1
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Nielsen IØ, Clemmensen KKB, Fogde DL, Dietrich TN, Giacobini JD, Bilgin M, Jäättelä M, Maeda K. Cationic amphiphilic drugs induce accumulation of cytolytic lysoglycerophospholipids in the lysosomes of cancer cells and block their recycling into common membrane glycerophospholipids. Mol Biol Cell 2024; 35:ar25. [PMID: 38117591 PMCID: PMC10916870 DOI: 10.1091/mbc.e23-06-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Mesut Bilgin
- Lipidomics Core Facility, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute (DCI), DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
4
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Santos-Pereira C, Guedes JP, Ferreira D, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs intracellular trafficking, disrupts cholesterol-rich lipid rafts and inhibits glycolysis of highly metastatic cancer cells harbouring plasmalemmal V-ATPase. Int J Biol Macromol 2022; 220:1589-1604. [PMID: 36116593 DOI: 10.1016/j.ijbiomac.2022.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
6
|
Keon KA, Benlekbir S, Kirsch SH, Müller R, Rubinstein JL. Cryo-EM of the Yeast V O Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chem Biol 2022; 17:619-628. [PMID: 35148071 DOI: 10.1021/acschembio.1c00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuolar-type adenosine triphosphatases (V-ATPases) are proton pumps found in almost all eukaryotic cells. These enzymes consist of a soluble catalytic V1 region that hydrolyzes ATP and a membrane-embedded VO region responsible for proton translocation. V-ATPase activity leads to acidification of endosomes, phagosomes, lysosomes, secretory vesicles, and the trans-Golgi network, with extracellular acidification occurring in some specialized cells. Small-molecule inhibitors of V-ATPase have played a crucial role in elucidating numerous aspects of cell biology by blocking acidification of intracellular compartments, while therapeutic use of V-ATPase inhibitors has been proposed for the treatment of cancer, osteoporosis, and some infections. Here, we determine structures of the isolated VO complex from Saccharomyces cerevisiae bound to two well-known macrolide inhibitors: bafilomycin A1 and archazolid A. The structures reveal different binding sites for the inhibitors on the surface of the proton-carrying c ring, with only a small amount of overlap between the two sites. Binding of both inhibitors is mediated primarily through van der Waals interactions in shallow pockets and suggests that the inhibitors block rotation of the ring. Together, these structures indicate the existence of a large chemical space available for V-ATPase inhibitors that block acidification by binding the c ring.
Collapse
Affiliation(s)
- Kristine A. Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
- Department of Medical Biophysics, The University of Toronto, Toronto, Canada M5G1L7
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
| | - Susanne H. Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, 66123 Saarbrücken, Germany
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
- Department of Medical Biophysics, The University of Toronto, Toronto, Canada M5G1L7
- Department of Biochemistry, The University of Toronto, Toronto, Canada M5S1A8
| |
Collapse
|
7
|
Siow WX, Kabiri Y, Tang R, Chao YK, Plesch E, Eberhagen C, Flenkenthaler F, Fröhlich T, Bracher F, Grimm C, Biel M, Zischka H, Vollmar AM, Bartel K. Lysosomal TRPML1 regulates mitochondrial function in hepatocellular carcinoma cells. J Cell Sci 2022; 135:274242. [PMID: 35274126 PMCID: PMC8977057 DOI: 10.1242/jcs.259455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Liver cancers, including hepatocellular carcinoma (HCC), are the second most lethal cancers worldwide and novel therapeutic strategies are still highly needed. Recently, the endolysosomal cation channel TRPML1 has gained focus in cancer research representing an interesting novel target. We utilized the recently developed isoform-selective TRPML1 activator ML1-SA1 and the CRISPR/Cas9 system to generate tools for over-activation and loss-of-function studies on TRPML1 in HCC. After verification of our tools, we investigated the role of TRPML1 in HCC by studying proliferation, apoptosis, and proteomic alterations. Further, we analyzed mitochondrial function in detail, facilitating confocal and transmission electron microscopy, combined with SeahorseTM and Oroboros® functional analysis. We report that TRPML1 over-activation by a novel, isoform-selective, low-molecular activator induces apoptosis by impairing mitochondrial function calcium dependently. Additionally, TRPML1 loss-of-function deregulates mitochondrial renewal, which leads to proliferation impairment. Thus, our study reveals a novel role for TRPML1 as regulator of mitochondrial function and its modulators as promising molecules for novel therapeutic options in HCC therapy.
Collapse
Affiliation(s)
- Wei Xiong Siow
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yaschar Kabiri
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, D-80802 Munich, Germany
| | - Rachel Tang
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yu-Kai Chao
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eva Plesch
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Florian Flenkenthaler
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Pharmacology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Zischka
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, D-80802 Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
8
|
Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: Manipulating the immune response to elicit escape. Hum Immunol 2022; 83:399-408. [PMID: 35216847 DOI: 10.1016/j.humimm.2022.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022]
Abstract
The success of cancer treatment relies on the composition of the tumour microenvironment which is comprised of tumour cells, blood vessels, stromal cells, immune cells, and extracellular matrix components. Barriers to effective cancer treatment need to be overcome, and the acidic microenvironment of the tumour provides a key target for treatment. This review intends to provide an overview of the effects that low extracellular pH has on components of the tumour microenvironment and how they contribute to immune escape. Further, potential therapeutic targets will be discussed.
Collapse
Affiliation(s)
- Catherine M Worsley
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; National Health Laboratory Service, South Africa.
| | - Rob B Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| | - Elizabeth S Mayne
- Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; Department of Immunology Faculty of Health Sciences, University of the Witwatersrand, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
9
|
Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183716. [PMID: 34343535 DOI: 10.1016/j.bbamem.2021.183716] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is a key checkpoint in apoptosis that activates the caspase cascade and irreversibly causes the majority of cells to die. The proteins of the Bcl-2 family are master regulators of apoptosis that form a complex interaction network within the mitochondrial membrane that determines the induction of MOMP. This culminates in the activation of the effector members Bax and Bak, which permeabilize the mitochondrial outer membrane to mediate MOMP. Although the key role of Bax and Bak has been established, many questions remain unresolved regarding molecular mechanisms that control the apoptotic pore. In this review, we discuss the recent progress in our understanding of the regulation of Bax/Bak activity within the mitochondrial membrane.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany.
| |
Collapse
|
10
|
Scheeff S, Rivière S, Ruiz J, Dedenbach S, Menche D. Modular Total Synthesis of iso-Archazolids and Archazologs. J Org Chem 2021; 86:10190-10223. [PMID: 34293866 DOI: 10.1021/acs.joc.1c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Full details on the design, development, and successful implementation of suitable synthetic strategies directed toward the total synthesis of iso-archazolids and archazologs are reported. Both a biomimetic and a multistep total synthesis of iso-archazolid B, the most potent and least abundant archazolid, are described. The bioinspired conversion from archazolid B was realized by a high-yielding 1,8-Diazabicyclo[5.4.0]undec-7-ene catalyzed one-step double-bond shift. A highly stereoselective total synthesis was accomplished in 25 steps, involving a sequence of highly stereoselective aldol reactions, an efficient aldol condensation to forge two elaborate fragments, and a challenging ring-closing metathesis macrocyclization with an unusual Stewart-Grubbs catalyst. These strategies proved to be generally useful and could be successfully implemented for the preparation of three novel iso-archazolids as well as five novel archazologs, lacking the thiazole side chain. A wide variety of further archazolids and archazologs may now be targeted for exploration of the promising anticancer potential of these polyketide macrolides.
Collapse
Affiliation(s)
- Stephan Scheeff
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Solenne Rivière
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Johal Ruiz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Simon Dedenbach
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
11
|
Menche D. Design and Synthesis of Simplified Polyketide Analogs: New Modalities beyond the Rule of 5. ChemMedChem 2021; 16:2068-2074. [PMID: 33755304 PMCID: PMC8360190 DOI: 10.1002/cmdc.202100150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Natural products provide important lead structures for development of pharmaceutical agents or present attractive tools for medicinal chemistry. However, structurally complex and thus less accessible metabolites defying conventional drug-like properties, as expressed by Pfizer's rule of five, have received less attention as medicinal leads. Traditionally, research focus has been on realizing total syntheses rather than developing more readily available analogs to resolve the critical supply issue. However, very recent studies with complex myxobacterial polyketides have demonstrated that considerable structural simplification may be realized with retention of biological potencies. The context, underlying rationale and importance of tailored synthetic strategies of three such case studies are presented, which may inspire further related activities and may eventually help exploiting the largely untapped biological potential of complex metabolites in general.
Collapse
Affiliation(s)
- Dirk Menche
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
12
|
Adeshakin FO, Adeshakin AO, Liu Z, Lu X, Cheng J, Zhang P, Yan D, Zhang G, Wan X. Upregulation of V-ATPase by STAT3 Activation Promotes Anoikis Resistance and Tumor Metastasis. J Cancer 2021; 12:4819-4829. [PMID: 34234852 PMCID: PMC8247373 DOI: 10.7150/jca.58670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Most cancer mortality results from metastatic tumor cells and not the localized tumor. Overcoming anoikis is one of the most important steps for detached tumor cells to migrate and metastasize. However, the molecular mechanisms remain to be fully deciphered. Herein, our study revealed upregulation of vacuolar ATPase (V-ATPase) in cancer cells during ECM detachment plays a key role in anoikis evasion. V-ATPase is an enzyme complex that utilizes energy from ATP hydrolysis to maintain cellular homeostasis and had been reported to enhance cancer progression. In this study, V-ATPase inhibition sensitized human cervical cancer, breast cancer, and murine melanoma cells to anoikis via increased ROS production, accumulation of misfolded protein, and impaired pulmonary metastasis in vivo. Scavenging ROS restored anoikis resistance and clearance of misfolded protein accumulation in the tumor cells. Mechanistically, STAT3 upregulates V-ATPase expression while blockade of STAT3 activity repressed V-ATPase expression in these tumor cells as well as sensitized cells to anoikis, increased ROS production, and misfolded protein accumulation. Altogether, our data demonstrate an unreported role of STAT3 in mediating the upregulation of V-ATPase to promote anoikis resistance, thus provides an alternative option to target cancer metastasis.
Collapse
Affiliation(s)
- Funmilayo O Adeshakin
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Adeleye O Adeshakin
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Zhao Liu
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoxu Lu
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Jian Cheng
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121000, China
| | - Pengchao Zhang
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Dehong Yan
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Guizhong Zhang
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaochun Wan
- Guangdong Immune Cell therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100864, China
| |
Collapse
|
13
|
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021; 184:1971-1989. [PMID: 33826908 DOI: 10.1016/j.cell.2021.02.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
How are individual cell behaviors coordinated toward invariant large-scale anatomical outcomes in development and regeneration despite unpredictable perturbations? Endogenous distributions of membrane potentials, produced by ion channels and gap junctions, are present across all tissues. These bioelectrical networks process morphogenetic information that controls gene expression, enabling cell collectives to make decisions about large-scale growth and form. Recent progress in the analysis and computational modeling of developmental bioelectric circuits and channelopathies reveals how cellular collectives cooperate toward organ-level structural order. These advances suggest a roadmap for exploiting bioelectric signaling for interventions addressing developmental disorders, regenerative medicine, cancer reprogramming, and synthetic bioengineering.
Collapse
|
14
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
15
|
Rivière S, Vielmuth C, Ennenbach C, Abdelrahman A, Lemke C, Gütschow M, Müller CE, Menche D. Design, Synthesis and Biological Evaluation of Highly Potent Simplified Archazolids. ChemMedChem 2020; 15:1348-1363. [PMID: 32363789 PMCID: PMC7496434 DOI: 10.1002/cmdc.202000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 01/25/2023]
Abstract
The archazolids are potent antiproliferative compounds that have recently emerged as a novel class of promising anticancer agents. Their complex macrolide structures and scarce natural supply make the development of more readily available analogues highly important. Herein, we report the design, synthesis and biological evaluation of four simplified and partially saturated archazolid derivatives. We also reveal important structure-activity relationship data as well as insights into the pharmacophore of these complex polyketides.
Collapse
Affiliation(s)
- Solenne Rivière
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Christin Vielmuth
- Pharmazeutische & Medizinische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Christiane Ennenbach
- Pharmazeutische & Medizinische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Aliaa Abdelrahman
- Pharmazeutische & Medizinische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Carina Lemke
- Pharmazeutische & Medizinische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Michael Gütschow
- Pharmazeutische & Medizinische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Christa E. Müller
- Pharmazeutische & Medizinische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
16
|
Geisslinger F, Müller M, Vollmar AM, Bartel K. Targeting Lysosomes in Cancer as Promising Strategy to Overcome Chemoresistance-A Mini Review. Front Oncol 2020; 10:1156. [PMID: 32733810 PMCID: PMC7363955 DOI: 10.3389/fonc.2020.01156] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
To date, cancer remains a worldwide leading cause of death, with a still rising incidence. This is essentially caused by the fact, that despite the abundance of therapeutic targets and treatment strategies, insufficient response and multidrug resistance frequently occur. Underlying mechanisms are multifaceted and extensively studied. In recent research, it became evident, that the lysosome is of importance in drug resistance phenotypes. While it has long been considered just as cellular waste bag, it is now widely known that lysosomes play an important role in important cellular signaling processes and are in the focus of cancer research. In that regard lysosomes are now considered as so-called "drug safe-houses" in which chemotherapeutics are trapped passively by diffusion or actively by lysosomal P-glycoprotein activity, which prevents them from reaching their intracellular targets. Furthermore, alterations in lysosome to nucleus signaling by the transcription factor EB (TFEB)-mTORC1 axis are implicated in development of chemoresistance. The identification of lysosomes as essential players in drug resistance has introduced novel strategies to overcome chemoresistance and led to innovate therapeutic approaches. This mini review gives an overview of the current state of research on the role of lysosomes in chemoresistance, summarizing underlying mechanisms and treatment strategies and critically discussing open questions and drawbacks.
Collapse
Affiliation(s)
- Franz Geisslinger
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Müller
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
17
|
Scheeff S, Rivière S, Ruiz J, Abdelrahman A, Schulz-Fincke AC, Köse M, Tiburcy F, Wieczorek H, Gütschow M, Müller CE, Menche D. Synthesis of Novel Potent Archazolids: Pharmacology of an Emerging Class of Anticancer Drugs. J Med Chem 2020; 63:1684-1698. [DOI: 10.1021/acs.jmedchem.9b01887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Stephan Scheeff
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Solenne Rivière
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Johal Ruiz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | - Meryem Köse
- Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Felix Tiburcy
- Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Michael Gütschow
- Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
18
|
Nardi F, Fitchev P, Brooks KM, Franco OE, Cheng K, Hayward SW, Welte MA, Crawford SE. Lipid droplet velocity is a microenvironmental sensor of aggressive tumors regulated by V-ATPase and PEDF. J Transl Med 2019; 99:1822-1834. [PMID: 31409893 PMCID: PMC7289525 DOI: 10.1038/s41374-019-0296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) utilize microtubules (MTs) to participate in intracellular trafficking of cargo proteins. Cancer cells accumulate LDs and acidify their tumor microenvironment (TME) by increasing the proton pump V-ATPase. However, it is not known whether these two metabolic changes are mechanistically related or influence LD movement. We postulated that LD density and velocity are progressively increased with tumor aggressiveness and are dependent on V-ATPase and the lipolysis regulator pigment epithelium-derived factor (PEDF). LD density was assessed in human prostate cancer (PCa) specimens across Gleason scores (GS) 6-8. LD distribution and velocity were analyzed in low and highly aggressive tumors using live-cell imaging and in cells exposed to low pH and/or treated with V-ATPase inhibitors. The MT network was disrupted and analyzed by α-tubulin staining. LD density positively correlated with advancing GS in human tumors. Acidification promoted peripheral localization and clustering of LDs. Highly aggressive prostate, breast, and pancreatic cell lines had significantly higher maximum LD velocity (LDVmax) than less aggressive and benign cells. LDVmax was MT-dependent and suppressed by blocking V-ATPase directly or indirectly with PEDF. Upon lowering pH, LDs moved to the cell periphery and carried metalloproteinases. These results suggest that acidification of the TME can alter intracellular LD movement and augment velocity in cancer. Restoration of PEDF or blockade of V-ATPase can normalize LD distribution and decrease velocity. This study identifies V-ATPase and PEDF as new modulators of LD trafficking in the cancer microenvironment.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kyrsten M. Brooks
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Omar E. Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kevin Cheng
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Simon W. Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Michael A. Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627
| | - Susan E. Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201,Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| |
Collapse
|
19
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
20
|
Bartel K, Müller R, von Schwarzenberg K. Differential regulation of AMP-activated protein kinase in healthy and cancer cells explains why V-ATPase inhibition selectively kills cancer cells. J Biol Chem 2019; 294:17239-17248. [PMID: 31604821 DOI: 10.1074/jbc.ra119.010243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and nontumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In nonmalignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a prosurvival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase-independent AMPK induction in tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a prosurvival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species production. We could attribute the prosurvival effects to AMPK's ability to maintain redox homeostasis by inhibiting reactive oxygen species production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.
Collapse
Affiliation(s)
- Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University, 81377 Munich, Germany
| | - Rolf Müller
- Helmholtz Center for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, and Department of Pharmacy at Saarland University, Saarland University Campus, 66123 Saarbrücken, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University, 81377 Munich, Germany
| |
Collapse
|
21
|
Bartel K, Pein H, Popper B, Schmitt S, Janaki-Raman S, Schulze A, Lengauer F, Koeberle A, Werz O, Zischka H, Müller R, Vollmar AM, von Schwarzenberg K. Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death. Cell Commun Signal 2019; 17:87. [PMID: 31358011 PMCID: PMC6664539 DOI: 10.1186/s12964-019-0399-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0399-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, 80802, Munich, Germany
| | - Sudha Janaki-Raman
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Florian Lengauer
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, 80802, Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, PO 151150, Universitätscampus E8 1, 66123, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
22
|
Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel) 2019; 11:E1014. [PMID: 31331108 PMCID: PMC6678622 DOI: 10.3390/cancers11071014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
The protein p53, known as the "Guardian of the Genome", plays an important role in maintaining DNA integrity, providing protection against cancer-promoting mutations. Dysfunction of p53 is observed in almost every cancer, with 50% of cases bearing loss-of-function mutations/deletions in the TP53 gene. In the remaining 50% of cases the overexpression of HDM2 (mouse double minute 2, human homolog) protein, which is a natural inhibitor of p53, is the most common way of keeping p53 inactive. Disruption of HDM2-p53 interaction with the use of HDM2 antagonists leads to the release of p53 and expression of its target genes, engaged in the induction of cell cycle arrest, DNA repair, senescence, and apoptosis. The induction of apoptosis, however, is restricted to only a handful of p53wt cells, and, generally, cancer cells treated with HDM2 antagonists are not efficiently eliminated. For this reason, HDM2 antagonists were tested in combinations with multiple other therapeutics in a search for synergy that would enhance the cancer eradication. This manuscript aims at reviewing the recent progress in developing strategies of combined cancer treatment with the use of HDM2 antagonists.
Collapse
Affiliation(s)
- Justyna Kocik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Machula
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Wisniewska
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
23
|
Yang J, Guo F, Yuan L, Lv G, Gong J, Chen J. Elevated expression of the V-ATPase D2 subunit triggers increased energy metabolite levels in Kras G12D -driven cancer cells. J Cell Biochem 2019; 120:11690-11701. [PMID: 30746744 DOI: 10.1002/jcb.28448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Mutations of the Ras oncogene are frequently detected in human cancers. Among Ras-mediated tumorigenesis, Kras-driven cancers are the most dominant mutation types. Here, we investigated molecular markers related to the Kras mutation, which is involved in energy metabolism in Kras mutant-driven cancer. We first generated a knock-in KrasG12D cell line as a model. The genotype and phenotype of the Kras G12D -driven cells were first confirmed. Dramatically elevated metabolite characterization was observed in Kras G12D -driven cells compared with wild-type cells. Analysis of mitochondrial metabolite-related genes showed that two of the 84 genes in Kras G12D -driven cells differed from control cells by at least twofold. The messenger RNA and protein levels of ATP6V0D2 were significantly upregulated in Kras G12D -driven cells. Knockdown of ATP6V0D2 expression inhibited motility and invasion but did not affect the proliferation of Kras G12D -driven cells. We further investigated ATP6V0D2 expression in tumor tissue microarrays. ATP6V0D2 overexpression was observed in most carcinoma tissues, such as melanoma, pancreas, and kidney. Thus, we suggest that ATP6V0D2, as one of the V-ATPase (vacuolar-type H + -ATPase) subunit isoforms, may be a potential therapeutic target for Kras mutation cancer.
Collapse
Affiliation(s)
- Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Feihu Guo
- R&D Department, High Tech of Atom Co Ltd, Beijing, China
| | - Leilei Yuan
- Nuclear Medicine Department, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Guangxin Lv
- Department of Biological Sciences, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianhua Gong
- Oncology Department, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Chen
- Department of Biological Sciences, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
24
|
Targeting V-ATPase Isoform Restores Cisplatin Activity in Resistant Ovarian Cancer: Inhibition of Autophagy, Endosome Function, and ERK/MEK Pathway. JOURNAL OF ONCOLOGY 2019; 2019:2343876. [PMID: 31057611 PMCID: PMC6463777 DOI: 10.1155/2019/2343876] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/28/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Ovarian cancer (OVCA) patients often develop tolerance to standard platinum therapy that accounts for extensive treatment failures. Cisplatin resistant OVCA cells (cis-R) display enhanced survival mechanisms to cope with therapeutic stress. In these cells, increased autophagy process assists in chemoresistance by boosting the nutrient pool under stress. To improve the treatment response, both protective autophagy inhibition and its overactivation are showing efficacy in chemosensitization. Autophagy requires a tightly regulated intracellular pH. Vacuolar ATPases (V-ATPases) are proton extruding nanomotors present on cellular/vesicular membranes where they act as primary pH regulators. V-ATPase ‘a2' isoform (V0a2), the major pH sensing unit, is markedly overexpressed on the plasma membrane and the early endosomes of OVCA cells. Previously, V0a2 inhibition sensitized cis-R cells to platinum drugs by acidifying cytosolic pH that elevated DNA damage. Here, we examined how V0a2 inhibition affected endosomal function and the autophagy process as a possible factor for cisplatin sensitization. Clinically, V0a2 expression was significantly higher in tissues from drug nonresponder OVCA patients compared to treatment responders. In vitro V0a2 knockdown in cis-R cells (sh-V0a2-cisR) significantly reduced the tumor sphere-forming ability and caused complete disintegration of the spheres upon cisplatin treatment. The apoptotic capacity of sh-V0a2-cisR improved substantially with potentiation of both intrinsic and extrinsic apoptotic pathway when treated with cisplatin. Unlike the chemical V-ATPase inhibitors that acutely induce autophagy, here, the stable V0a2 inhibition dampened the protective autophagy process in sh-V0a2-cisR cells with downregulated expression of proteins beclin-1, ATG-7, and LC3B and low autophagosome numbers compared to control cis-R cells. These cells showed downregulated ERK/MEK pathway that is known to repress autophagy. Interestingly, upon cisplatin treatment of sh-V0a2-cisR, the autophagy initiation proteins (LC3B, ATG7, and Beclin 1) were found upregulated as a stress response compared to the untreated cells. However, there was a concomitant downstream autophagosome accumulation and an enhanced P62 protein levels indicating the overall block in autophagy flux. Mechanistically, V0a2 knockdown caused defects in early endosome function as the transferrin internalization was impaired. Taken together, this study provides a novel insight into the mechanism by which V-ATPase-isoform regulates autophagy that assists in chemoresistance in ovarian cancer. We conclude that V-ATPase-V0a2 is a potent target for developing an effective treatment to enhance patient survival rates in ovarian cancer.
Collapse
|
25
|
The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen. PLoS One 2018; 13:e0203053. [PMID: 30204757 PMCID: PMC6133348 DOI: 10.1371/journal.pone.0203053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022] Open
Abstract
The vacuolar-type H+-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Collapse
|
26
|
Whitton B, Okamoto H, Packham G, Crabb SJ. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med 2018; 7:3800-3811. [PMID: 29926527 PMCID: PMC6089187 DOI: 10.1002/cam4.1594] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
Vacuolar ATPase (V-ATPase) is an ATP-dependent H+ -transporter that pumps protons across intracellular and plasma membranes. It consists of a large multi-subunit protein complex and influences a wide range of cellular processes. This review focuses on emerging evidence for the roles for V-ATPase in cancer. This includes how V-ATPase dysregulation contributes to cancer growth, metastasis, invasion and proliferation, and the potential link between V-ATPase and the development of drug resistance.
Collapse
Affiliation(s)
- Bradleigh Whitton
- Southampton Cancer Research UK CentreUniversity of SouthamptonSouthamptonUK
- Biological SciencesFaculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonUK
| | - Haruko Okamoto
- Biological SciencesFaculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonUK
| | - Graham Packham
- Southampton Cancer Research UK CentreUniversity of SouthamptonSouthamptonUK
| | - Simon J. Crabb
- Southampton Cancer Research UK CentreUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
27
|
Knippenberg S, Fabre G, Osella S, Di Meo F, Paloncýová M, Ameloot M, Trouillas P. Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9072-9084. [PMID: 29983063 DOI: 10.1021/acs.langmuir.8b01164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By reverting to spectroscopy, changes in the biological environment of a fluorescent probe can be monitored and the presence of various phases of the surrounding lipid bilayer membranes can be detected. However, it is currently not always clear in which phase the probe resides. The well-known orange 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate (DiI-C18(5)) fluorophore, for instance, and the new, blue BODIPY (4,4-difluoro-4-bora-3 a,4 a-diaza- s-indacene) derivative were experimentally seen to target and highlight identical parts of giant unilamellar vesicles of various compositions, comprising mixtures of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), and cholesterol (Chol). However, it was not clear which of the coexisting membrane phases were visualized (Bacalum et al., Langmuir. 2016, 32, 3495). The present study addresses this issue by utilizing large-scale molecular dynamics simulations and the z-constraint method, which allows evaluating Gibbs free-energy profiles. The current calculations give an indication why, at room temperature, both BODIPY and DiI-C18(5) probes prefer the gel (So) phase in DOPC/DPPC (2:3 molar ratio) and the liquid-ordered (Lo) phase in DOPC/SM/Chol (1:2:1 molar ratio) mixtures. This study highlights the important differences in orientation and location and therefore in efficiency between the probes when they are used in fluorescence microscopy to screen various lipid bilayer membrane phases. Dependent on the lipid composition, the angle between the transition-state dipole moments of both probes and the normal to the membrane is found to deviate clearly from 90°. It is seen that the DiI-C18(5) probe is located in the headgroup region of the SM/Chol mixture, in close contact with water molecules. A fluorescence anisotropy study also indicates that DiI-C18(5) gives rise to a distinctive behavior in the SM/Chol membrane compared to the other considered membranes. The latter behavior has not been seen for the studied BODIPY probe, which is located deeper in the membrane.
Collapse
Affiliation(s)
- S Knippenberg
- Department of Theoretical Chemistry and Biology , KTH Royal Institute of Technology , Roslagstullsbacken 15 , S-106 91 Stockholm , Sweden
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - G Fabre
- LCSN-EA1069, Faculty of Pharmacy , Limoges University , 2 rue du Dr. Marcland , 87025 Limoges Cedex , France
| | - S Osella
- Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | - F Di Meo
- Faculty of Pharmacy , INSERM UMR 1248, Limoges University , 2 rue du Docteur Marcland , 87025 Limoges Cedex , France
| | - M Paloncýová
- Department of Theoretical Chemistry and Biology , KTH Royal Institute of Technology , Roslagstullsbacken 15 , S-106 91 Stockholm , Sweden
| | - M Ameloot
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - P Trouillas
- Faculty of Pharmacy , INSERM UMR 1248, Limoges University , 2 rue du Docteur Marcland , 87025 Limoges Cedex , France
- Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University , tř. 17 listopadu 12 , 771 46 Olomouc , Czech Republic
| |
Collapse
|
28
|
Herbig M, Mietke A, Müller P, Otto O. Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing. BIOMICROFLUIDICS 2018; 12:042214. [PMID: 29937952 PMCID: PMC5999349 DOI: 10.1063/1.5027197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Real-time deformability (RT-DC) is a method for high-throughput mechanical and morphological phenotyping of cells in suspension. While analysis rates exceeding 1000 cells per second allow for a label-free characterization of complex biological samples, e.g., whole blood, data evaluation has so far been limited to a few geometrical and material parameters such as cell size, deformation, and elastic Young's modulus. But as a microscopy-based technology, RT-DC actually generates and yields multidimensional datasets that require automated and unbiased tools to obtain morphological and rheological cell information. Here, we present a statistical framework to shed light on this complex parameter space and to extract quantitative results under various experimental conditions. As model systems, we apply cell lines as well as primary cells and highlight more than 11 parameters that can be obtained from RT-DC data. These parameters are used to identify sub-populations in heterogeneous samples using Gaussian mixture models, to perform a dimensionality reduction using principal component analysis, and to quantify the statistical significance applying linear mixed models to datasets of multiple replicates.
Collapse
Affiliation(s)
- M. Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - P. Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - O. Otto
- Author to whom the correspondence should be addressed:
| |
Collapse
|
29
|
Li L, Yang S, Zhang Y, Ji D, Jin Z, Duan X. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells. Biochem Biophys Res Commun 2018; 502:84-90. [DOI: 10.1016/j.bbrc.2018.05.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
|
30
|
Zhang R, Wei Y, Zhu L, Huang L, Wei Y, Chen G, Dang Y, Feng Z. LncRNA UCHL1-AS1 prevents cell mobility of hepatocellular carcinoma: a study based on in vitro and bioinformatics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2270-2280. [PMID: 31938339 PMCID: PMC6958276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 06/10/2023]
Abstract
We set out to investigate biological functions and potential molecular mechanisms of long non-coding RNA (lncRNA) in hepatocellular carcinoma (HCC). HCC cell line Bel-7404 was cultured and transfected with antisense to the ubiquitin carboxyl-terminal hydrolase L1 (UCHL1-AS1). Viability and mobility were detected by MTT and wound healing assays. Additionally, enrichment analysis and functional networks of UCHL1-AS1 related genes in HCC were performed. Results showed that high level UCHL1-AS1 could effectively inhibit HCC cell migration. However, there was no significant correlation between overexpressed UCHL1-AS1 and HCC proliferation. Meanwhile, BMP4, CALM3, and HRAS were selected from 204 genes that related to UCHL1-AS1. All of these hub genes play critical roles in HCC occurrence and development. Thus, underlying molecular mechanisms among hub genes and UCHL1-AS1 in HCC might be valuable for prognosis and treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yichen Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li'ou Zhu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
31
|
Endolysosomal Cation Channels and Cancer-A Link with Great Potential. Pharmaceuticals (Basel) 2018; 11:ph11010004. [PMID: 29303993 PMCID: PMC5874700 DOI: 10.3390/ph11010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells.
Collapse
|
32
|
Deng Y, Davis SP, Yang F, Paulsen KS, Kumar M, Sinnott DeVaux R, Wang X, Conklin DS, Oberai A, Herschkowitz JI, Chung AJ. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700705. [PMID: 28544415 PMCID: PMC5565626 DOI: 10.1002/smll.201700705] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Indexed: 05/20/2023]
Abstract
Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Steven P Davis
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Fan Yang
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Kevin S Paulsen
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Maneesh Kumar
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Rebecca Sinnott DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Xianhui Wang
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Assad Oberai
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Aram J Chung
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| |
Collapse
|