to the microenvironment changes associated with inflammation or tissue damage (hypoxia, nutrient imbalance, oxidative stress, etc.) and to fulfill their highly energy-demanding proinflammatory and anti-microbial functions. This response is integrated via metabolic sensors that coordinate these metabolic fluxes with their functional requirements. Here we review how the metabolic and phenotypic plasticity of macrophages are intrinsically connected with the hypoxia stress sensors and the unfolded protein response in the endoplasmic reticulum, and how these molecular pathways participate in the maladaptive polarization of macrophages in human pathology and chronic inflammation.
Collapse
Affiliation(s)
- Paula Díaz-Bulnes
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain.,Immunology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ramón M Rodríguez
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
7
|
Local Administration of Caloric Restriction Mimetics to Promote the Immune Control of Lung Metastases. J Immunol Res 2019; 2019:2015892. [PMID: 31321243 PMCID: PMC6609366 DOI: 10.1155/2019/2015892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/01/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction mimetics (CRMs), compounds that mimic the biochemical effects of nutrient deprivation, administered via systemic route promote antitumor effects through the induction of autophagy and the modulation of the immune microenvironment; however, collateral effects due to metabolic changes and the possible weight loss might potentially limit their administration at long term. Here, we investigated in mice local administration of CRMs via aerosol to reduce metastasis implantation in the lung, whose physiologic immunosuppressive status favors tumor growth. Hydroxycitrate, spermidine, and alpha-lipoic acid, CRMs that target different metabolic enzymes, administered by aerosol, strongly reduced implantation of intravenously injected B16 melanoma cells without overt signs of toxicity, such as weight loss and changes in lung structure. Cytofluorimetric analysis of lung immune infiltrates revealed a significant increase of alveolar macrophages and CD103+ dendritic cells in mice treated with CRMs that paralleled an increased recruitment and activation of both CD3 T lymphocytes and NK cells. These effects were associated with the upregulation of genes related to M1 phenotype, as IL-12 and STAT-1, and to the decrease of M2 genes, as IL-10 and STAT-6, in adherent fraction of lung immune infiltrate, as revealed by real-time PCR analysis. Thus, in this proof-of-principle study, we highlight the antitumor effect of CRM aerosol delivery as a new and noninvasive therapeutic approach to locally modulate immunosurveillance at the tumor site in the lung.
Collapse
|
8
|
Yang L, Zhao L, Cui L, Huang Y, Ye J, Zhang Q, Jiang X, Zhang D, Huang Y. Decreased α-tubulin acetylation induced by an acidic environment impairs autophagosome formation and leads to rat cardiomyocyte injury. J Mol Cell Cardiol 2019; 127:143-153. [DOI: 10.1016/j.yjmcc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
|
9
|
Liu H, Zhou K, Liao L, Zhang T, Yang M, Sun C. Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling. Respir Res 2018; 19:243. [PMID: 30518355 PMCID: PMC6282312 DOI: 10.1186/s12931-018-0937-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening lung disease where alveolar macrophages (AMs) play a central role both in the early phase to initiate inflammatory responses and in the late phase to promote tissue repair. In this study, we examined whether BML-111, a lipoxin A4 receptor agonist, could alter the phenotypes of AM and thus present prophylactic benefits for ALI. Methods In vitro, isolated AMs were treated with lipopolysaccharide (LPS) to induce ALI. In response to BML-111 pre-treatment, apoptosis and autophagy of AMs were examined by flow cytometry, and by measuring biomarkers for each process. The potential involvement of MAPK1 and mTOR signaling pathway was analyzed. In vivo, an LPS-induced septic ALI model was established in rats and the preventative significance of BML-111 was assessed. On the cellular and molecular levels, the pro-inflammatory cytokines TNF-α and IL-6 from bronchoalveolar lavage were measured by ELISA, and the autophagy in AMs examined using Western blot. Results BML-111 inhibited apoptosis and induced autophagy of AMs in response to ALI inducer, LPS. The enhancement of autophagy was mediated through the suppression of MAPK1 and MAPK8 signaling, but independent of mTOR signaling. In vivo, BML-111 pre-treatment significantly alleviated LPS-induced ALI, which was associated with the reduction of apoptosis, the dampened production of pro-inflammatory cytokines in the lung tissue, as well as the increase of autophagy of AMs. Conclusions This study reveals the prophylactic significance of BML-111 in ALI and the underlying mechanism: by targeting the MAPK signaling but not mTOR pathway, BML-111 stimulates autophagy in AMs, attenuates the LPS-induced cell apoptosis, and promotes the resolution of ALI.
Collapse
Affiliation(s)
- Huaizheng Liu
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Kefu Zhou
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Liangkan Liao
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Tianyi Zhang
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Mingshi Yang
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Chuanzheng Sun
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China.
| |
Collapse
|
10
|
Lin CH, Funayama S, Peng SF, Kuo CL, Chung JG. The ethanol extraction of prepared Psoralea corylifolia induces apoptosis and autophagy and alteres genes expression assayed by cDNA microarray in human prostate cancer PC-3 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:770-788. [PMID: 29667321 DOI: 10.1002/tox.22564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/25/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer is the most common male reproductive system cancer. The prevalence of prostate cancer in Europe and the United States is higher than that in the Asian region. However, the treatment of prostate cancer remains unsatisfactory. Psoralea corylifolia has been used to cure this disease as Chinese medicine in the Asian region. In this study, we analyzed the components of ethanol extraction of unprepared and prepared P. corylifolia by HPLC. Psoralen and isopsoralen content from the prepared P. corylifolia is twofold higher than that from unprepared, so we use the prepared extraction in this study. However, the effects of the ethanol extraction of P. corylifolia (PCE) on PC-3 human prostate cancer cells remain unclear. PC-3 cells were treated with PCE for different time periods and cells were examined for cell morphological change and total viable cells by using contrast phase microscopy and flow cytometer, respectively. Results indicated that PCE induced cell morphological changes and cytotoxic effect in PC-3 cells in dose-dependent manners. PCE induced chromatin condensation of PC-3 cells dose-dependently. PCE also induced apoptosis and autophagy in PC-3 by western blotting and acridine orange (AO) staining, respectively. Furthermore, a complementary DNA microarray analysis demonstrated that PCE treatment led to 944 genes upregulation and 872 genes downregulation. For example, the DNA damage-associated gene DNA-damage-inducible transcript 3 (DDIT 3) had a 62.1-fold upregulation and CDK1 2.68-fold downregulation. The differential genes were classified according to the Gene Ontology. Furthermore, GeneGo software was used for the key genes involved and their possible interaction pathways. Those genes were affected by P. corylifolia, which provided information for the understanding of the antiprostate cancer mechanism at the genetic level and provide additional targets for the treatments of human prostate cancer.
Collapse
Affiliation(s)
- Chia-Hsin Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Shinji Funayama
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University Saitama, Saitama, Japan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, 404, Taiwan, Taichung
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
11
|
Fan T, Huang Z, Wang W, Zhang B, Xu Y, Mao Z, Chen L, Hu H, Geng Q. Proteasome inhibition promotes autophagy and protects from endoplasmic reticulum stress in rat alveolar macrophages exposed to hypoxia-reoxygenation injury. J Cell Physiol 2018; 233:6748-6758. [PMID: 29741768 DOI: 10.1002/jcp.26516] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Alveolar macrophages play vital roles in acute lung injury, and macrophage response to hypoxia play relevant roles to disease mechanisms. There is growing evidence that cell death pathways play crucial roles in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of these processes. However, the functional role of proteasome in alveolar macrophages exposed to hypoxia-reoxygenation (H/R) injury is unknown. We aimed to investigate the function of proteasome on alveolar macrophages exposed to H/R and the underlying mechanisms. NR8383 cells were pretreated with proteasome activator sulforaphane (SFN) or inhibitor MG-132 for 1 hr, and then submitted to 2/6 hr, 4/6 hr, and 6/6 hr H/R treatment. Cell viability was assessed with MTT assay. Autophagy was monitored using electron transmission microscope and flow cytometry and western blotting. The endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways were equally analyzed by western blotting. Cell apoptosis was detected by immunohistochemistry, caspase3/7 activity, and western blotting. The viability of NR8383 cells exposed to H/R was affected by proteasome activity and proteasome inhibition significantly inhibited cell death. Treatment with MG-132 led to autophagy activation and induced the survival of NR8383 cells exposed to H/R. Pretreatment with SFN significantly decreased cell autophagy and induced cell death. ER stress was activated in H/R-treated NR8383 cells, and SFN further promoted ER stress whereas proteasome inhibition led to contrary results. Proteasome inhibtion hindered cell apoptosis as demonstrated by decreased caspase-3/7 activity, immunolabelling, and western blot results. Proteasome inhibition might be a promising approach for treating H/R injury-related lung diseases.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Zhixin Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Boyou Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Yao Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Zhangfan Mao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Lei Chen
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Hao Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan
| |
Collapse
|
12
|
Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Respir Res 2018; 19:50. [PMID: 29587748 PMCID: PMC5872399 DOI: 10.1186/s12931-018-0756-5] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.
Collapse
Affiliation(s)
- Erica K Y Fan
- Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
13
|
Zhan L, Zhang Y, Su W, Zhang Q, Chen R, Zhao B, Li W, Xue R, Xia Z, Lei S. The Roles of Autophagy in Acute Lung Injury Induced by Myocardial Ischemia Reperfusion in Diabetic Rats. J Diabetes Res 2018; 2018:5047526. [PMID: 29850605 PMCID: PMC5903337 DOI: 10.1155/2018/5047526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with diabetes are vulnerable to myocardial ischemia reperfusion (IR) injury, which may also induce acute lung injury (ALI) due to overaccumulation of reactive oxygen species (ROS) and inflammation cytokine in circulation. Despite autophagy plays a significant role in diabetes and pulmonary IR injury, the role of autophagy in ALI secondary to myocardial IR in diabetes remains largely elusive. We aimed to investigate pulmonary autophagy status and its roles in oxidative stress and inflammation reaction in lung tissues from diabetic rats subjected to myocardial IR. Control or diabetic rats were either treated with or without autophagy inducer rapamycin (Rap) or autophagy inhibitor 3-methyladenine (3-MA) before myocardial IR, which was achieved by occluding the left anterior descending coronary artery for 30 min and followed by reperfusion for 120 min. Diabetic rats subjected to myocardial IR showed more serious ALI with higher lung injury score and WET/DRY ratio and lower PaO2 as compared with control rats, accompanied with impaired autophagy indicated by reduced LC-3II/LC-3I ratio and Beclin-1 expression, decreased superoxide dismutase (SOD) activity, and increased 15-F2t-Isoprostane formation in lung tissues, as well as increased levels of leukocyte count and proinflammatory cytokines in BAL fluid. Improving autophagy with Rap significantly attenuated all these changes, but the autophagy inhibitor 3-MA exhibited adverse or opposite effects as Rap. In conclusion, diabetic lungs are more vulnerable to myocardial IR, which are involved in impaired autophagy. Improving autophagy could attenuate ALI induced by myocardial IR in diabetic rats, possibly through inhibiting inflammatory reaction and oxidative stress.
Collapse
Affiliation(s)
- Liying Zhan
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Zhang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiongxia Zhang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Xue
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Hung TH, Hsieh TT, Wu CP, Li MJ, Yeh YL, Chen SF. Mammalian target of rapamycin signaling is a mechanistic link between increased endoplasmic reticulum stress and autophagy in the placentas of pregnancies complicated by growth restriction. Placenta 2017; 60:9-20. [PMID: 29208245 DOI: 10.1016/j.placenta.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Increased endoplasmic reticulum (ER) stress and autophagy have been noted in the placentas of pregnancies complicated by idiopathic intrauterine growth restriction (IUGR); however, the cause of these phenomena remains unclear. We surmised that oxygen-glucose deprivation (OGD) may increase ER stress and autophagy and that mammalian target of rapamycin (mTOR) signaling is involved in regulating placental ER stress and autophagy in pregnancies complicated by IUGR. METHODS We obtained placentas from women with normal term pregnancies and pregnancies complicated by IUGR to compare ER stress, mTOR signaling, and levels of autophagy-related proteins between the two groups and used primary cytotrophoblast cells treated with or without salubrinal (an ER stress inhibitor), MHY1485 (an mTOR activator), or rapamycin (an mTOR inhibitor) to investigate the effects of OGD on ER stress, mTOR activity, and autophagy levels in vitro. RESULTS Women with pregnancies complicated by IUGR displayed higher placental ER stress and autophagy levels but lower mTOR activity than women with normal pregnancies. Furthermore, OGD increased ER stress, regulated in development and DNA damage responses-1 (REDD1), phosphorylated tuberous sclerosis complex 2 (TSC2), and autophagy levels and decreased mTOR activity compared to the standard culture condition; however, the salubrinal treatment attenuated these changes. Moreover, the administration of MHY1485 or rapamycin to OGD-treated cells decreased or increased autophagy levels, respectively. DISCUSSION Based on our results, mTOR is a mechanistic link between OGD-induced ER stress and autophagy in cytotrophoblast cells; thus, mTOR plays an essential role in the pathogenesis of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - T'sang-T'ang Hsieh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meng-Jen Li
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Lin Yeh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Hu Y, Li Z, Wang L, Deng L, Sun J, Jiang X, Zhang Y, Tian L, Wang Y, Bai W. Scandenolone, a natural isoflavone derivative from Cudrania tricuspidata fruit, targets EGFR to induce apoptosis and block autophagy flux in human melanoma cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|