1
|
Koponen ME, Naray E, Hales TG, Forget P. Pharmacological interventions for remifentanil-induced hyperalgesia: A systematic review and network meta-analysis of preclinical trials. PLoS One 2024; 19:e0313749. [PMID: 39636808 PMCID: PMC11620364 DOI: 10.1371/journal.pone.0313749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND To improve perioperative pain management, several interventions have been suggested for the prevention of increased pain sensitivity caused by opioids (called opioid-induced hyperalgesia). It is currently unclear which intervention is the most effective or appropriate in preventing opioid-induced hyperalgesia. Remifentanil is the most investigated opioid causing opioid-induced hyperalgesia. Thus, to guide future research, we conducted a systematic review and a network meta-analysis of preclinical trials investigating pharmacological interventions for remifentanil-induced hyperalgesia. METHODS To identify relevant articles, electronic database searches were conducted in Embase, PubMed, Web of Science, and Google Scholar. Study characteristics were extracted, and the risk of bias was evaluated. Studies were included in the network meta-analysis if they shared similar characteristics with at least one other study. The interventions were ranked based on P-scores. RESULTS Overall, the 62 eligible trials tested 86 individual interventions and 6 combination interventions. Thirty-five studies eligible in the network meta-analysis formed five groups which were further divided into subgroups based on the quantitative sensory tests used. The best-ranked interventions within the subgroups were Anxa12-26, MRS2179, salicylaldehyde isonicotinoyl hydrazone (SIH), ANA-12, TDZD-8, ketamine, dexmedetomidine, JWH015, and the combination of KN93 and ketamine. DISCUSSION The current literature is too heterogeneous to produce a clear answer on which intervention is the most effective in preventing remifentanil-induced hyperalgesia. Future research in this field should prioritise finding the most effective intervention over testing the efficacy of new options. The results of our work can be used in planning which comparisons should be included in new trials.
Collapse
Affiliation(s)
- Mia E. Koponen
- MSc Clinical Pharmacology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Emily Naray
- MSci Biomedical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Tim G. Hales
- Division of Systems Medicine, School of Medicine, Institute of Academic Anaesthesia, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Patrice Forget
- Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen, United Kingdom
- Emergency and Pain Medicine Division, IMAGINE UR UM 103, Montpellier University, Anesthesia Critical Care, Nîmes University Hospital, Nîmes, France
- Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesia (ID ESAIC_RG_PAND) Research Group, Brussels, Belgium
| |
Collapse
|
2
|
Singh M, Kim A, Young A, Nguyen D, Monroe CL, Ding T, Gray D, Venketaraman V. The Mechanism and Inflammatory Markers Involved in the Potential Use of N-acetylcysteine in Chronic Pain Management. Life (Basel) 2024; 14:1361. [PMID: 39598160 PMCID: PMC11595559 DOI: 10.3390/life14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
N-acetylcysteine (NAC) has established use as an antidote for acetaminophen overdose and treatment for pulmonary conditions and nephropathy. It plays a role in regulating oxidative stress and interacting with various cytokines including IL-1β, TNFα, IL-8, IL-6, IL-10, and NF-κB p65. The overexpression of reactive oxygen species (ROS) is believed to contribute to chronic pain states by inducing inflammation and accelerating disease progression, favoring pain persistence in neuropathic and musculoskeletal pain conditions. Through a comprehensive review, we aim to explore the mechanisms and inflammatory pathways through which NAC may manage neuropathic and musculoskeletal pain. Evidence suggests NAC can attenuate neuropathic and musculoskeletal pain through mechanisms such as inhibiting matrix metalloproteinases (MMPs), reducing reactive oxygen species (ROS), and enhancing glutamate transport. Additionally, NAC may synergize with opioids and other pain medications, potentially reducing opioid consumption and enhancing overall pain management. Further research is needed to fully elucidate its therapeutic potential and optimize its use in pain management. As an adjuvant therapy, NAC shows potential for chronic pain management, offering significant benefits for public health.
Collapse
Affiliation(s)
- Mona Singh
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Alina Kim
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Amelie Young
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Deanna Nguyen
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Cynthia L. Monroe
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Tiffany Ding
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Dennis Gray
- Vigilant Anesthesiology, PA, Tampa, FL 33193, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| |
Collapse
|
3
|
Bates JN, Baby SM, Getsy PM, Coffee GA, Hsieh YH, Knauss ZT, Dahan A, Bubier JA, MacFarlane PM, Mueller D, Lewis SJ. L-NAC and L-NAC methyl ester prevent and overcome physical dependence to fentanyl in male rats. Sci Rep 2024; 14:9091. [PMID: 38643270 PMCID: PMC11032344 DOI: 10.1038/s41598-024-59551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 μmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 μmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 μg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IV), elicited a series of withdrawal phenomena (i.e. behavioral and cardiorespiratory responses, hypothermia and body weight loss) in rats that received 5 or 10 injections of fentanyl and similar numbers of vehicle co-injections. With respect to the development of dependence, the NLX-precipitated withdrawal phenomena were reduced in rats that received had co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme. In regard to overcoming established dependence, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 μg/kg, IV) were reduced in rats that had received co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme beginning with injection 6 of fentanyl. This study provides compelling evidence that co-injections of L-NAC and L-NACme prevent the acquisition of physical dependence and overcome acquired dependence to fentanyl in male rats. The higher efficacy of L-NACme is likely due to its greater cell penetrability in brain regions mediating dependence to fentanyl and interaction with intracellular signaling cascades, including redox-dependent processes, responsible for the acquisition of physical dependence to fentanyl.
Collapse
Affiliation(s)
- James N Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Atelerix Life Sciences Inc., 300 East Main Street, Suite 202, Charlottesville, VA, USA
| | - Santhosh M Baby
- Section of Biology, Galleon Pharmaceuticals, Inc, Horsham, PA, USA
- Translational Sciences Treatment Discovery, Galvani Bioelectronics, Inc, 1250 S Collegeville Rd, Collegeville, PA, USA
| | - Paulina M Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Peter M MacFarlane
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Stephen J Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, School of Medicine,, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
4
|
Liu X, Gong R, Peng L, Zhao J. Toll-like receptor 4 signaling pathway in sensory neurons mediates remifentanil-induced postoperative hyperalgesia via transient receptor potential ankyrin 1. Mol Pain 2023; 19:17448069231158290. [PMID: 36733260 PMCID: PMC9926008 DOI: 10.1177/17448069231158290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Remifentanil-induced postoperative hyperalgesia (RIH) refers to a state of hyperalgesia or aggravated pre-existing pain after remifentanil exposure. There has been considerable interest in understanding and preventing RIH. However, the mechanisms responsible for RIH are still not completely understood. Toll-like receptor 4 (TLR4), a classic innate immune receptor, has been detected in sensory neurons and participates in various nociceptive conditions, whereas its role in RIH remains unclear. Transient receptor potential ankyrin 1 (TRPA1) always serves as a nociceptive channel, whereas its role in RIH has not yet been investigated. This study aimed to determine whether the TLR4 signaling pathway in sensory neurons engaged in the development of RIH and the possible involvement of TRPA1 during this process. Methods: A rat model of remifentanil-induced postoperative hyperalgesia (RIH) was established, which presented decreased paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The mRNA and protein expression levels of TLR4, phosphorylated NF-κB, and TRPA1 in the dorsal root ganglion (DRG) from RIH model were analyzed by real-time PCR, western blot, and immunofluorescence. The TLR4 antagonist TAK-242 and the TRPA1 antagonist HC-030031 were applied to determine the role of sensory neuron TLR4 signaling and TRPA1 in RIH. Results: Compared with control, PWMT and PWTL were significantly decreased in RIH model. Moreover, the mRNA and protein expression of TLR4 and TRPA1 in DRG were upregulated after remifentanil exposure together with increased NF-κB phosphorylation. TLR4 antagonist TAK-242 mitigated mechanical pain in RIH together with downregulated expression of TLR4, phosphorylated NF-κB, and TRPA1 in DRG neurons. In addition, TRPA1 antagonist HC-030031 also alleviated mechanical pain and decreased TRPA1 expression in RIH without affecting TLR4 signaling in DRG. Conclusions: Taken together, these results suggested that activation of TLR4 signaling pathway engaged in the development of RIH by regulating TRPA1 in DRG neurons. Blocking TLR4 and TRPA1 might serve as a promising therapeutic strategy for RIH.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China
| | - Ruisong Gong
- Department of Anesthesiology,
Peking
Union Medical College Hospital,
Beijing, China
| | - Liang Peng
- Beijing Key Laboratory for
Immune-Mediated Inflammatory Diseases, Institute of Medical Science,
China-Japan Friendship Hospital,
Beijing, China
| | - Jing Zhao
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China,Jing Zhao, Department of Anesthesiology,
China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing 100029,
China.
| |
Collapse
|
5
|
Heidari B, Seyedian ZA, Mehrpooya M, Ahmadimoghaddam D, Mirjalili M, Ghiasian M. N-Acetyl Cysteine as an Add-on Therapy is Useful in Treating Acute Lumbar Radiculopathy Caused by Disc Herniation: Results of a Randomized, Controlled Clinical Trial. Rev Recent Clin Trials 2023; 18:288-299. [PMID: 37779397 DOI: 10.2174/0115748871250545230919055109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Available experimental and clinical evidence indicates that N-Acetyl cysteine (NAC) may have an analgesic role in specific pain conditions, particularly neuropathic pain. Thus, we hypothesized that NAC supplementation might be also helpful in decreasing pain and improving pain-related disability in patients with acute radiculopathy. We designed this study to investigate the potential use of NAC-adjunctive treatment to Nonsteroidal Anti- Inflammatory Drugs (NSAIDs) in patients with acute radiculopathy secondary to lumbar intervertebral disc herniation. METHODS Sixty-two patients diagnosed with acute lumbar radiculopathy associated with disc herniation were randomly allocated to the NAC or the placebo groups. Besides naproxen at a dose of 500 mg twice a day, participants based on their allocation group started with NAC or matched placebo at a dose of 600 mg twice a day for eight weeks. The pain severity, measured by the Visual Analog Scale (VAS), and pain-related disability measured by the Oswestry Disability Index (ODI) were measured at baseline and weeks 2, 4, and 8 of treatment. Global improvement of symptoms rated by Patient and Clinical Global Impressions of Change (PGIC and CGIC) was also recorded at the end of week 8. All analyses were conducted on an Intentionto- Treat (ITT) analysis data set. RESULTS A comparison of the VAS and ODI scores at weeks 2 and 4 of the treatment between the two groups did not show a significant difference. In contrast, from week 4 to week 8, we noticed a significantly greater reduction in the mean VAS and ODI scores in the NAC group compared to the placebo group (p-value <0.001 for both variables). In parallel with these results, also, more NAC-treated than placebo-treated patients achieved treatment success defined as ''very much'' or ''much improved'' on CGIC and PGIC scales, and these differences reached a significant level (p-value = .011 and p-value = .043). CONCLUSIONS This study suggested that NAC might be a relevant candidate for adjunct therapy in managing acute lumbar radiculopathy. Additional clinical trials are needed to validate these findings.
Collapse
Affiliation(s)
- Bijan Heidari
- Department of Orthopedics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zeinab-Alsadat Seyedian
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davoud Ahmadimoghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Ghiasian
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Koponen ME, Forget P. Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials. J Clin Med 2022; 11:jcm11237060. [PMID: 36498635 PMCID: PMC9735807 DOI: 10.3390/jcm11237060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Opioid analgesics are the most effective pharmacological agents for moderate and severe pain. However, opioid use has several limitations such as opioid-induced hyperalgesia (OIH), which refers to the increased pain sensitivity that occurs once analgesia wears off after opioid administration. Several pharmacological interventions have been suggested for OIH, but the current literature does not provide guidelines on which interventions are the most effective and whether they differ depending on the opioid that induces hyperalgesia. This scoping review aimed to identify and describe all the preclinical trials investigating pharmacological interventions for OIH caused by remifentanil, fentanyl, or morphine as the first step towards evaluating whether the most effective OIH interventions are different for different opioids. METHODS Electronic database searches were carried out in Embase, PubMed, and Web of Science. Detailed data extraction was conducted on the eligible trials. RESULTS 72 trials were eligible for the review. Of these, 27 trials investigated remifentanil, 14 trials investigated fentanyl, and 31 trials investigated morphine. A total of 82 interventions were identified. The most studied interventions were ketamine (eight trials) and gabapentin (four trials). The majority of the interventions were studied in only one trial. The most common mechanism suggested for the interventions was inhibition of N-methyl-D-aspartate (NMDA) receptors. CONCLUSION This scoping review identified plenty of preclinical trials investigating pharmacological interventions for OIH. Using the current literature, it is not possible to directly compare the effectiveness of the interventions. Hence, to identify the most effective interventions for each opioid, the interventions must be indirectly compared in a meta-analysis.
Collapse
Affiliation(s)
- Mia Elena Koponen
- Neuroscience with Psychology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence:
| | - Patrice Forget
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ESAIC) Research Group, 1000 Brussels, Belgium
| |
Collapse
|
7
|
Getsy PM, Baby SM, May WJ, Lewis THJ, Bates JN, Hsieh YH, Gaston B, Lewis SJ. L-NAC reverses of the adverse effects of fentanyl infusion on ventilation and blood-gas chemistry. Biomed Pharmacother 2022; 153:113277. [PMID: 35724513 PMCID: PMC9458628 DOI: 10.1016/j.biopha.2022.113277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
There is an urgent need for development of drugs that are able to reverse the adverse effects of opioids on breathing and arterial blood-gas (ABG) chemistry while preserving opioid analgesia. The present study describes the effects of bolus injections of N-acetyl-L-cysteine (L-NAC, 500 μmol/kg, IV) on ventilatory parameters, ABG chemistry, Alveolar-arterial (A-a) gradient, sedation (righting reflex) and analgesia status (tail-flick latency assay) in unanesthetized adult male Sprague Dawley rats receiving a continuous infusion of fentanyl (1 μg/kg/min, IV). Fentanyl infusion elicited pronounced disturbances in (1) ventilatory parameters (e.g., decreases in frequency of breathing, tidal volume and minute ventilation), (2) ABG chemistry (decreases in pH, pO2, sO2 with increases in pCO2), (3) A-a gradient (increases that were consistent with reduced alveolar gas exchange), and (4) sedation and analgesia. Bolus injections of L-NAC given 60 and 90 min after start of fentanyl infusion elicited rapid and sustained reversal of the deleterious effects of fentanyl infusion on ventilatory parameters and ABG chemistry, whereas they did not affect the sedative or analgesic effects of fentanyl. Systemic L-NAC is approved for human use, and thus our findings raise the possibility that this biologically active thiol may be an effective compound to combat opioid-induced respiratory depression in human subjects.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Santhosh M Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA 19044, USA.
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tristan H J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James N Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Yaryari AM, Mousavibahar SH, Amirhassani S, Bagheri M, Mohammadi Y, Mehrpooya M. Men suffering from category III chronic prostatitis may benefit from N-acetylcysteine as an adjunct to alpha-blockers. Low Urin Tract Symptoms 2022; 14:199-207. [PMID: 35068061 DOI: 10.1111/luts.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We designed this study to investigate the potential use of N-acetylcysteine (NAC) as an adjunct to alpha-blockers in the treatment of category III chronic prostatitis (CP). METHODS Sixty-three men with category III CP with a National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) total score of 15 or more were randomized to either the NAC treatment group or the placebo treatment group. Besides tamsulosin at a dose of 0.4 mg once daily, participants based on their allocation group received NAC or placebo at a dose of 600 mg twice daily for 12 weeks. The efficacy of the medications was assessed by measuring changes in the NIH-CPSI total score and its subscales, including pain, urinary symptoms, and quality of life. RESULTS Based on the general linear model analysis of the data, over the 12-week treatment, NAC+tamsulosin was statistically superior to placebo+tamsulosin in reducing the total NIH-CPSI score, pain subscore, and quality-of-life subscore (P value <.001). Further, after 12 weeks, more patients in the NAC+tamsulosin group than in the placebo+tamsulosin group met the responder criterion, defined as a decrease of at least 6 points in the NIH-CPSI total score (65.6% vs 29.0%). A more favorable outcome was also noted in the NAC+tamsulosin group regarding the number of patients reporting moderate or marked improvement in symptoms (62.5% vs 25.80%). No significant difference was seen between the groups concerning changes in urinary symptoms. CONCLUSIONS Our study provided clinical evidence that men with category III CP might benefit from NAC treatment. Further studies are needed for the validation of these findings.
Collapse
Affiliation(s)
- Amir-Mohammad Yaryari
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Shahriar Amirhassani
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Bagheri
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Miranpuri GS, Bali P, Nguyen J, Kim JJ, Modgil S, Mehra P, Buttar S, Brown G, Yutuc N, Singh H, Wood A, Singh J, Anand A. Role of Microglia and Astrocytes in Spinal Cord Injury Induced Neuropathic Pain. Ann Neurosci 2022; 28:219-228. [PMID: 35341227 PMCID: PMC8948321 DOI: 10.1177/09727531211046367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injuries incite varying degrees of symptoms in patients, ranging
from weakness and incoordination to paralysis. Common amongst spinal cord
injury (SCI) patients, neuropathic pain (NP) is a debilitating medical
condition. Unfortunately, there remain many clinical impediments in treating
NP because there is a lack of understanding regarding the mechanisms behind
SCI-induced NP (SCINP). Given that more than 450,000 people in the United
States alone suffer from SCI, it is unsatisfactory that current treatments
yield poor results in alleviating and treating NP. Summary: In this review, we briefly discussed the models of SCINP along with the
mechanisms of NP progression. Further, current treatment modalities are
herein explored for SCINP involving pharmacological interventions targeting
glia cells and astrocytes. Key message: The studies presented in this review provide insight for new directions
regarding SCINP alleviation. Given the severity and incapacitating effects
of SCINP, it is imperative to study the pathways involved and find new
therapeutic targets in coordination with stem cell research, and to develop
a new gold-standard in SCINP treatment.
Collapse
Affiliation(s)
- Gurwattan S Miranpuri
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Parul Bali
- Department of Biological Sciences, Indian Institute of Science Education & Research Mohali, India
| | - Justyn Nguyen
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jason J Kim
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Shweta Modgil
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Priya Mehra
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Seah Buttar
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Greta Brown
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Noemi Yutuc
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Harpreet Singh
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Aleksandar Wood
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akshay Anand
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,CCRYN- Collaborative Centre for Mind Body Intervention through Yoga.,Centre of Phenomenology and Cognitive Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Marchesi N, Govoni S, Allegri M. Non-drug pain relievers active on non-opioid pain mechanisms. Pain Pract 2021; 22:255-275. [PMID: 34498362 DOI: 10.1111/papr.13073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is aimed to summarize the pain-relieving effect of non-drug substances, mostly prescribed as integrators in treatment of pain, including especially in chronic postoperative pain (CPSP) and in chronic back pain after acute episodes. Their use reflects the fact that the current treatments for these syndromes continue to pose problems of unsatisfactory responses in a significant portion of patients and/or of an excess of side effects like those noted in the present opioid crisis. As integrators are frequently introduced into the market without adequate clinical testing, this review is aimed to collect the present scientific evidence either preclinical or clinical for their effectiveness. In particular, we reviewed the data on the use of: B vitamins; vitamin C; vitamin D; alpha lipoic acid (ALA); N-acetylcysteine; acetyl L-carnitine; curcumin; boswellia serrata; magnesium; coenzyme Q10, and palmitoylethanolamide. The combination of preclinical findings and clinical observations strongly indicate that these compounds deserve more careful attention, some of them having interesting clinical potentials also in preventing chronic pain after an acute episode. In particular, examining their putative mechanisms of action it emerges that combinations of few of them may exert an extraordinary spectrum of activities on a large variety of pain-associated pathways and may be eventually used in combination with more traditional pain killers in order to extend the duration of the effect and to lower the doses. Convincing examples of effective combinations against pain are vitamin B complex plus gabapentin for CPSP, including neuropathic pain; vitamin B complex plus diclofenac against low back pain and also in association with gabapentin, and ALA for burning mouth syndrome. These as well as other examples need, however, careful controlled independent clinical studies confirming their role in therapy.
Collapse
Affiliation(s)
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Pain Therapy Service, Policlinico Monza, Monza, Italy.,Italian Pain Group, Monza-Brianza, Italy
| |
Collapse
|
11
|
Heidari N, Sajedi F, Mohammadi Y, Mirjalili M, Mehrpooya M. Ameliorative Effects Of N-Acetylcysteine As Adjunct Therapy On Symptoms Of Painful Diabetic Neuropathy. J Pain Res 2019; 12:3147-3159. [PMID: 31819599 PMCID: PMC6875491 DOI: 10.2147/jpr.s228255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Painful diabetic neuropathy (PDN) is a variant of diabetic peripheral neuropathy which is highly prevalent and distressing in diabetic patients. Despite its high burden, the optimal treatment of PDN has remained a clinical challenge. To explain the emergence and maintenance of PDN, increasing attention has been focused on dimensions of inflammation and oxidative toxic stress (OTS). Accordingly, the aim of this study was to investigate the effects of oral N-acetylcysteine (NAC), an agent with known anti-oxidant and anti-inflammatory effects, as an adjunct therapy in patients suffering from PDN. Patients and methods 113 eligible patients with type 2 diabetes suffering from PDN were randomly assigned to either the pregabalin + placebo or pregabalin + NAC group for 8 weeks (pregabalin at a dose of 150 mg per day, NAC and matched placebo at doses of 600 mg twice a day). Mean pain score was evaluated at baseline, week 1, 2, 4, 6, and 8 of the study based on the mean 24 hr average pain score, using an 11-point numeric rating scale (NRS). As secondary efficacy measures, mean sleep interference score (SIS) resulting from PDN, responder rates, Patient Global Impression of Change (PGIC), Clinical Global Impression of Change (CGIC), and safety were also assessed. Additionally, serum levels of total antioxidant capacity (TAC), total thiol groups (TTG), catalase activity (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), nitric oxide (NO), and malondialdehyde (MDA) were assessed at baseline and at the end of the study. Results Ninety patients completed the eight-week course of the study. The decrease in mean pain scores and mean sleep interference score in pregabalin + NAC group was greater in comparison with pregabalin + placebo group (p value<0.001 in both conditions). Moreover, more responders (defined as ≥50% reduction in mean pain score from baseline to end-point) were observed in the pregabalin + NAC group, in comparison with pregabalin + placebo group (72.1% vs 46.8%). More improvement in PGIC and CGIC from baseline to the end of the study was reported in pregabalin + NAC group. Oral NAC had minimal adverse effects and was well tolerated in almost all patients. Furthermore, in respect to OTS biomarkers, adjuvant NAC significantly decreased serum level of MDA and significantly increased serum levels of SOD, GPx, TAC, and TTG. Conclusion The pattern of results suggests that compared to placebo and over a time period of 8 weeks, adjuvant NAC is more efficacious in improving neuropathic pain associated with diabetic neuropathy than placebo. Ameliorative effects of NAC on OTS biomarkers demonstrated that NAC may alleviate painful symptoms of diabetic neuropathy, at least in part by its antioxidant effects.
Collapse
Affiliation(s)
- Narges Heidari
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Acid-sensing ion channel 3 expression is increased in dorsal root ganglion, hippocampus and hypothalamus in remifentanil-induced hyperalgesia in rats. Neurosci Lett 2019; 721:134631. [PMID: 31734291 DOI: 10.1016/j.neulet.2019.134631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Remifentanil induces hyperalgesia, but the underlying mechanisms are not fully understood. Acid-sensing ion channel 3 (ASIC3) plays a regulatory role in the pain pathway. This study aimed to explore the effect of remifentanil administration on postoperative pain and on ASIC3 expression at the prespinal and supraspinal levels in a rat model. METHODS Rats were randomly allocated to the control, incision, remifentanil, and remifentanil + incision groups. Remifentanil was given by a 1-h intravenous infusion prior to plantar incision. Paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured at different time points before and after incision to evaluate mechanical and thermal hyperalgesia, respectively. The dorsal root ganglion (DRG), hippocampus, and hypothalamus were obtained after sacrifice at 48 h post-incision for determination of the protein expression of ASIC3 using western blot. RESULTS Remifentanil administration significantly induced mechanical and thermal hyperalgesia from 2 to 48 h after incision. In addition, remifentanil exposure remarkably stimulated ASIC3 protein expression in DRG, hippocampus, and hypothalamus of rats at 48 h after incision. CONCLUSION Remifentanil-induced hyperalgesia is accompanied by increased ASIC3 expression at the DRG and supraspinal levels, implying a possible involvement of ASIC3 in remifentanil-induced hyperalgesia.
Collapse
|
13
|
Lee YH, Lee SR. Neuroprotective effects of N-acetylcysteine via inhibition of matrix metalloproteinase in a mouse model of transient global cerebral ischemia. Brain Res Bull 2019; 154:142-150. [PMID: 31722253 DOI: 10.1016/j.brainresbull.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
N-acetylcysteine (NAC) is known to serve many biological functions including acting as an antioxidant, and electing antiinflammatory effects. Previous reports have revealed that NAC may have neuroprotective effects against the deleterious effects of brain ischemia. Despite of this, the mechanism by which NAC prevents neuronal damage after brain ischemia remains unclear. The current study aimed to investigate this mechanism in a mouse model of transient global brain ischemia. In the present study, mice were subjected to 20 min of transient global brain ischemia, proceeded by intraperitoneal administration of NAC (150 mg/kg) in one group. The mice were then euthanized 72 h after this ischemic insult for collection of experimental tissues. The effect of NAC on neuronal damage and matrix metalloproteinase (MMP)-9 activity were assessed and immunofluorescence, and hippocampal terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay experiments were conducted and results compared between NAC- and vehicle-treated groups. Neuronal damage was primarily observed in the hippocampal CA1 and CA2 regions. In NAC-treated mice, neuronal damage was significantly reduced after ischemia when compared to vehicle-treated animals. NAC also inhibited increased MMP-9 activity after global brain ischemia. NAC increased laminin and NeuN expression and inhibited increases in TUNEL-positive cells, all in the hippocampus. These results suggest that NAC reduces hippocampal neuronal damage following transient global ischemia, potentially via reductions in MMP-9 activity.
Collapse
Affiliation(s)
- Yoon-Hyung Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea; Department of Urology, Fatima Hospital, Daegu, 42601, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
14
|
Protective effect of L-cysteine on biomarkers and peripheral nervous system in streptozotocin-induced diabetic rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Gu HW, Xing F, Jiang MJ, Wang Y, Bai L, Zhang J, Li TT, Zhang W, Xu JT. Upregulation of matrix metalloproteinase-9/2 in the wounded tissue, dorsal root ganglia, and spinal cord is involved in the development of postoperative pain. Brain Res 2019; 1718:64-74. [DOI: 10.1016/j.brainres.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
16
|
Yokukansan Alleviates Cancer Pain by Suppressing Matrix Metalloproteinase-9 in a Mouse Bone Metastasis Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2956920. [PMID: 31239855 PMCID: PMC6556276 DOI: 10.1155/2019/2956920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/01/2023]
Abstract
Bone cancer pain control is difficult because it includes various characteristics of pain such as nociceptic and neuropathic pain. In this study, we investigated the effect of yokukansan (YKS), one of the traditional Japanese herbal medicines, on cancer pain in mouse bone metastasis model. Oral administration of YKS significantly alleviated pain behavior measured by quantitative body weight bearing. Furthermore, the pain behavior was also significantly alleviated by intrathecal and intraperitoneal administration of matrix metalloproteinase- (MMP-) 9 inhibitor, but not of MMP-2 inhibitor. MMP-9 expression was significantly elevated in the bone tissue on day 3 after carcinoma cell injection and in the ipsilateral spinal cord on day 7, which was suppressed by YKS administration. Taken together, these results suggest that YKS alleviates cancer pain via suppressing MMP-9 expression in bone metastasis model in mice.
Collapse
|
17
|
Mechanisms of acute and chronic pain after surgery: update from findings in experimental animal models. Curr Opin Anaesthesiol 2019; 31:575-585. [PMID: 30028733 DOI: 10.1097/aco.0000000000000646] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Management of postoperative pain is still a major issue and relevant mechanisms need to be investigated. In preclinical research, substantial progress has been made, for example, by establishing specific rodent models of postoperative pain. By reviewing most recent preclinical studies in animals related to postoperative, incisional pain, we outline the currently available surgical-related pain models, discuss assessment methods for pain-relevant behavior and their shortcomings to reflect the clinical situation, delineate some novel clinical-relevant mechanisms for postoperative pain, and point toward future needs. RECENT FINDINGS Since the development of the first rodent model of postoperative, incisional pain almost 20 years ago, numerous variations and some procedure-specific models have been emerged including some conceivably relevant for investigating prolonged, chronic pain after surgery. Many mechanisms have been investigated by using these models; most recent studies focussed on endogenous descending inhibition and opioid-induced hyperalgesia. However, surgical models beyond the classical incision model have so far been used only in exceptional cases, and clinical relevant behavioral pain assays are still rarely utilized. SUMMARY Pathophysiological mechanisms of pain after surgery are increasingly discovered, but utilization of pain behavior assays are only sparsely able to reflect clinical-relevant aspects of acute and chronic postoperative pain in patients.
Collapse
|
18
|
Zhang L, Guo S, Zhao Q, Li Y, Song C, Wang C, Yu Y, Wang G. Spinal Protein Kinase Mζ Regulates α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Trafficking and Dendritic Spine Plasticity via Kalirin-7 in the Pathogenesis of Remifentanil-induced Postincisional Hyperalgesia in Rats. Anesthesiology 2018; 129:173-186. [PMID: 29578864 DOI: 10.1097/aln.0000000000002190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Intraoperative remifentanil anesthesia exaggerates postoperative pain sensitivity. Recent studies recapitulate the significance of protein kinase Mζ in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–mediated pathologic pain. Kalirin-7, a Rho guanine nucleotide exchange factor, coordinates AMPA receptor trafficking and dendritic spine plasticity. This study examines whether protein kinase Mζ and Kalirin-7 contribute to remifentanil-induced postincisional hyperalgesia via AMPA receptor.
Methods
Plantar incision was performed 10 min after the start of remifentanil infusion (1 µg · kg−1 · min−1 for 60 min). Paw withdrawal threshold (primary outcome), spinal protein kinase Mζ activity, Kalirin-7 expression, AMPA receptor trafficking, and spine morphology were assessed. Protein kinase Mζ inhibitor and Kalirin-7 knockdown by short hairpin RNA elucidated the mechanism and prevention of hyperalgesia. Whole-cell patch-clamp recording analyzed the role of protein kinase Mζ in spinal AMPA receptor–induced current.
Results
Remifentanil reduced postincisional paw withdrawal threshold (mean ± SD, control vs. hyperalgesia, 18.9 ± 1.6 vs. 5.3 ± 1.2 g, n = 7) at postoperative 48 h, which was accompanied by an increase in spinal protein kinase Mζ phosphorylation (97.8 ± 25.1 vs. 181.5 ± 18.3%, n = 4), Kalirin-7 production (101.9 ± 29.1 vs. 371.2 ± 59.1%, n = 4), and number of spines/10 µm (2.0 ± 0.3 vs. 13.0 ± 1.6, n = 4). Protein kinase Mζ inhibitor reduced remifentanil-induced hyperalgesia, Kalirin-7 expression, and GluA1 trafficking. Incubation with protein kinase Mζ inhibitor reversed remifentanil-enhanced AMPA receptor-induced current in dorsal horn neurons. Kalirin-7 deficiency impaired remifentanil-caused hyperalgesia, postsynaptic GluA1 insertion, and spine plasticity. Selective GluA2-lacking AMPA receptor antagonist prevented hyperalgesia in a dose-dependent manner.
Conclusions
Spinal protein kinase Mζ regulation of GluA1-containing AMPA receptor trafficking and spine morphology via Kalirin-7 overexpression is a fundamental pathogenesis of remifentanil-induced hyperalgesia in rats.
Collapse
Affiliation(s)
- Linlin Zhang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Suqian Guo
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Zhao
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chengcheng Song
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Wang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guolin Wang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Opioid-induced hyperalgesia in clinical anesthesia practice: what has remained from theoretical concepts and experimental studies? Curr Opin Anaesthesiol 2018; 30:458-465. [PMID: 28590258 DOI: 10.1097/aco.0000000000000485] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the phenomenon of opioid-induced hyperalgesia (OIH) and its implications for clinical anesthesia. The goal of this review is to give an update on perioperative prevention and treatment strategies, based on findings in preclinical and clinical research. RECENT FINDINGS Several systems have been suggested to be involved in the pathophysiology of OIH with a focus on the glutaminergic system. Very recently preclinical data revealed that peripheral μ-opioid receptors (MORs) are key players in the development of OIH and acute opioid tolerance (AOT). Peripheral MOR antagonists could, thus, become a new prevention/treatment option of OIH in the perioperative setting. Although the impact of OIH on postoperative pain seems to be moderate, recent evidence suggests that increased hyperalgesia following opioid treatment correlates with the risk of developing persistent pain after surgery. In clinical practice, distinction among OIH, AOT and acute opioid withdrawal remains difficult, especially because a specific quantitative sensory test to diagnose OIH has not been validated yet. SUMMARY Since the immediate postoperative period is not ideal to initiate long-term treatment for OIH, the best strategy is to prevent its occurrence. A multimodal approach, including choice of opioid, dose limitations and addition of nonopioid analgesics, is recommended.
Collapse
|
20
|
Xie N, Khabbazi S, Nassar ZD, Gregory K, Vithanage T, Anand-Apte B, Cabot PJ, Sturgess D, Shaw PN, Parat MO. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion. FASEB J 2017; 31:5208-5216. [PMID: 28784632 PMCID: PMC5690391 DOI: 10.1096/fj.201700546r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
Opioids modulate the tumor microenvironment with potential functional consequences for tumor growth and metastasis. We evaluated the effects of morphine administration on the circulating proteolytic profile of tumor-free mice. Serum from morphine-treated (1 or 10 mg/kg, i.p. every 12 h) or saline-treated mice was collected at different time points and tested ex vivo in endothelial, lymphatic endothelial, and breast cancer cell migration assays. Serum from mice that were treated with 10 mg/kg morphine for 3 d displayed reduced chemotactic potential for endothelial and breast cancer cells, and elicited reduced cancer cell invasion through reconstituted basement membrane compared with serum from saline controls. This was associated with decreased circulating matrix metalloproteinase 9 (MMP-9) and increased circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-3/4 as assessed by zymography and reverse zymography. By using quantitative RT-PCR, we confirmed morphine-induced alterations in MMP-9 and TIMP expression and identified organs, including the liver and spleen, in which these changes originated. Pharmacologic inhibition of MMP-9 abrogated the difference in chemotactic attraction between serum from saline-treated and morphine-treated mice, which indicated that reduced proteolytic ability mediated the decreased migration toward serum from morphine-treated mice. This novel mechanism may enable morphine administration to promote an environment that is less conducive to tumor growth, invasion, and metastasis.-Xie, N., Khabbazi, S., Nassar, Z. D., Gregory, K., Vithanage, T., Anand-Apte, B., Cabot, P. J., Sturgess, D., Shaw, P. N., Parat, M.-O. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion.
Collapse
Affiliation(s)
- Nan Xie
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Samira Khabbazi
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Zeyad D Nassar
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Kye Gregory
- Mater Research Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Tharindu Vithanage
- Mater Research Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Bela Anand-Apte
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter J Cabot
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - David Sturgess
- Mater Research Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Paul N Shaw
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia;
- Outcome Research Consortium, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Zhang Y, Wang K, Lin M, Li Q, Hong Y. Inhibition of morphine tolerance by MrgC receptor via modulation of interleukin-1β and matrix metalloproteinase 9 in dorsal root ganglia in rats. Eur J Pharmacol 2017; 815:10-17. [PMID: 28993160 DOI: 10.1016/j.ejphar.2017.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/27/2022]
Abstract
Opiate tolerance is a critical issue in pain management. Previous studies show that activation of Mas-related gene (Mrg) C receptor can modulate the development of morphine tolerance. This study was designed to investigate the underlying mechanism(s). Intrathecal (i.t.) administration of morphine (20µg) increased the expression of interleukin-1β (IL-1β) and matrix metalloproteinase-9 (MMP-9) in small- and medium-sized neurons in dorsal root ganglia (DRG). Co-administration of bovine adrenal medulla 8-22 (BAM8-22), a selective MrgC receptor agonist, via i.t. route inhibited the increase of IL-1β and MMP-9 in the DRG. Exposure of DRG cultures to morphine (3.3μM) for 3 or 5 days, but not for 1 day, induced an increase in MMP-9 mRNA expression. The treatment with BAM8-22 (10nM) for 20, 40 or 60min abolished chronic (5 days) morphine-induced increase of MMP-9 mRNA in the cultured DRG. The treatment with BAM8-22 for 1h inhibited chronic morphine-induced increase of MMP-9 and IL-1β mRNA in DRG but these effects were abolished by MrgC receptor antibody. The treatment with BAM8-22 for 24 and 72h respectively inhibited and enhanced morphine-induced expression of MMP-9 and IL-1β mRNA in the cultured DRG. The BAM8-22-induced inhibition and enhancement were abolished by MrgC receptor antibody. The results suggest that the inhibition of IL-1β and MMP-9 expressions in DRG underlain the modulation of morphine tolerance by the acute activation of MrgC receptors. The chronic activation of MrgC receptors can facilitate morphine-induced increase of MMP-9 and IL-1β expressions in DRG.
Collapse
Affiliation(s)
- Yue Zhang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Kai Wang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Minyan Lin
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Qi Li
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yanguo Hong
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|