1
|
Plesselova S, Calar K, Axemaker H, Sahly E, Bhagia A, Faragher JL, Fink DM, de la Puente P. Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer. Cell Mol Bioeng 2024; 17:345-367. [PMID: 39513004 PMCID: PMC11538101 DOI: 10.1007/s12195-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/26/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00817-y.
Collapse
Affiliation(s)
- Simona Plesselova
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Kristin Calar
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Hailey Axemaker
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Emma Sahly
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- St. Olaf College, Northfield, MN USA
| | - Amrita Bhagia
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Jessica L. Faragher
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Darci M. Fink
- Department of Chemistry, Biochemistry & Physics, South Dakota State University, Brookings, SD USA
| | - Pilar de la Puente
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- Department of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Flow Cytometry Core, Sanford Research, Sioux Falls, SD USA
| |
Collapse
|
2
|
Zhang Y, Zheng X, Huang Y, Li S, Li X, Zhu L. EDB-FN-targeted probes for near infrared fluorescent imaging and positron emission tomography imaging of breast cancer in mice. Sci Rep 2024; 14:22056. [PMID: 39333775 PMCID: PMC11437091 DOI: 10.1038/s41598-024-73362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The extra domain B splice variant of fibronectin (EDB-FN), which is overexpressed in several cancers, is an approved diagnostic and therapeutic target of cancers. The aim of this study was to evaluate the EDB-FN-targeting peptide EDBp as a noninvasive imaging modality for molecular imaging of breast cancer in mice. Western blot, flow cytometry and immunofluorescence were used to assess the expression level of EDB-FN and its binding to EDRp in MCF7, SKBR3, 4T1, EMT6, MDA-MB-231 and MDA-MB-453 cells. Establishment MDA-MB-231-luc cells-based subcutaneous tumor model mice or pulmonary metastasis model mice. The EDRp molecular probes to perform fluorescent probes for near-infrared fluorescence (NIRF)·and PET imaging of model mice. Our results demonstrate that EDBp-Cy5 had a strong binding ability to the MDA-MB-231 cells and exhibited specific tumor accumulation in MDA-MB-231 subcutaneous and pulmonary metastasis model mice. Importantly, the EDBp peptide-based radiotracer [18F]-AlF-NOTA-EDBp provided excellent diagnostic value for positron emission tomography (PET) imaging of breast cancer, especially in subcutaneous model mice. The uptake of [18F]-AlF-NOTA-EDBp in subcutaneous tumors (6.53 ± 0.89%, ID/g) was unexpectedly higher than that in the kidney (4.96 ± 0.20, %ID/g). The high tumor uptake of these probes in mice suggests their potential for application in imaging of EDB-FN-positive breast cancer for disease staging of regional and distant metastases.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xiaobin Zheng
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xinling Li
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China.
| | - Lijun Zhu
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
4
|
Eigentler A, Handle F, Schanung S, Degen A, Hackl H, Erb HHH, Fotakis G, Hoefer J, Ploner C, Jöhrer K, Heidegger I, Pircher A, Klotz W, Herold M, Schäfer G, Culig Z, Puhr M. Glucocorticoid treatment influences prostate cancer cell growth and the tumor microenvironment via altered glucocorticoid receptor signaling in prostate fibroblasts. Oncogene 2024; 43:235-247. [PMID: 38017134 PMCID: PMC10798901 DOI: 10.1038/s41388-023-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Despite significant therapeutic advances in recent years, treatment of metastatic prostate cancer (PCa) remains palliative, owing to the inevitable occurrence of drug resistance. There is increasing evidence that epithelial glucocorticoid receptor (GR) signaling and changes in the tumor-microenvironment (TME) play important roles in this process. Since glucocorticoids (GCs) are used as concomitant medications in the course of PCa treatment, it is essential to investigate the impact of GCs on stromal GR signaling in the TME. Therefore, general GR mRNA and protein expression was assessed in radical prostatectomy specimens and metastatic lesions. Elevated stromal GR signaling after GC treatment resulted in altered GR-target gene, soluble protein expression, and in a morphology change of immortalized and primary isolated cancer-associated fibroblasts (CAFs). Subsequently, these changes affected proliferation, colony formation, and 3D-spheroid growth of multiple epithelial PCa cell models. Altered expression of extra-cellular matrix (ECM) and adhesion-related proteins led to an ECM remodeling. Notably, androgen receptor pathway inhibitor treatments did not affect CAF viability. Our findings demonstrate that GC-mediated elevated GR signaling has a major impact on the CAF secretome and the ECM architecture. GC-treated fibroblasts significantly influence epithelial tumor cell growth and must be considered in future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Schanung
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Degen
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Holger H H Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Georgios Fotakis
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Jöhrer
- Innovacell GesmbH, Mitterweg 25, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Klotz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Herold
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Pardini E, Cucchiara F, Palumbo S, Tarrini G, Di Vita A, Coppedè F, Nicolì V, Guida M, Maestri M, Ricciardi R, Aprile V, Ambrogi MC, Barachini S, Lucchi M, Petrini I. Somatic mutations of thymic epithelial tumors with myasthenia gravis. Front Oncol 2023; 13:1224491. [PMID: 37671056 PMCID: PMC10475716 DOI: 10.3389/fonc.2023.1224491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Background Thymic epithelial tumors are rare malignant neoplasms that are frequently associated with paraneoplastic syndromes, especially myasthenia gravis. GTF2I is an oncogene mutated in a subgroup of thymomas that is reputed to drive their growth. However, for GTF2I wild-type tumors, the relevant mutations remain to be identified. Methods We performed a meta-analysis and identified 4,208 mutations in 339 patients. We defined a panel of 63 genes frequently mutated in thymic epithelial tumors, which we used to design a custom assay for next-generation sequencing. We sequenced tumor DNA from 67 thymomas of patients with myasthenia gravis who underwent resection in our institution. Results Among the 67 thymomas, there were 238 mutations, 83 of which were in coding sequences. There were 14 GTF2I mutations in 6 A, 5 AB, 2 B2 thymomas, and one in a thymoma with unspecified histology. No other oncogenes showed recurrent mutations, while sixteen tumor suppressor genes were predicted to be inactivated. Even with a dedicated assay for the identification of specific somatic mutations in thymic epithelial tumors, only GTF2I mutations were found to be significantly recurrent. Conclusion Our evaluation provides insights into the mutational landscape of thymic epithelial tumors, identifies recurrent mutations in different histotypes, and describes the design and implementation of a custom panel for targeted resequencing. These findings contribute to a better understanding of the genetic basis of thymic epithelial tumors and may have implications for future research and treatment strategies.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Sara Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Tarrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Alessia Di Vita
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Coppedè
- Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vanessa Nicolì
- Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Melania Guida
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vittorio Aprile
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Marcello C. Ambrogi
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Hall RC, Vaidya AM, Schiemann WP, Pan Q, Lu ZR. RNA-Seq Analysis of Extradomain A and Extradomain B Fibronectin as Extracellular Matrix Markers for Cancer. Cells 2023; 12:cells12050685. [PMID: 36899821 PMCID: PMC10000746 DOI: 10.3390/cells12050685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.
Collapse
Affiliation(s)
- Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M. Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quintin Pan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187; Fax: +1-216-368-4969
| |
Collapse
|
7
|
Lu ZR, Laney V, Li Y. Targeted Contrast Agents for Magnetic Resonance Molecular Imaging of Cancer. Acc Chem Res 2022; 55:2833-2847. [PMID: 36121350 DOI: 10.1021/acs.accounts.2c00346] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnetic resonance imaging (MRI) is a clinical imaging modality that provides high-resolution images of soft tissues, including cancerous lesions. Stable gadolinium(III) chelates have been used as contrast agents (CA) in MRI to enhance the contrast between the tissues of interest and surrounding tissues for accurate diagnostic imaging. Magnetic resonance molecular imaging (MRMI) of cancer requires targeted CA to specifically elucidate cancer-associated molecular processes and can provide high-resolution delineation and characterization of cancer for precision medicine. The main challenge for MRMI is the lack of sufficient sensitivity to detect the low concentration of the cellular oncogenic markers. In addition, targeted CA must satisfy regulatory safety requirements prior to clinical development. Up to now, there is no FDA-approved targeted CA for MRMI of cancer.In this Account, we discuss the latest developments in the design and development of clinically translatable targeted CA for MRMI of cancer, with an emphasis on our own research. The primary limitation of MRMI can be overcome by designing small molecular targeted CA to target abundant cancer-specific targets found in the tumor microenvironment (TME). For example, aggressive tumors have a unique extracellular matrix (ECM) composed of oncoproteins, which can be used as targetable markers for MRMI. We have designed and prepared small peptide conjugates of clinical contrast agents, including Gd-DTPA and Gd-DOTA, to target fibrin-fibronectin clots in tumors. These small molecular CA have been effective in enhancing MRMI detection of solid tumors and have demonstrated the ability to detect submillimeter cancer micrometastases in mouse tumor models, exceeding the detection limit of current clinical imaging modalities. We have also identified extradomain B fibronectin (EDB-FN), an oncofetal subtype of fibronectin, as a promising TME target to leverage in the design and development of small peptide targeted CA for clinical translation. The expression level of EDB-FN is correlated with invasiveness of cancer cells and poor patient survival of multiple cancer types. ZD2 peptide with a sequence of seven amino acids (TVRTSAD) was identified to specifically bind to the EDB protein fragment. Several ZD2 conjugates of macrocyclic GBCA, including Gd-DOTA and Gd(HP-DO3A), have been synthesized and tested in mouse tumor models. ZD2-N3-Gd(HP-DO3A) (MT218) with a high r1 relaxivity was selected as the lead agent for clinical translation. The physicochemical properties and preclinical assessments of MT218 are summarized in this Account. MRMI of EDB-FN with MT218 can effectively detect invasive tumors of multiple cancers with risk-stratification and monitor tumor response to anticancer therapies in mouse models. Currently, MT218 is in clinical trials for precision cancer MRMI. Herein, we will show that using targeted MRI contrast agents specific to abundant TME biomarkers is a pragmatic solution for effective precision cancer imaging in high spatial resolution. And thus, we illustrate a replicable approach for CA development that is vital for cancer MRMI.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden Building, Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden Building, Cleveland, Ohio 44106, United States
| | - Yajuan Li
- Molecular Theranostics, 7100 Euclid Ave, Suite 152, Cleveland, Ohio 44114, United States
| |
Collapse
|
8
|
Li Y, Gao S, Jiang H, Ayat N, Laney V, Nicolescu C, Sun W, Tweedle MF, Lu ZR. Evaluation of Physicochemical Properties, Pharmacokinetics, Biodistribution, Toxicity, and Contrast-Enhanced Cancer MRI of a Cancer-Targeting Contrast Agent, MT218. Invest Radiol 2022; 57:639-654. [PMID: 35703463 PMCID: PMC9444296 DOI: 10.1097/rli.0000000000000881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 μM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.
Collapse
Affiliation(s)
- Yajuan Li
- From the Molecular Theranostics, LLC, Cleveland
| | - Songqi Gao
- From the Molecular Theranostics, LLC, Cleveland
| | | | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Calin Nicolescu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Michael F. Tweedle
- Wright Center of Innovation, Department of Radiology, the Ohio State University, Columbus
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
9
|
Li F, Hooper AT, Golas J, Chang CPB, Neubert H, King L. Evaluation of EDB Fibronectin in Plasma, Patient-Derived Xenograft Formalin-Fixed Paraffin-Embedded and Fresh Frozen Tumor Tissues Using Immunoaffinity LC-MS/MS. J Proteome Res 2022; 21:2331-2340. [PMID: 36049057 DOI: 10.1021/acs.jproteome.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fibronectin (FN) isoform including the extradomain B (EDB) segment (EDB + FN) is a promising tumor target and is highly expressed in some tumor types, such as breast, head, and neck cancer. To date, mostly immunohistochemistry (IHC) and Western blot have been used for the analysis of EDB + FN. However, complete quantitative measurements of EDB + FN expression in a tumor and circulation are important for the development of anti-EDB therapeutics. To this end, a method using protein enrichment followed by online antipeptide antibody enrichment coupled with a nanoflow LC-MS/MS was developed to quantify EDB + FN in human and cynomolgus plasma, patient-derived xenograft (PDX) tumors, and PDX formalin-fixed paraffin-embedded (FFPE) samples. Mouse plasma EDB + FN was analyzed using a protein immunoaffinity method followed by nanoflow LC-MS/MS. EDB + FN concentrations were 63.1 pmol/g in PDX breast cancer tumor and 49.6 pmol/g in PDX head and neck tumor. Mean plasma concentration was 1.1 nM (pmol/mL, 47.4 ng/mL) in normal healthy humans and 0.35 nM (15.1 ng/mL) in naive cynomolgus. The assay sensitivity was 0.018 nM based on calibration with recombinant human EDB + FN (rhEDB + FN).
Collapse
Affiliation(s)
- Fengping Li
- BioMedicine Design, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United States
| | - Andrea T Hooper
- Oncology Research & Development, Pfizer Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | - Jonathon Golas
- Oncology Research & Development, Pfizer Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | - Chao-Pei Betty Chang
- Oncology Research & Development, Pfizer Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | - Hendrik Neubert
- BioMedicine Design, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United States
| | - Lindsay King
- Clinical Pharmacology, Global Product Development, Pfizer Inc. 610 Main St, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Li J, Wang Y, Wang R, Wu MY, Shan J, Zhang YC, Xu HM. Study on the molecular mechanisms of tetrandrine against pulmonary fibrosis based on network pharmacology, molecular docking and experimental verification. Heliyon 2022; 8:e10201. [PMID: 36046534 PMCID: PMC9421403 DOI: 10.1016/j.heliyon.2022.e10201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aims This study aims to screen the potential targets of tetrandrine (Tet) against pulmonary fibrosis (PF) based on network pharmacological analysis, molecular docking and experimental verification. Main methods The network pharmacology methods were employed to predict targets, construct Tet-PF-intersection target-pathway networks, and screen the candidate targets. The molecular docking was performed using AutoDockTools1.5.6. TGF-β1-induced human lung adenocarcinoma A549 cells were used as an in vitro experimental verification model, taking dexamethasone (Dex) as the positive control, to verify the effects of Tet on the mRNA expression of the candidate targets. Key findings Six candidate targets were predicted based on network pharmacology and molecular docking, namely PIK3CA, PDPK1, RAC1, PTK2, KDR, and RPS6KB1. The experimental verification results showed that Dex and Tet presented quite different pharmacological effects. Specifically, compared with the model group, both Dex and Tet (5 μΜ) significantly increased the mRNA expression of PIK3CA and KDR (P < 0.001). Dex up-regulated the mRNA expression of PDPK1 and RAC1, while Tet (1.25 μΜ) down-regulated (P < 0.001). Dex up-regulated the mRNA expression of PTK2, but Tet had no effect. Dex down-regulated RPS6KB1 mRNA expression, while Tet (5 μΜ) up-regulated (P < 0.01). Significance Combined with the results of theoretical calculation and experimental verification, and considering the roles of these targets in the pathogenesis of PF, Tet might antagonize PF by acting on PDPK1 and RAC1. The results of this study will provide scientific reference for the prevention and clinical diagnosis and treatment of PF.
Collapse
Affiliation(s)
- Jie Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yi Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rui Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Meng-Yu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Jing Shan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ying-Chi Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| |
Collapse
|
11
|
Piñeiro-Llanes J, Rodriguez CD, Farhadi SA, Hudalla GA, Sarntinoranont M, Simmons CS. Experimental and Computational Models of Transport of Galectin-3 Through Glycosylated Matrix. Ann Biomed Eng 2022; 50:703-715. [PMID: 35352215 PMCID: PMC10621651 DOI: 10.1007/s10439-022-02949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
Abstract
Altered extracellular matrix (ECM) production is a hallmark of many fibroproliferative diseases, including certain cancers. The high incidence of glycan-rich components within altered ECM makes the use of glycan-binding proteins such as Galectin-3 (G3) a promising therapeutic strategy. The complexity of ECM as a rich 3D network of proteins with varied glycosylation states makes it challenging to determine the retention of glycan-binding proteins in altered ECM environments. Computational models capable of predicting the transport of glycan-binding proteins in altered ECM can benefit the design and testing of such proteins and associated novel therapeutic strategies. However, such computational models require many kinetic parameters that cannot be estimated from traditional 2D pharmacokinetic assays. To validate transport properties of G3 in 3D ECM constructs, we developed a species transport model that includes diffusion and matrix-binding components to predict retention of G3 fusion proteins in glycan-rich ECM. By iteratively comparing our computational model to experimental results, we are able to determine a reasonable range of parameters for a robust computational model of G3 transport. We anticipate this overall approach to building a data-driven model is translatable to other ECM-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Camille D Rodriguez
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Shaheen A Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Malisa Sarntinoranont
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Petrini I, Sollini M, Bartoli F, Barachini S, Montali M, Pardini E, Burzi IS, Erba PA. ED-B-Containing Isoform of Fibronectin in Tumor Microenvironment of Thymomas: A Target for a Theragnostic Approach. Cancers (Basel) 2022; 14:cancers14112592. [PMID: 35681572 PMCID: PMC9179240 DOI: 10.3390/cancers14112592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The extra-domain B fibronectin (ED-B FN) is highly expressed in thymic epithelial tumors (TETs), as demonstrated by in vivo targeting using 131I-labeled L19 small immunoprotein (131I-L19-SIP) and immunohistochemistry with a predominant expression by stromal cells of a thymoma microenvironment rather than epithelial cells. Such high expression derived from the induction of stromal cells shifts FN production to the ED-B subtype. Our results suggest that Radretumab radioimmunotherapy (R-RIT) inefficacy is not related to low TET ED-B expression but to multifactorial aspects including patients’ inherent characteristics, the pattern expression of the target, the biological characteristics of the tumor, and the format of the target agent, which contribute to the resistance of tumor cells to treatment. Abstract Aim: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra-domain B fibronectin (ED-B FN). Material and methods: The stromal pattern of ED-B FN expression was investigated through tumor specimen collection and molecular profiling in 11 patients with recurrent TETs enrolled in prospective theragnostic phase I/II trials with Radretumab, an ED-B FN specific recombinant human antibody. Radretumab radioimmunotherapy (R-RIT) was offered to patients who exhibited the target expression. Experiments included immunochemical analysis (ICH), cell cultures, immunophenotypic analysis, Western blot, slot-blot assay, and quantitative RT-PCR of two primary thymoma cultures we obtained from patients’ samples and in the Ty82 cell line. Results: The in vivo scintigraphic demonstration of ED-B FN expression resulted in R-RIT eligibility in 8/11 patients, of which seven were treated. The best observed response was disease stabilization (n = 5/7) with a duration of 4.3 months (range 3–5 months). IHC data confirmed high ED-B FN expression in the peripherical microenvironment rather than in the center of the tumor, which was more abundant in B3 thymomas. Further, there was a predominant expression of ED-B FN by the stromal cells of the thymoma microenvironment rather than the epithelial cells. Conclusions: Our data support the hypothesis that thymomas induce stromal cells to shift FN production to the ED-B subtype, likely representing a favorable hallmark for tumor progression and metastasis. Collectively, results derived from clinical experience and molecular insights of the in vitro experiments suggested that R-RIT inefficacy is unlikely related to low target expression in TET, being the mechanism of R-RIT resistance eventually related to patients’ susceptibility (i.e., inherent characteristics), the pattern expression of the target (i.e., at periphery), the biological characteristics of the tumor (i.e., aggressive and resistant phenotypes), and/or to format of the target agent (i.e., 131I-L19-SIP).
Collapse
Affiliation(s)
- Iacopo Petrini
- General Pathology, Department of Translational Research & New Technologies in Surgery and Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy;
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy;
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
| | - Serena Barachini
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Marina Montali
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Eleonora Pardini
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Irene Sofia Burzi
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Centre, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: ; Tel.: +39-050-992115
| |
Collapse
|
13
|
Baldini E, Tuccilli C, Pironi D, Catania A, Tartaglia F, Di Matteo FM, Palumbo P, Arcieri S, Mascagni D, Palazzini G, Tripodi D, Maturo A, Vergine M, Tarroni D, Lori E, Ferent IC, De Vito C, Fallahi P, Antonelli A, Censi S, D’Armiento M, Barollo S, Mian C, Morrone A, D’Andrea V, Sorrenti S, Ulisse S. Expression and Clinical Utility of Transcription Factors Involved in Epithelial-Mesenchymal Transition during Thyroid Cancer Progression. J Clin Med 2021; 10:jcm10184076. [PMID: 34575184 PMCID: PMC8469282 DOI: 10.3390/jcm10184076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factors involved in epithelial–mesenchymal transition (EMT-TFs) silence the genes expressed in epithelial cells (e.g., E-cadherin) while inducing those typical of mesenchymal cells (e.g., vimentin). The core set of EMT-TFs comprises Zeb1, Zeb2, Snail1, Snail2, and Twist1. To date, information concerning their expression profile and clinical utility during thyroid cancer (TC) progression is still incomplete. We evaluated the EMT-TF, E-cadherin, and vimentin mRNA levels in 95 papillary TC (PTC) and 12 anaplastic TC (ATC) tissues and correlated them with patients’ clinicopathological parameters. Afterwards, we corroborated our findings by analyzing the data provided by a case study of the TGCA network. Compared with normal tissues, the expression of E-cadherin was found reduced in PTC and more strongly in ATC, while the vimentin expression did not vary. Among the EMT-TFs analyzed, Twist1 seems to exert a prominent role in EMT, being significantly associated with a number of PTC high-risk clinicopathological features and upregulated in ATC. Nonetheless, in the multivariate analysis, none of the EMT-TFs displayed a prognostic value. These data suggest that TC progression is characterized by an incomplete EMT and that Twist1 may represent a valuable therapeutic target warranting further investigation for the treatment of more aggressive thyroid cancers.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Chiara Tuccilli
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Daniele Pironi
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Antonio Catania
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Francesco Tartaglia
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Filippo Maria Di Matteo
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Piergaspare Palumbo
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Stefano Arcieri
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Domenico Mascagni
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Giorgio Palazzini
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Domenico Tripodi
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Alessandro Maturo
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Massimo Vergine
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Danilo Tarroni
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Eleonora Lori
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Iulia Catalina Ferent
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy;
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (P.F.); (A.A.)
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (P.F.); (A.A.)
| | - Simona Censi
- Department of Medicine, University of Padua, 35128 Padua, Italy; (S.C.); (S.B.); (C.M.)
| | - Matteo D’Armiento
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (M.D.); (A.M.)
| | - Susy Barollo
- Department of Medicine, University of Padua, 35128 Padua, Italy; (S.C.); (S.B.); (C.M.)
| | - Caterina Mian
- Department of Medicine, University of Padua, 35128 Padua, Italy; (S.C.); (S.B.); (C.M.)
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (M.D.); (A.M.)
| | - Vito D’Andrea
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Salvatore Sorrenti
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
| | - Salvatore Ulisse
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (E.B.); (C.T.); (D.P.); (A.C.); (F.T.); (F.M.D.M.); (P.P.); (S.A.); (D.M.); (G.P.); (D.T.); (A.M.); (M.V.); (D.T.); (E.L.); (I.C.F.); (V.D.); (S.S.)
- Correspondence:
| |
Collapse
|
14
|
Park SE, El-Sayed NS, Shamloo K, Lohan S, Kumar S, Sajid MI, Tiwari RK. Targeted Delivery of Cabazitaxel Using Cyclic Cell-Penetrating Peptide and Biomarkers of Extracellular Matrix for Prostate and Breast Cancer Therapy. Bioconjug Chem 2021; 32:1898-1914. [PMID: 34309357 DOI: 10.1021/acs.bioconjchem.1c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted drug delivery for cancer therapy is an emerging area of research. Cancer cells overexpress certain biomarkers that can be exploited for their targeted therapy. Cyclic cell-penetrating peptides (cCPP) are increasingly assessed for intracellular cargo delivery in cancer cells. In this study, we have conjugated cabazitaxel (CBT) to the cCPP via an ester bond to assist CBT release in the tumor's acidic environment. Integrin targeting (RGDC, TP1) and extra domain B of fibronectin (EDB-Fn) targeting (CTVRTSAD, TP2) peptides were linked to the peptide-drug conjugate (cCPP-CBT) via a disulfide bond to provide targeting ability to the conjugates until they reach the tumor site. Conjugate 11 (TP1-cCPP-CBT) and conjugate 16 (TP2-cCPP-CBT) showed approximately 3-4-fold less antiproliferative activity on integrin and EDB-FN overexpressing cancer cell lines as compared to the CBT analogue used for comparison (CBT-GA, 5). Conjugates (11 and 16) were less toxic (31-34-fold less antiproliferative activity) to the normal human embryonic kidney (HEK-293) cells as compared to CBT. The flow cytometry and quantitative confocal microscopy data further confirm the selective efficacy of conjugates (TP1-cCPP-FAM (10) and TP1-cCPP-FAM (15)) toward biomarker overexpressing cancer cells. Furthermore, the stability and release studies of conjugate 11 revealed its therapeutic potential under different conditions, such as human plasma, different pHs, and redox conditions. This conjugation strategy was proven to enhance chemotherapeutics agents' efficacy and targeting and can be applied to other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Kiumars Shamloo
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039, India
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
15
|
Kader A, Brangsch J, Kaufmann JO, Zhao J, Mangarova DB, Moeckel J, Adams LC, Sack I, Taupitz M, Hamm B, Makowski MR. Molecular MR Imaging of Prostate Cancer. Biomedicines 2020; 9:1. [PMID: 33375045 PMCID: PMC7822017 DOI: 10.3390/biomedicines9010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
This review summarizes recent developments regarding molecular imaging markers for magnetic resonance imaging (MRI) of prostate cancer (PCa). Currently, the clinical standard includes MR imaging using unspecific gadolinium-based contrast agents. Specific molecular probes for the diagnosis of PCa could improve the molecular characterization of the tumor in a non-invasive examination. Furthermore, molecular probes could enable targeted therapies to suppress tumor growth or reduce the tumor size.
Collapse
Affiliation(s)
- Avan Kader
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
- Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Julia Brangsch
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Building 21, 14163 Berlin, Germany
| | - Jan O. Kaufmann
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Jing Zhao
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
| | - Dilyana B. Mangarova
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163 Berlin, Germany
| | - Jana Moeckel
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
| | - Lisa C. Adams
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
| | - Matthias Taupitz
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
| | - Bernd Hamm
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
| | - Marcus R. Makowski
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (J.O.K.); (J.Z.); (D.B.M.); (J.M.); (L.C.A.); (I.S.); (M.T.); (B.H.); (M.R.M.)
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital Westminster Bridge Road, London SE1 7EH, UK
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Munich (TUM), Ismaninger Str. 22, 81675 München, Germany
| |
Collapse
|
16
|
UDP-glucose 6-dehydrogenase knockout impairs migration and decreases in vivo metastatic ability of breast cancer cells. Cancer Lett 2020; 492:21-30. [PMID: 32768525 DOI: 10.1016/j.canlet.2020.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Dysregulated metabolism is a hallmark of cancer that supports tumor growth and metastasis. One understudied aspect of cancer metabolism is altered nucleotide sugar biosynthesis, which drives aberrant cell surface glycosylation known to support various aspects of cancer cell behavior including migration and signaling. We examined clinical association of nucleotide sugar pathway gene expression and found that UGDH, encoding UDP-glucose 6-dehydrogenase which catalyzes production of UDP-glucuronate, is associated with worse breast cancer patient survival. Knocking out the mouse homolog Ugdh in highly-metastatic 6DT1 breast cancer cells impaired migration ability without affecting in vitro proliferation. Further, Ugdh-KO resulted in significantly decreased metastatic capacity in vivo when the cells were orthotopically injected in syngeneic mice. Our experiments show that UDP-glucuronate biosynthesis is critical for metastasis in a mouse model of breast cancer.
Collapse
|
17
|
Huaman J, Ogunwobi OO. Circulating Tumor Cell Migration Requires Fibronectin Acting through Integrin B1 or SLUG. Cells 2020; 9:cells9071594. [PMID: 32630254 PMCID: PMC7408126 DOI: 10.3390/cells9071594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Fibronectin (FN1) is an extracellular matrix protein gaining increasing attention for its multifaceted roles in cancer progression. Using our recently established circulating tumor cell (CTC) lines, we had demonstrated increased FN1 expression and enhanced migration in CTC lines, in comparison to primary tumor cell lines. Whether increased FN1 expression is directly required for CTC migration, and the specific role of FN1’s regulation of integrin B1 (ITGB1) and SLUG (SNAI2) in CTC migration remains unclear. Here, for the first time, we report that the knockdown of FN1, ITGB1, or SLUG expression in CTCs leads to a significant decrease in CTC migration. Knocking down two or all three of these proteins simultaneously did not further inhibit migration. We observed a corresponding increase in CTC migration when recombinant FN1 was added to CTCs. This effect was significantly impeded by prior knockdown of ITGB1 or SLUG. Using knock down experiments and western blotting analysis, we confirmed FN1’s regulation of ITGB1 and SLUG to occur via two separate, independent pathways. Consequently, we can conclude that FN1-dependent enhanced migration of CTCs requires downstream signaling through either ITGB1 or SLUG and that FN1 regulation of ITGB1 and SLUG may have important implications for cancer progression and metastasis.
Collapse
Affiliation(s)
- Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
18
|
Gaponova AV, Rodin S, Mazina AA, Volchkov PV. Epithelial-Mesenchymal Transition: Role in Cancer Progression and the Perspectives of Antitumor Treatment. Acta Naturae 2020; 12:4-23. [PMID: 33173593 PMCID: PMC7604894 DOI: 10.32607/actanaturae.11010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
About 90% of all malignant tumors are of epithelial nature. The epithelial tissue is characterized by a close interconnection between cells through cell-cell interactions, as well as a tight connection with the basement membrane, which is responsible for cell polarity. These interactions strictly determine the location of epithelial cells within the body and are seemingly in conflict with the metastatic potential that many cancers possess (the main criteria for highly malignant tumors). Tumor dissemination into vital organs is one of the primary causes of death in patients with cancer. Tumor dissemination is based on the so-called epithelial-mesenchymal transition (EMT), a process when epithelial cells are transformed into mesenchymal cells possessing high mobility and migration potential. More and more studies elucidating the role of the EMT in metastasis and other aspects of tumor progression are published each year, thus forming a promising field of cancer research. In this review, we examine the most recent data on the intracellular and extracellular molecular mechanisms that activate EMT and the role they play in various aspects of tumor progression, such as metastasis, apoptotic resistance, and immune evasion, aspects that have usually been attributed exclusively to cancer stem cells (CSCs). In conclusion, we provide a detailed review of the approved and promising drugs for cancer therapy that target the components of the EMT signaling pathways.
Collapse
Affiliation(s)
- A. V. Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - S. Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177 Sweden
| | - A. A. Mazina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - P. V. Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| |
Collapse
|
19
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Knockdown of fibronectin extra domain B suppresses TGF-β1-mediated cell proliferation and collagen deposition in keloid fibroblasts via AKT/ERK signaling pathway. Biochem Biophys Res Commun 2020; 526:1131-1137. [PMID: 32317186 DOI: 10.1016/j.bbrc.2020.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
Keloids represent a dermal fibrotic disease characterized by excess collagen deposition and invasion of normal skin beyond the wound boundary, similar to malignant tumor features. Fibronectin extra domain B (EDB) is highly expressed in many tumors but has not been studied in keloids. The present study aimed to investigate the expression and the influence of EDB on keloid and elucidate the putative signaling pathway. We examined expression of EDB and the effects of EDB on fibroblast proliferation, apoptosis and the expression of the related proteins and genes. The level of phosphorylation of Smad, ERK, and AKT was estimated to elucidate the signaling pathways. The results showed that EDB in human keloid tissues and fibroblasts was overexpressed. EDB knockdown suppressed the cell proliferation of keloid fibroblasts (KFs) treated by transforming growth factor-β1 (TGF-β1). Also, the phosphorylation of Smad, ERK, and AKT in TGF-β1-induced KFs was inhibited In addition, the low expression of pro-collagen-I (Col-I) and Col-III protein and mRNA level was observed in the siEDB group. EDB knockdown inhibited cell proliferation and suppressed collagen deposition in TGF-1-induced KFs. The underlying mechanism is the activation of TGF-β1/Smad, ERK, and AKT signaling pathways. Together, the results suggested that EDB is a promising therapeutic target for keloid clinical treatment.
Collapse
|
21
|
Abstract
Fibronectin (FN) is a large glycoprotein that plays a diverse set of biological roles. This chapter discusses the structural biology, the normal biological functions, and the molecular role of FN and its splice variants in cancer cell proliferation, metastasis, and chemoresistance. The potential role of FN in cancer imaging is discussed in detail. The chapter also discusses the future directions of basic and translational research of fibronectin in the context of the tumor microenvironment and its role in tumor biology.
Collapse
|
22
|
Sollini M, di Tommaso L, Kirienko M, Piombo C, Erreni M, Lania AG, Erba PA, Antunovic L, Chiti A. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome. EJNMMI Res 2019; 9:93. [PMID: 31617002 PMCID: PMC6794333 DOI: 10.1186/s13550-019-0559-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Prostate-specific membrane antigen (PSMA) is overexpressed on the endothelial cells of tumor neo-vessels of several solid malignancies, including differentiated thyroid cancer (DTC). We aimed to test the potential role of PSMA as a biomarker for DTC aggressiveness and outcome prediction. We retrospectively screened all patients who underwent thyroidectomy between 1 January 2010 and 31 December 2017 in our institution. Applying the inclusion (histological diagnosis of thyroid cancer and tissue availability) and exclusion criteria (no clinical or follow-up data or diagnosis of medullary thyroid cancer), a cohort of 59 patients was selected. The monoclonal mouse anti-human PSMA antibody was used to stain tissue sections. A 3-point scale was used to score PSMA positivity: 0–5% expression was considered as negative (score 0), 6–50% as moderately positive (score 1), and 51–100% as highly positive (score 2). A cumulative score (0–10%, 11–79%, and 80–100%) was also explored. Univariate and multivariate logistic regression analyses were performed to predict the presence of distant metastases, chosen as endpoint of aggressiveness. The area under the curve (AUC) was calculated. Cox models were built to predict patient outcome in terms of recurrence, iodine refractoriness, and status at last follow-up, which were calculated using the Kaplan-Meier failure function. Results At immunostaining, 12, 25, and 22 patients had scores of 0, 1, and 2, respectively. According to the cumulative score, PSMA expression was ≤ 10% in 17 cases, 11–79% in 31 cases, and ≥ 80% in 11 cases. At multivariate analysis, age, sex, histotype, vascular invasion, T and N parameters, and PSMA positivity were significant predictors of distant metastases. The AUC was 0.92. Recurrence or progression occurred in 19/59 patients. Twelve patients developed radioiodine (RAI) refractoriness, after a median time of 17 months (range 2–32). One patient died of DTC; 46 of the 58 patients alive at last follow-up were disease free. Median DFS was 23 months (range 3–82). The final multivariate model to predict RAI refractoriness included as covariates the stage, high PSMA expression (≥ 80%), and the interaction between moderate PSMA expression (11–79%) and stage. Conclusions PSMA, a marker of neovasculature formation expressed by DTC, contributes in the prediction of tumor aggressiveness and patient outcome. Electronic supplementary material The online version of this article (10.1186/s13550-019-0559-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy. .,Department of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.
| | - Luca di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Chiara Piombo
- Department of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marco Erreni
- Department of Advanced Optical Microscopy, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Andrea Gerardo Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Endocrinology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
| | - Lidija Antunovic
- Department of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
23
|
Scott LE, Weinberg SH, Lemmon CA. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2019; 7:135. [PMID: 31380370 PMCID: PMC6658819 DOI: 10.3389/fcell.2019.00135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a critical process in embryonic development in which epithelial cells undergo a transdifferentiation into mesenchymal cells. This process is essential for tissue patterning and organization, and it has also been implicated in a wide array of pathologies. While the intracellular signaling pathways that regulate EMT are well-understood, there is increasing evidence that the mechanical properties and composition of the extracellular matrix (ECM) also play a key role in regulating EMT. In turn, EMT drives changes in the mechanics and composition of the ECM, creating a feedback loop that is tightly regulated in healthy tissues, but is often dysregulated in disease. Here we present a review that summarizes our understanding of how ECM mechanics and composition regulate EMT, and how in turn EMT alters ECM mechanics and composition.
Collapse
Affiliation(s)
| | | | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
24
|
Han Z, Sergeeva O, Roelle S, Cheng H, Gao S, Li Y, Lee Z, Lu ZR. Preparation and Evaluation of ZD2 Peptide 64Cu-DOTA Conjugate as a Positron Emission Tomography Probe for Detection and Characterization of Prostate Cancer. ACS OMEGA 2019; 4:1185-1190. [PMID: 30729224 PMCID: PMC6356864 DOI: 10.1021/acsomega.8b02729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Positron emission tomography (PET) is a sensitive modality for cancer molecular imaging. We aim to develop a PET probe for sensitive detection and risk stratification of prostate cancer by targeting an abundant microenvironment oncoprotein, extradomain-B fibronectin (EDB-FN). The probe consists of a small ZD2 peptide specific to EDB-FN and a 64Cu-DOTA chelate. The probe was synthesized using standard solid-phase peptide chemistry and chelated to 64Cu prior to imaging. PET images were acquired at 4 and 22 h after intravenously injecting a 200 μCi probe into mice bearing human PC3 and LNCaP tumors, which represent highly aggressive and slow-growing prostate tumors, respectively. At 4 and 22 h postinjection, tumors could be clearly identified in the PET images. A significant higher signal was observed in PC3 tumors than in LNCaP tumors at 22 h (p = 0.01). Probe accumulation was also higher in PC3 tumors at 24 h. These data demonstrated that PET molecular imaging of EDB-FN in the tumor microenvironment of prostate cancer allows efficient differentiation of PC3 and LNCaP tumors in vivo. The ZD2 peptide-targeted PET probe shows potential in the detection and characterization of high-risk prostate cancer to improve the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Zheng Han
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Olga Sergeeva
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sarah Roelle
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Han Cheng
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Songqi Gao
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yajuan Li
- Molecular
Theranostics, Cleveland, Ohio 44115, United
States
| | - Zhenghong Lee
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical Engineering and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
Ayat N, Qin JC, Cheng H, Roelle S, Gao S, Li Y, Lu ZR. Optimization of ZD2 Peptide Targeted Gd(HP-DO3A) for Detection and Risk-Stratification of Prostate Cancer with MRI. ACS Med Chem Lett 2018; 9:730-735. [PMID: 30034609 PMCID: PMC6047029 DOI: 10.1021/acsmedchemlett.8b00172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
The aim of this work is to optimize a peptide targeted macrocyclic MRI contrast agent for detection and risk-stratification of aggressive prostate cancer. The optimized agent was prepared using click chemistry in the presence of CuSO4 and ascorbate at room temperature. The T1 and T2 relaxivities of ZD2-N3-Gd(HP-DO3A) are 5.44 and 7.10 mM-1 s-1 at 1.4 T, and 5.53 and 7.81 mM-1 s-1 at 7 T, respectively, higher than the previously reported ZD2-Gd(HP-DO3A). The specific tumor enhancement of the agent was investigated in male nude mice bearing aggressive PC3 human prostate cancer xenografts and slow-growing LNCaP tumor xenografts. Contrast enhanced MR images were acquired using a 2D spin-echo sequence and a 3D FLASH sequence with a 7 T small animal scanner. ZD2-N3-Gd(HP-DO3A) produced robust contrast enhancement in aggressive PC3 tumors and little enhancement in slow-growing LNCaP tumors. It produced 400% and 100% CNR increases in the T1-weighted 2D spin-echo MR images and 3D FLASH images of PC3 tumors, respectively, for at least 30 min at a dose of 0.1 mmol/kg. In contrast, less than 20% CNR increase was observed in the LNCaP tumors with both sequences. The optimized targeted contrast agent has higher relaxivities and are effective to detect aggressive PC3 tumors and differentiate the aggressive cancer from the slow-growing LNCaP prostate cancer in contrast enhanced MRI. ZD2-N3-Gd(HP-DO3A) has the promise for accurate detection and risk-stratification of aggressive prostate cancer.
Collapse
Affiliation(s)
- Nadia
R. Ayat
- Case
Center for Biomolecular Engineering, Department of Biomedical Engineering,
School of Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Jing-Can Qin
- Case
Center for Biomolecular Engineering, Department of Biomedical Engineering,
School of Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Han Cheng
- Case
Center for Biomolecular Engineering, Department of Biomedical Engineering,
School of Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Sarah Roelle
- Case
Center for Biomolecular Engineering, Department of Biomedical Engineering,
School of Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Songqi Gao
- Case
Center for Biomolecular Engineering, Department of Biomedical Engineering,
School of Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
- Molecular
Theranostics, Cleveland, Ohio 44115, United
States
| | - Yajuan Li
- Molecular
Theranostics, Cleveland, Ohio 44115, United
States
| | - Zheng-Rong Lu
- Case
Center for Biomolecular Engineering, Department of Biomedical Engineering,
School of Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| |
Collapse
|
26
|
Bale S, Venkatesh P, Sunkoju M, Godugu C. An Adaptogen: Withaferin A Ameliorates in Vitro and in Vivo Pulmonary Fibrosis by Modulating the Interplay of Fibrotic, Matricelluar Proteins, and Cytokines. Front Pharmacol 2018; 9:248. [PMID: 29623041 PMCID: PMC5874319 DOI: 10.3389/fphar.2018.00248] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is chronic lung disease with only two FDA approved clinically available drugs, with limited safety profile. Inadequate therapy motivated us to explore the effect of vimentin inhibitor Withaferin A, as an anti-fibrotic agent against TGF-β1-induced in vitro fibrotic events and Bleomycin induced in vivo fibrosis with an emphasis on epithelial to mesenchymal transition (EMT), extracellular matrix deposition (ECM), inflammation, and angiogenesis. In vitro EMT and fibrotic events were induced by TGF-β1 in alveolar epithelial cells and human fetal lung fibroblasts followed by treatment with Withaferin A (0.25, 0.5, and 1 μM concentrations) to explore its anti-fibrotic effects. In vivo potential of Withaferin A (2 and 4 mg/kg) was assessed in murine model of Bleomycin induced PF. All the parameters and molecular studies related to PF were performed at the end of treatment period. Withaferin A treatment reduced the progression of PF by modulating the EMT related cell markers both in vivo and in vitro. Withaferin A ameliorated the expression of inflammatory cytokines including NF-κB p65, IL-1β and TNF-α, as well as attenuated the expression of pro-fibrotic proteins including CTGF, collagen 1A2, collagen 3A1, and fibronectin. Expression of angiogenic factors like VEGF, FAK, p38 MAPK, and PLC-γ1 were also inhibited by Withaferin A. Phosphorylation of Smad 2/3 induced by TGF-β1 and Bleomycin were significantly inhibited. Withaferin A suppressed expression of pro-inflammatory, pro-fibrotic, and pro-angiogenic mediators and also reduced the ECM deposition. In a nutshell, Withaferin A could probably prove as an efficient and potential therapeutic against PF.
Collapse
Affiliation(s)
- Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pooladanda Venkatesh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Manoj Sunkoju
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
27
|
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci 2018; 38:32-50. [PMID: 29114076 PMCID: PMC6705810 DOI: 10.1523/jneurosci.1348-17.2017] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the CNS and regulate physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, we show that the circRNA DLGAP4 (circDLGAP4) functions as an endogenous microRNA-143 (miR-143) sponge to inhibit miR-143 activity, resulting in the inhibition of homologous to the E6-AP C-terminal domain E3 ubiquitin protein ligase 1 expression. circDLGAP4 levels were significantly decreased in the plasma of acute ischemic stroke patients (13 females and 13 males) and in a mouse stroke model. Upregulation of circDLGAP4 expression significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. Endothelial-mesenchymal transition contributes to blood-brain barrier disruption and circDLGAP4 overexpression significantly inhibited endothelial-mesenchymal transition by regulating tight junction protein and mesenchymal cell marker expression. Together, the results of our study are illustrative of the involvement of circDLGAP4 and its coupling mechanism in cerebral ischemia, providing translational evidence that circDLGAP4 serves as a novel therapeutic target for acute cerebrovascular protection.SIGNIFICANCE STATEMENT Circular RNAs (circRNAs) are involved in the regulation of physiological and pathophysiological processes. However, whether circRNAs are involved in ischemic injury, particularly cerebrovascular disorders, remains largely unknown. Here, we demonstrate a critical role for circular RNA DLGAP4 (circDLGAP4), a novel circular RNA originally identified as a sponge for microRNA-143 (miR-143), in ischemic stroke outcomes. Overexpression of circDLGAP4 significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. To our knowledge, this is the first report describing the efficacy of circRNA injection in an ischemic stroke model. Our investigation suggests that circDLGAP4 may serve as a novel therapeutic target for acute ischemic injury.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xufeng Chen
- Emergency Department, Jiangsu Province Hospital, Nanjing 210029, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California 92354, and
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China,
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| |
Collapse
|
28
|
Han Z, Cheng H, Parvani JG, Zhou Z, Lu ZR. Magnetic resonance molecular imaging of metastatic breast cancer by targeting extradomain-B fibronectin in the tumor microenvironment. Magn Reson Med 2017; 79:3135-3143. [PMID: 29082597 DOI: 10.1002/mrm.26976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/30/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-invasive early accurate detection of malignant breast cancer is paramount to the clinical management of the life-threatening disease. Here, we aim to test a small peptide targeted MRI contrast agent, ZD2-Gd(HP-DO3A), specific to an oncoprotein, extradomain-B fibronectin (EDB-FN), in the tumor microenvironment for MR molecular imaging of breast cancer. METHOD EDB-FN expression in 4T1 and MDA-MB-231 cancers was analyzed with quantitative real-time PCR and western blot. Primary and metastatic triple negative breast cancer mouse models were developed using 4T1 and MDA-MB-231 cells. Contrast-enhanced MRI was carried out to evaluate the use of ZD2-Gd(HP-DO3A) in detecting 4T1 and MDA-MB-231 primary and metastatic tumors. RESULTS EDB-FN was abundantly expressed in the extracellular matrix (ECM) of both the primary and metastatic TNBC tumors. In T1 -weighted MRI, ZD2-Gd(HP-DO3A) generated superior contrast enhancement in primary TNBC tumors than a nonspecific clinical agent Gd(HP-DO3A), during 30 min after contrast injection. ZD2-Gd(HP-DO3A) also produced a significant increase in contrast-to-noise ratio (CNR) of TNBC metastases, enabling sensitive localization and delineation of metastases that occulted in non-contrast-enhanced or Gd(HP-DO3A)-enhanced MRI. CONCLUSIONS These findings potentiate the use of ZD2-Gd(HP-DO3A) for MR molecular imaging of malignant breast cancers to improve the healthcare of breast cancer patients. Magn Reson Med 79:3135-3143, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zheng Han
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Han Cheng
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jenny G Parvani
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhuxian Zhou
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Tzanakakis G, Kavasi RM, Voudouri K, Berdiaki A, Spyridaki I, Tsatsakis A, Nikitovic D. Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev Dyn 2017; 247:368-381. [PMID: 28758355 DOI: 10.1002/dvdy.24557] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/20/2017] [Accepted: 07/08/2017] [Indexed: 12/14/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) program is a crucial component in the processes of morphogenesis and embryonic development. The transition of epithelial to mesenchymal phenotype is associated with numerous structural and functional changes, including loss of cell polarity and tight cell-cell junctions, the acquisition of invasive abilities, and the expression of mesenchymal proteins. The switch between the two phenotypes is involved in human pathology and is crucial for cancer progression. Extracellular matrices (ECMs) are multi-component networks that surround cells in tissues. These networks are obligatory for cell survival, growth, and differentiation as well as tissue organization. Indeed, the ECM suprastructure, in addition to its supportive role, can process and deliver a plethora of signals to cells, which ultimately regulate their behavior. Importantly, the ECM derived signals are critically involved in the process of EMT during tumorigenesis. This review discusses the multilayer interaction between the ECM and the EMT process, focusing on contributions of discrete mediators, a strategy that may identify novel potential target molecules. Developmental Dynamics 247:368-381, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Rafaela-Maria Kavasi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Kallirroi Voudouri
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|