1
|
Kądziela M, Kutwin M, Karp P, Woźniacka A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J Clin Med 2024; 13:4919. [PMID: 39201060 PMCID: PMC11355229 DOI: 10.3390/jcm13164919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Vitiligo is a persistent autoimmune disease characterized by progressive depigmentation of the skin caused by the selective destruction of melanocytes. Although its etiopathogenesis remains unclear, multiple factors are involved in the development of this disease, from genetic and metabolic factors to cellular oxidative stress, melanocyte adhesion defects, and innate and adaptive immunity. This review presents a comprehensive summary of the existing knowledge on the role of different cellular mechanisms, including cytokines and chemokines interactions, in the pathogenesis of vitiligo. Although there is no definitive cure for vitiligo, notable progress has been made, and several treatments have shown favorable results. A thorough understanding of the basis of the disease uncovers promising drug targets for future research, providing clinical researchers with valuable insights for developing improved treatment options.
Collapse
Affiliation(s)
| | | | | | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland; (M.K.); (M.K.); (P.K.)
| |
Collapse
|
2
|
Wang M, Deng H, Chen Y, Wang Y, Zhang Y, Liu C, Zhang M, Li T, Dang S, Li Y. Expression and clinical significance of pattern recognition receptor-associated genes in hand, foot and mouth disease. ASIAN PAC J TROP MED 2024; 17:173-183. [DOI: 10.4103/apjtm.apjtm_876_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/20/2024] [Indexed: 11/27/2024] Open
Abstract
Objective:
To explore which pattern recognition receptors (PRRs) play a key role in the development of hand, foot, and mouth disease (HFMD) by analyzing PRR-associated genes.
Methods:
We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells (PBMCs) infected with enterovirus 71 (EV-A71) which were derived from patients with HFMD of different severities and at different stages. A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates. Subsequently, ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes, specifically, BST2, IRF7, 1FI16, TRIM21, MX1, and DDX58.
Results:
Compared with those at the recovery stage, the expression levels of BST2 (P=0.027), IFI16 (P=0.016), MX1 (P=0.046) and DDX58 (P=0.008) in the acute stage of infection were significantly upregulated, while no significant difference in the expression levels of IRF7 (P=0.495) and TRIM21 (P=0.071) was found between different stages of the disease. The expression levels of BST2, IRF7, IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens, and BST2, IRF7, IFI16 and MX1 expression levels were significantly lower in coxsackie B virus (COXB) positive patients than the negative patients. Expression levels of one or more of BST2, IRF7, IFI16, TRIM21, MX1 and DDX58 genes were correlated with PCT levels, various white blood cell counts, and serum antibody levels that reflect disease course of HFMD. Aspartate aminotransferase was correlated with BST2, MX1 and DDX58 expression levels.
Conclusions:
PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.
Collapse
Affiliation(s)
- Muqi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huiling Deng
- Department of Pediatrics, Xi'an Central Hospital, Xi'an 710004, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yuan Chen
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yufeng Zhang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Chenrui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
4
|
Gong J, Zhan H, Liang Y, He Q, Cui D. Role of Th22 Cells in Human Viral Diseases. Front Med (Lausanne) 2021; 8:708140. [PMID: 34434945 PMCID: PMC8381044 DOI: 10.3389/fmed.2021.708140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Naive CD4+ T cells can differentiate into different cell subsets after receiving antigen stimulation, which secrete corresponding characteristic cytokines and thereby exert biological effects in various diseases. Th22 cells, a novel subset of CD4+ T cells, are different from Th1, Th2, Th17, and Treg cell subsets, which have been discovered in recent years. They can express CCR4, CCR6, and CCR10 molecules and secrete IL-22, IL-13, and TNF-α. They are not able to secrete IL-17, IL-4, and interferon-γ (IFN-γ). IL-22 is considered as a major effector molecule of Th22 cells whose functions and mechanisms of regulating cell differentiation have been constantly improved. In this review, we provide an overview of the origin, differentiation of Th22 cells. Moreover, we also describe the interrelationships between Th22 cells and Th17, Th1, and Th2 cells. Additionally, the role of Th22 cells were discussed in human diseases with virus infection, which will provide novel insight for the prevention and treatment of viral infection in human.
Collapse
Affiliation(s)
- Jianguang Gong
- Department of Nephrology, Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Huifang Zhan
- Department of Emergency, Zhejiang University Hospital, Hangzhou, China
| | - Yan Liang
- Department of Nephrology, Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Qiang He
- Department of Nephrology, Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, Cui D. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:688066. [PMID: 34295334 PMCID: PMC8290841 DOI: 10.3389/fimmu.2021.688066] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as IL-22, IL-13 and TNF-α, but not others, such as IL-17, IL-4, or interferon-γ (IFN-γ), and they express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to play a role in skin inflammatory diseases, but recent studies have demonstrated their involvement in the development of various autoimmune diseases. Here, we review research advances in the origin, characteristics and effector mechanisms of Th22 cells, with an emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the pathogenesis of autoimmune diseases. The findings presented here may facilitate the development of new therapeutic strategies for targeting these diseases.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Predicting Severe Enterovirus 71-Infected Hand, Foot, and Mouth Disease: Cytokines and Chemokines. Mediators Inflamm 2020; 2020:9273241. [PMID: 32089650 PMCID: PMC7013319 DOI: 10.1155/2020/9273241] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the most common intestinal virus that causes hand, foot, and mouth disease (HFMD) in infants and young children (mostly ≤5 years of age). Generally, children with EV71-infected HFMD have mild symptoms that resolve spontaneously within 7-14 days without complications. However, some EV71-infected HFMD cases lead to severe complications such as aseptic meningitis, encephalitis, acute flaccid paralysis, pulmonary edema, cardiorespiratory complication, circulatory disorders, poliomyelitis-like paralysis, myocarditis, meningoencephalitis, neonatal sepsis, and even death. The mechanism of EV71 pathogenesis has been studied extensively, and the regulation of host immune responses is suspected to aggravate EV71-induced severe complications. Recently, several cytokines or chemokines such as TNF-α, IFN-γ, IL-1β, IL-18, IL-33, IL-37, IL-4, IL-13, IL-6, IL-12, IL-23, IL-27, IL-35, IL-10, IL-22, IL-17F, IL-8, IP-10, MCP-1, G-CSF, and HMGB1 have been reported to be associated with severe EV71 infection by numerous research teams, including our own. This review is aimed at summarizing the pathophysiology of the cytokines and chemokines with severe EV71 infection.
Collapse
|
7
|
Lim HX, Poh CL. Insights into innate and adaptive immune responses in vaccine development against EV-A71. Ther Adv Vaccines Immunother 2019; 7:2515135519888998. [PMID: 31799495 PMCID: PMC6873268 DOI: 10.1177/2515135519888998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot and mouth disease (HFMD) in the world, infecting mostly infants and young children (<5 years of age) in Asia. Approximately 2 million cases of HFMD were reported in China each year, of which approximately 45-50% were due to EV-A71. Most of the HFMD infections caused by EV-A71 usually result in mild symptoms with rashes and ulcers in the mouth. However, virulent strains of EV-A71 can infect the central nervous system and cause severe neurologic diseases, leading to reduced cognitive ability, acute flaccid paralysis and death. The lack of understanding of cellular immunity for long-term protection from the HFMD disease represents a major obstacle for vaccine development. In particular, the role of innate and T cell immunity during HFMD infection remains unclear and there is evidence suggesting the importance of CD4+ and CD8+ T cells for protective immunity. Currently, no US FDA-approved vaccine is available for EV-A71. Although the inactivated vaccines produced in China are highly effective (vaccine efficacy >95%), they lack the cellular immunity required for long-term protection. In this review, we discuss the findings that support the protective roles of innate and T cell immunity against EV-A71 infection, which will provide the knowledge needed for the urgent development of efficacious vaccines that will confer long-term protection.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|
8
|
Lv Y, Wang X. Interleukin-37 Inhibits the Imbalance Between T Helper 17 Cells and Regulatory T Cells in Hand, Foot, and Mouth Disease. J Interferon Cytokine Res 2019; 39:421-427. [PMID: 31090483 DOI: 10.1089/jir.2019.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to explore the role of interleukin-37 (IL-37) in imbalance of T helper (Th)17/regulatory T cells (Tregs) in hand, foot, and mouth disease (HFMD). The proportions of CD4+ IL-17A+ Th17 cells and CD4+ CD25+Foxp3+ Tregs in peripheral blood or peripheral blood mononuclear cells (PBMCs) from HFMD patients and healthy controls were measured by fluorescence activated cell sorter. The level of IL-37, IL-10, IL-17A, IL-23, and transforming growth factor β1 (TGF-β1) in serum or PBMCs of HFMD patients and control subjects were detected using enzyme-linked immunosorbent assay. Results showed that Th17 cells proportion and IL-17A and IL-23 levels were highly increased, whereas Tregs proportion and IL-10 and TGF-β1 levels were significantly decreased in HFMD patients. Moreover, IL-37 stimulation elevated Tregs proportion but reduced Th17 cell proportion in subjects with HFMD. On the contrary, we found methylprednisolone pulse therapy/methylprednisolone combinated with intravenous gamma globulin inhibits Th17/Treg imbalance through upregulation of IL-37 in HFMD. In conclusion, IL-37 inhibits the imbalance of Th17/Tregs in HFMD.
Collapse
Affiliation(s)
- Yong Lv
- Department of Pediatric, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Xuesong Wang
- Department of Pediatric, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| |
Collapse
|
9
|
Zhang Y, Suo X, Zhang Y. Association of IL-13, S100B, and TLR-7 Gene Polymorphisms with Enterovirus 71 Infection in Hand, Foot, and Mouth Disease in China. Genet Test Mol Biomarkers 2019; 23:188-196. [PMID: 30807256 DOI: 10.1089/gtmb.2018.0239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM This study was conducted to determine if single nucleotide polymorphisms within the interleukin (IL)-13 (rs20541 locus), the S100B (rs9722 locus), and the toll-like receptor (TLR)-7 (rs179019 and rs3853839 loci) genes are associated with the clinical severity of disease caused by enterovirus 71 (EV71) in children suffering from hand, foot, and mouth disease (HFMD). MATERIALS AND METHODS A total of 355 children, diagnosed with HFMD, were divided into two groups: severe (totaling 162 cases) and mild (totaling 193 cases). Three hundred healthy children were recruited as a control group. The gene polymorphisms of the rs20541 locus in the IL-13 gene; the rs9722 locus in the S100B gene; and the rs179019 and the rs3853839 loci in the TLR-7 gene were analyzed with Sanger sequencing. The expression levels of IL-13, S100B, interferon (IFN)-α, IL-6 and the relative expression level of TLR-7 were calculated for each genotype. RESULTS This study demonstrated that the T allele at the rs9722 locus of the S100B gene was a significant risk factor for severe HFMD. The rs3853839 C allele of the TLR-7 gene was also a risk factor for severe HFMD in both male and female patients. The G allele at the rs20541 locus of IL-13 gene and the A allele at the rs179019 locus of the TLR-7 gene were not risk factors for severe HFMD in either male or female patients. CONCLUSION The T allele at the rs9722 locus of S100B gene is a risk factor for the severe HFMD caused by EV71 infection, of which the mechanism may be due to the promotion of S100B protein secretion. The allele C at TLR-7 rs3853839 locus is a risk factor for the severe HFMD caused by EV71 infection, which may be related to a reduction of the relative expression of TLR-7, IFN-α, and IL-6.
Collapse
Affiliation(s)
- Yuhong Zhang
- 1 Department of Infectious Diseases and Dongying People's Hospital, Dongying, China
| | - Xiaoying Suo
- 1 Department of Infectious Diseases and Dongying People's Hospital, Dongying, China
| | - Yufang Zhang
- 2 Department of Hyperbaric Oxygenation, Dongying People's Hospital, Dongying, China
| |
Collapse
|
10
|
Enterovirus A71 Infection Activates Human Immune Responses and Induces Pathological Changes in Humanized Mice. J Virol 2019; 93:JVI.01066-18. [PMID: 30429352 DOI: 10.1128/jvi.01066-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of enterovirus A71 (EV-A71) half a century ago, it has been recognized as the cause of large-scale outbreaks of hand-foot-and-mouth disease worldwide, particularly in the Asia-Pacific region, causing great concern for public health and economic burdens. Detailed mechanisms on the modulation of immune responses after EV-A71 infection have not been fully known, and the lack of appropriate models hinders the development of promising vaccines and drugs. In the present study, NOD-scid IL2Rγ-/- (NSG) mice with a human immune system (humanized mice) at the age of 4 weeks were found to be susceptible to a human isolate of EV-A71 infection. After infection, humanized mice displayed limb weakness, which is similar to the clinical features found in some of the EV-A71-infected patients. Histopathological examination indicated the presence of vacuolation, gliosis, or meningomyelitis in brain stem and spinal cord, which were accompanied by high viral loads detected in these organs. The numbers of activated human CD4+ and CD8+ T cells were upregulated after EV-A71 infection, and EV-A71-specific human T cell responses were found. Furthermore, the secretion of several proinflammatory cytokines, such as human gamma interferon (IFN-γ), interleukin-8 (IL-8), and IL-17A, was elevated in the EV-A71-infected humanized mice. Taken together, our results suggested that the humanized mouse model permits insights into the human immune responses and the pathogenesis of EV-A71 infection, which may provide a platform for the evaluation of anti-EV-A71 drug candidates in the future.IMPORTANCE Despite causing self-limited hand-food-and-mouth disease in younger children, EV-A71 is consistently associated with severe forms of neurological complications and pulmonary edema. Nevertheless, only limited vaccines and drugs have been developed over the years, which is possibly due to a lack of models that can more accurately recapitulate human specificity, since human is the only natural host for wild-type EV-A71 infection. Our humanized mouse model not only mimics histological symptoms in patients but also allows us to investigate the function of the human immune system during infection. It was found that human T cell responses were activated, accompanied by an increase in the production of proinflammatory cytokines in EV-A71-infected humanized mice, which might contribute to the exacerbation of disease pathogenesis. Collectively, this model allows us to delineate the modulation of human immune responses during EV-A71 infection and may provide a platform to evaluate anti-EV-A71 drug candidates in the future.
Collapse
|
11
|
Constitutive Changes in Circulating Follicular Helper T Cells and Their Subsets in Patients with Graves' Disease. J Immunol Res 2018; 2018:8972572. [PMID: 30956992 PMCID: PMC6431362 DOI: 10.1155/2018/8972572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Background Follicular helper T (Tfh) cells are critical for high-affinity antibody generation and B cell maturation and differentiation, which play important roles in autoimmune diseases. Graves' disease (GD) is one prototype of common organ-specific autoimmune thyroid diseases (AITD) characterized by autoreactive antibodies, suggesting a possible role for Tfh cells in the pathogenesis of GD. Our objective was to explore the role of circulating Tfh cell subsets and associated plasma cells (PCs) in patients with GD. Methods Thirty-six patients with GD and 20 healthy controls (HC) were enrolled in this study. The frequencies of circulating Tfh cell subsets and PCs were determined by flow cytometry, and plasma cytokines, including interleukin- (IL-) 21, IL-4, IL-17A, and interferon- (IFN-) γ, were measured using an enzyme-linked immunosorbent assay (ELISA). The mRNA expression of transcription factors (Bcl-6, T-bet, GATA-3, and RORγt) in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time quantitative PCR. Results. Compared with HC, the frequencies of circulating CD4+CXCR5+CD45RA−Tfh (cTfh) cells with ICOS and PD-1 expression, the Tfh2 subset (CXCR3−CCR6−Tfh) cells, and PCs (CD19+CD27highCD38high) were significantly increased in the GD patients, but the frequencies of Tfh1 (CXCR3+CCR6−Tfh) and Tfh17 (CXCR3−CCR6+Tfh) subset cells among CD4+T cells were significantly decreased in GD patients. The plasma concentrations of IL-21, IL-4, and IL-17A were elevated in GD patients. Additionally, a positive correlation was found between the frequency of PD-1+Tfh cells (Tfh2 or PCs) and plasma IL-21 concentration (or serum TPO-Ab levels). The mRNA levels of transcription factors (GATA-3 and RORγt) were significantly increased, but T-bet and Bcl-6 mRNA expression was not obviously varied in PBMCs from GD patients. Interestingly, Tfh cell subsets and PCs from GD patients were partly normalized by treatment. Conclusion Circulating Tfh cell subsets and PCs might play an important role in the pathogenesis of GD, which are potential clues for GD patients' interventions.
Collapse
|
12
|
Huang Q, Wang Y, Si C, Zhao D, Wang Y, Duan Y. Interleukin-35 Modulates the Imbalance Between Regulatory T Cells and T Helper 17 Cells in Enterovirus 71-Induced Hand, Foot, and Mouth Disease. J Interferon Cytokine Res 2017; 37:522-530. [PMID: 29172969 DOI: 10.1089/jir.2017.0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-35 modulates the imbalance between regulatory T cells (Tregs) and T helper (Th) 17 cells, which played vital roles in the pathogenesis of autoimmune and infectious diseases. However, the role of Tregs/Th17 cell imbalance and the regulatory functions of IL-35 have remained largely unknown in enterovirus 71 (EV71)-induced hand, foot, and mouth disease (HFMD). In this study, a total of 47 HFMD patients (30 with mild HFMD and 17 with severe HFMD) and 13 healthy individuals were enrolled. The frequencies of CD4+CD25+CD127dim/- Tregs and CD4+IL-17+ Th17 cells, as well as IL-35 expression levels, were measured. Cellular proliferation and cytokine production was also determined in purified Tregs following recombinant IL-35 stimulation. An imbalance between Tregs and Th17 cells was observed in children with severe HFMD, which manifested as a reduction in the Tregs population and an elevation in the Th17 population. Serum IL-35 concentrations were also decreased in case of severe HFMD, which correlated with the Tregs:Th17 cell ratios. Recombinant IL-35 stimulation increased the proportion of Tregs, but downregulated that of Th17 cells. Treatment with IL-35 enhanced Tregs suppressive function and IL-35 and IL-10 expression, but reduced IL-22 secretion in both healthy individuals and those with severe HFMD. The Tregs:Th17 cell ratio was increased in the convalescent patients, however, a significant reduction in serum IL-35 was not observed. Our findings indicated that EV71 infection shifted the Tregs:Th17 cell ratio through IL-35 by downregulating inhibitory cytokine production and reducing the cell-to-cell contact inhibition of effector T cells. Regulation of IL-35 as it relates to the Tregs/Th17 balance may play a critical role in the pathogenesis of EV71-associated HFMD.
Collapse
Affiliation(s)
- Qian Huang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanhua Wang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Changyun Si
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - De'an Zhao
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanping Wang
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yuxiu Duan
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| |
Collapse
|
13
|
Interleukin-22 participates in the inflammatory process of vitiligo. Oncotarget 2017; 8:109161-109174. [PMID: 29312598 PMCID: PMC5752511 DOI: 10.18632/oncotarget.22644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 01/21/2023] Open
Abstract
Vitiligo is an acquired depigmentary skin inflammatory disorder. The pathogenesis of inflammatory skin disease involves the release of cytokines from keratinocytes, including interleukin (IL)-1β. IL-22 belongs to a family of cytokines structurally related to IL-10, including IL-19, IL-20, IL-24, and IL-26. In contrast to IL-10, IL-22 has proinflammatory activities. Among skin cell populations only keratinocytes are the major targets of IL-22. In the present study, we demonstrated that IL-22 promoting IL-1β secretion from keratinocytes via the Reactive oxygen species (ROS)-NOD-like receptor family, pyrin domain containing 3 (NLRP3)-caspase-1 pathway. It inhibited the expression of protease-activated receptor-2 (PAR-2) of keratinocytes. However, IL-22 had no direct effect on normal human foreskin-derived epidermal melanocytes (NHEM). Considering the closely connection between keratinocytes and melanocytes, and the ability of keratinocytes to produce a plethora of cytokines, in the present work, we examined whether IL-22 could regulate melanocytes functions by keratinocytes participation. Keratinocytes were exposed to IL-22 and the conditional medium was collected. The effect of conditional medium on melanocytes was studied. The expressions of relative proteins were assessed by western blot. Influence of conditional medium on NHEM migration was assessed by Transwell method and the apoptosis by flow cytometry analysis. The IL-22-treating keratinocytes conditional medium inhibited melanogenesis and restrained the expressions of Rab GTPases of NHEM. In addition, the conditional medium suppressed melanocytes migration and induced apoptosis. Our results collectively indicated that IL-22 may potentiate IL-1β-mediated skin inflammation and result in participating in the inflammatory pathogenesis of vitiligo.
Collapse
|