1
|
Rodríguez-Zorrilla S, Lorenzo-Pouso AI, Fais S, Logozzi MA, Mizzoni D, Di Raimo R, Giuliani A, García-García A, Pérez-Jardón A, Ortega KL, Martínez-González Á, Pérez-Sayáns M. Increased Plasmatic Levels of Exosomes Are Significantly Related to Relapse Rate in Patients with Oral Squamous Cell Carcinoma: A Cohort Study. Cancers (Basel) 2023; 15:5693. [PMID: 38067397 PMCID: PMC10705147 DOI: 10.3390/cancers15235693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by an immunosuppressive tumor microenvironment. Their plasma-derived exosomes deliver immunomodulatory molecules and cargo that correlate significantly with clinical parameters. This study aims to assess the exosomal profile as a potential tool for early detection of relapse and long-term outcomes in OSCC patients undergoing conventional therapy. METHODS 27 OSCC patients with a median 38-month follow-up were included in this study. The relationship between NTA-derived parameters and clinical pathological parameters was examined, and receiver operating characteristic (ROC) curves were utilized to evaluate the diagnostic efficacy of these values in detecting cancer relapse. RESULTS Plasmatic levels of exosomes prior to surgery showed a drastic reduction after surgical intervention (8.08E vs. 1.41 × 109 particles/mL, p = 0.006). Postsurgical concentrations of exosomes were higher in patients who experienced relapse compared to those who remained disease-free (2.97 × 109 vs. 1.11 × 109 particles/mL, p = 0.046). Additionally, patients who relapsed exhibited larger exosome sizes after surgery (141.47 vs. 132.31 nm, p = 0.03). Patients with lower concentrations of exosomes prior to surgery demonstrated better disease-free survival compared to those with higher levels (p = 0.012). ROC analysis revealed an area under the curve of 0.82 for presurgical exosome concentration in identifying relapse. CONCLUSIONS Presurgical exosomal plasmatic levels serve as independent predictors of early recurrence and survival in OSCC. All in all, our findings indicate that the detection of peripheral exosomes represents a novel tool for the clinical management of OSCC, with potential implications for prognosis assessment.
Collapse
Affiliation(s)
- Samuel Rodríguez-Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
| | - Alejandro I. Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Maria A. Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Rossella Di Raimo
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Alba Pérez-Jardón
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Karem L. Ortega
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- School of Dentistry, Department of Oral Pathology, University of São Paulo, Av. Lineu Prestes, 2227, Cidade Universitária São Paulo, Sao Paulo 05508-000, Brazil
| | - Ángel Martínez-González
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Pontevedra, Mourente S/N, 36472 Pontevedra, Spain;
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
- Institute of Materials (IMATUS), Avenida do Mestre Mateo, 25, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Logozzi M, Di Raimo R, Mizzoni D, Fais S. What we know on the potential use of exosomes for nanodelivery. Semin Cancer Biol 2021; 86:13-25. [PMID: 34517111 DOI: 10.1016/j.semcancer.2021.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Antitumor therapy is taking into consideration the possibility to use natural nanovesicles, called exosomes, as an ideal delivery for both old and new anti-cancer molecules. This with the attempt to improve the efficacy, at the same time reducing the systemic toxicity of physical, chemical, and biological molecules. Exosomes may in fact increase the level of biomimetism, through simulating what really occurs in nature. Although extracellularly released vesicles include both microvesicles (MVs) and exosomes, only exosomes have the size that may be considered suitable for potential use to this purpose, also by analogy with the diffusely used artificial nanoparticles, such as lyposomes. In fact, recent reports have shown that exosomes are able to interact with target cells within an organ or at a distance using different mechanisms. Much is yet to be understood about exosomes, and currently, we are looking at the visible top of an iceberg, with most of what we have to understand on these nanovesicles still under the sea. In fact, we know that exosomes released by normal cells always trigger positive effects, while those released by cells in pathological condition, such as tumors may induce undesired, dangerous, and mostly unknown effects. To date we have many pre-clinical data available and possibly useful to think about a strategic use of exosomes as a delivery nanodevice in cancer treatment. However, this review wants to critically emphasize two important points actually hampering further discussion in the field : (i) the clinical data are virtually absent at the moment ; (ii) the best cellular source of exosomes to be used to deliver drugs is really far to be defined. Facing off these two points may well facilitate the attempt to figure out this very important issue for improving at the best future anti-cancer treatments.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
3
|
Themistocleous SC, Yiallouris A, Tsioutis C, Zaravinos A, Johnson EO, Patrikios I. Clinical significance of P-class pumps in cancer. Oncol Lett 2021; 22:658. [PMID: 34386080 PMCID: PMC8298992 DOI: 10.3892/ol.2021.12919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
P-class pumps are specific ion transporters involved in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all eukaryotic cells. The present review aimed to evaluate the role of P-type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase (HKA) and Ca2+-ATPase] in cancer cells across three fronts, namely structure, function and genetic expression. It has been shown that administration of specific P-class pumps inhibitors can have different effects by: i) Altering pump function; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarcoendoplasmic reticulum calcium ATPase can be inhibited by thapsigargin resulting in decreased prostate tumor volume, whereas the HKA α subunit can be affected by proton pump inhibitors in gastric cancer cell lines, inducing apoptosis. In conclusion, the present review highlighted the central role of P-class pumps and their possible use and role as anticancer cellular targets for novel therapeutic chemical agents.
Collapse
Affiliation(s)
- Sophia C Themistocleous
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Andreas Yiallouris
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Constantinos Tsioutis
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus.,College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar
| | - Elizabeth O Johnson
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ioannis Patrikios
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
4
|
Use of omeprazole, the proton pump inhibitor, as a potential therapy for the capecitabine-induced hand-foot syndrome. Sci Rep 2021; 11:8964. [PMID: 33903667 PMCID: PMC8076322 DOI: 10.1038/s41598-021-88460-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hand-foot syndrome (HFS), also known as palmar-plantar erythrodysesthesia (PPE), is a major side effect of capecitabine. Although the pathogenesis of HFS remains unknown, some studies suggested a potential involvement of inflammation in its pathogenesis. Proton pump inhibitors (PPIs) have been reported to have anti-inflammatory effects. In this study, we investigated the ameliorative effects of omeprazole, a PPI on capecitabine-related HFS in mice model, and a real-world database. Repeated administration of capecitabine (200 mg/kg, p.o., five times a week for 3 weeks) increased fluid content, redness, and tumor necrosis factor (TNF)-α substance of the mice hind paw. Co-administration of omeprazole (20 mg/kg, p.o., at the same schedule) significantly inhibited these changes induced by capecitabine. Moreover, based on the clinical database analysis of the Food and Drug Administration Adverse Event Reporting System, the group that has used any PPIs had a lower reporting rate of capecitabine-related PPE than the group that has not used any PPIs. (6.25% vs. 8.31%, p < 0.0001, reporting odds ratio (ROR) 0.74, 95% confidence interval (CI) 0.65-0.83). Our results suggest that omeprazole may be a potential prophylactic agent for capecitabine-induced HFS.
Collapse
|
5
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
6
|
Reverse transcriptase inhibition potentiates target therapy in BRAF-mutant melanomas: effects on cell proliferation, apoptosis, DNA-damage, ROS induction and mitochondrial membrane depolarization. Cell Commun Signal 2020; 18:150. [PMID: 32933538 PMCID: PMC7493390 DOI: 10.1186/s12964-020-00633-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract Target therapies based on BRAF and MEK inhibitors (MAPKi) have changed the therapeutic landscape for metastatic melanoma patients bearing mutations in the BRAF kinase. However, the emergence of drug resistance imposes the necessity to conceive novel therapeutic strategies capable to achieve a more durable disease control. In the last years, retrotransposons laying in human genome have been shown to undergo activation during tumorigenesis, where they contribute to genomic instability. Their activation can be efficiently controlled with reverse transcriptase inhibitors (RTIs) frequently used in the treatment of AIDS. These drugs have demonstrated anti-proliferative effects in several cancer models, including also metastatic melanoma. However, to our knowledge no previous study investigated the capability of RTIs to mitigate drug resistance to target therapy in BRAF-mutant melanomas. In this short report we show that the non-nucleoside RTI, SPV122 in combination with MAPKi strongly inhibits BRAF-mutant melanoma cell growth, induces apoptosis, and delays the emergence of resistance to target therapy in vitro. Mechanistically, this combination strongly induces DNA double-strand breaks, mitochondrial membrane depolarization and increased ROS levels. Our results shed further light on the molecular activity of RTI in melanoma and pave the way to their use as a novel therapeutic option to improve the efficacy of target therapy. Video Abstract
Graphical abstract ![]()
Collapse
|
7
|
Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer. Rev Physiol Biochem Pharmacol 2020; 182:85-110. [PMID: 32776252 DOI: 10.1007/112_2020_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.
Collapse
|
8
|
Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21155432. [PMID: 32751556 PMCID: PMC7432055 DOI: 10.3390/ijms21155432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.
Collapse
|
9
|
Foletti A, Fais S. Unexpected Discoveries Should Be Reconsidered in Science-A Look to the Past? Int J Mol Sci 2019; 20:ijms20163973. [PMID: 31443232 PMCID: PMC6720802 DOI: 10.3390/ijms20163973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
From the past, we know how much “serendipity” has played a pivotal role in scientific discoveries. The definition of serendipity implies the finding of one thing while looking for something else. The most known example of this is the discovery of penicillin. Fleming was studying “Staphylococcus influenzae” when one of his culture plates became contaminated and developed a mold that created a bacteria-free circle. Then he found within the mold, a substance that proved to be very active against the vast majority of bacteria infecting human beings. Serendipity had a key role in the discovery of a wide panel of psychotropic drugs as well, including aniline purple, lysergic acid diethylamide, meprobamate, chlorpromazine, and imipramine. Actually, many recent studies support a step back in current strategies that could lead to new discoveries in science. This change should seriously consider the idea that to further focus research project milestones that are already too focused could be a mistake. How can you observe something that others did not realize before you? Probably, one pivotal requirement is that you pay a high level of attention on what is occurring all around you. But this is not entirely enough, since, specifically talking about scientific discoveries, you should have your mind sufficiently unbiased from mainstream infrastructures, which normally make you extremely focused on a particular endpoint without paying attention to potential “unexpected discoveries”. Research in medicine should probably come back to the age of innocence and avoid the age of mainstream reports that do not contribute to real advances in the curing of human diseases. Max Planck said “Science progresses not because scientists change their minds, but rather because scientists attached to erroneous views die, and are replaced”, and Otto Warburg used the same words when he realized the lack of acceptance of his ideas. This editorial proposes a series of examples showing, in a practical way, how unfocused research may contribute to very important discoveries in science.
Collapse
Affiliation(s)
- Alberto Foletti
- Clinical Biophysics International Research Group, 6900 Lugano, Switzerland
- Institute of Translational Pharmacology, National Research Council-CNR, 00133 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, 00133 Rome, Italy.
| |
Collapse
|
10
|
Jia H, Ren W, Feng Y, Wei T, Guo M, Guo J, Zhao J, Song X, Wang M, Zhao T, Wang H, Feng Z, Tian Z. The enhanced antitumour response of pimozide combined with the IDO inhibitor L‑MT in melanoma. Int J Oncol 2018; 53:949-960. [PMID: 30015838 PMCID: PMC6065445 DOI: 10.3892/ijo.2018.4473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most fatal and therapy-resistant types of cancer; therefore, identifying novel therapeutic candidates to improve patient survival is an ongoing effort. Previous studies have revealed that pimozide is not sufficient to treat melanoma; therefore, enhancing the treatment is necessary. Indoleamine 2, 3‑dioxygenase (IDO) is an immunosuppressive, intracellular rate-limiting enzyme, which contributes to immune tolerance in various tumours, including melanoma, and inhibition of IDO may be considered a novel therapeutic strategy when combined with pimozide. The present study aimed to assess the antitumour activities of pimozide in vitro, and to investigate the effects of pimozide combined with L‑methyl-tryptophan (L‑MT) in vivo. For in vitro analyses, the B16 melanoma cell line was used. Cell cytotoxicity assay, cell viability assay, wound‑healing assay and western blotting were conducted to analyse the effects of pimozide on B16 cells. Furthermore, B16 cell-bearing mice were established as the animal model. Haematoxylin and eosin staining, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labelling staining, western blotting and flow cytometry were performed to determine the effects of monotherapy and pimozide and L‑MT cotreatment on melanoma. The results demonstrated that pimozide exhibited potent antitumour activity via the regulation of proliferation, apoptosis and migration. Furthermore, the antitumour effects of pimozide were enhanced when combined with L‑MT, not only via regulation of proliferation, apoptosis and migration, but also via immune modulation. Notably, pimozide may regulate tumour immunity through inhibiting the activities of signal transducer and activator of transcription (Stat)3 and Stat5. In conclusion, the present study proposed the use of pimozide in combination with the IDO inhibitor, L‑MT, as a potential novel therapeutic strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Wenjing Ren
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yuchen Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tian Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Mengmeng Guo
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jing Guo
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jingjing Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xiangfeng Song
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Hui Wang
- Research Center for Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Zhiwei Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
11
|
Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy. Metabolites 2017; 8:metabo8010002. [PMID: 29295495 PMCID: PMC5875992 DOI: 10.3390/metabo8010002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.
Collapse
|
12
|
Balza E, Castellani P, Moreno PS, Piccioli P, Medraño-Fernandez I, Semino C, Rubartelli A. Restoring microenvironmental redox and pH homeostasis inhibits neoplastic cell growth and migration: therapeutic efficacy of esomeprazole plus sulfasalazine on 3-MCA-induced sarcoma. Oncotarget 2017; 8:67482-67496. [PMID: 28978047 PMCID: PMC5620187 DOI: 10.18632/oncotarget.18713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/22/2017] [Indexed: 01/25/2023] Open
Abstract
Neoplastic cells live in a stressful context and survive thanks to their ability to overcome stress. Thus, tumor cell responses to stress are potential therapeutic targets. We selected two such responses in melanoma and sarcoma cells: the xc- antioxidant system, that opposes oxidative stress, and surface v-ATPases that counteract the low pHi by extruding protons, and targeted them with the xc- blocker sulfasalazine and the proton pump inhibitor esomeprazole. Sulfasalazine inhibited the cystine/cysteine redox cycle and esomeprazole decreased pHi while increasing pHe in tumor cell lines. Although the single treatment with either drug slightly inhibited cell proliferation and motility, the association of sulfasalazine and esomeprazole powerfully decreased sarcoma and melanoma growth and migration. In the 3-methylcholanthrene (3-MCA)-induced sarcoma model, the combined therapy strongly reduced the tumor burden and increased the survival time: notably, 22 % of double-treated mice recovered and survived off therapy. Tumor-associated macrophages (TAM) displaying M2 markers, that abundantly infiltrate sarcoma and melanoma, overexpress xc- and membrane v-ATPases and were drastically decreased in tumors from mice undergone the combined therapy. Thus, the double targeting of tumor cells and macrophages by sulfasalazine and esomeprazole has a double therapeutic effect, as decreasing TAM infiltration deprives tumor cells of a crucial allied. Sulfasalazine and esomeprazole may therefore display unexpected therapeutic values, especially in case of hard-to-treat cancers.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Unit, IRCCS AOU San Martino - IST, 16132 Genoa, Italy
| | | | - Paola Sanchez Moreno
- Cell Biology Unit, IRCCS AOU San Martino - IST, 16132 Genoa, Italy.,Present address: Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Iria Medraño-Fernandez
- Protein Transport Unit, Division of Cell and Molecular Biology, San Raffaele Institute, 20132 Milan, Italy
| | - Claudia Semino
- Protein Transport Unit, Division of Cell and Molecular Biology, San Raffaele Institute, 20132 Milan, Italy
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS AOU San Martino - IST, 16132 Genoa, Italy
| |
Collapse
|