1
|
Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, Mageed SSA, Moussa R, Mohammed OA, Abdel-Reheim MA, Doghish AS. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03736-x. [PMID: 39825964 DOI: 10.1007/s00210-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26Th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Zhao T, Ma F. Roles of Long Noncoding RNA in Prostate Cancer Pathogenesis. Clin Genitourin Cancer 2024; 22:102213. [PMID: 39357460 DOI: 10.1016/j.clgc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024]
Abstract
Prostate cancer stands as the most common cancer in men, and research into its genesis and spread is still vital. The idea that the human genome's transcriptional activity is more widespread than previously thought has received empirical validation through the application of deep sequencing-based transcriptome profiling techniques. An assortment of noncoding transcripts longer than 200 nucleotides is referred to as long noncoding RNAs (lncRNAs). Transposable elements comprise a substantial portion of the human genome, with projections indicating that their prospective proportion may reach 90%. Considering they can interact directly with proteins, alter the transcriptional activity of coding genes, and perhaps encode proteins, lncRNAs possess the capability to regulate a variety of biological processes. LncRNAs have been recognized to be key factors in the development of several types of human cancers, including lung, colorectal, and breast cancers, alongside other pathological processes that have a significant impact on the diagnosis and survival of cancer individuals. Furthermore, lncRNAs' discernible expression patterns throughout various cancer scenarios significantly raise their potential as biomarkers and therapeutic targets. We conducted an extensive analysis of the prevailing academic literature on the interaction between lncRNAs and prostate cancer in order to present a solid foundation for potential future studies on the prevention and intervention of prostate cancer. The discourse additionally expands on lncRNAs' prospective applications as targets and biomarkers for medical therapies.
Collapse
Affiliation(s)
- Tongyue Zhao
- Department of Clinical Medicine, Chengdu Medical College, Chengdu City, Sichuan, China
| | - Feng Ma
- Department of Medical Oncology, Jiashan Hospital of Traditional Chinese Medicine, Jiaxing City, China.
| |
Collapse
|
3
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
4
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
5
|
Haghighi R, Castillo-Acobo RY, H Amin A, Ehymayed HM, Alhili F, Mirzaei M, Mohammadzadeh Saliani S, Kheradjoo H. A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions. Pathol Res Pract 2023; 248:154666. [PMID: 37487316 DOI: 10.1016/j.prp.2023.154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen-deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant potential of lncRNAs as diagnostic and therapeutic targets for PCa. AVAILABILITY OF DATA AND MATERIALS: Not applicable.
Collapse
Affiliation(s)
- Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | | | - Farah Alhili
- Medical technical college, Al-Farahidi University, Iraq
| | - Mojgan Mirzaei
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | |
Collapse
|
6
|
Shree B, Das K, Sharma V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. CANCER PATHOGENESIS AND THERAPY 2023; 1:195-204. [PMID: 38327834 PMCID: PMC10846338 DOI: 10.1016/j.cpt.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2024]
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Despite aggressive therapy involving surgery and hormonal treatments, the recurrence and emergence of metastatic castration-resistant prostate cancer (CRPCa) remain a major challenge. Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway is crucial to PCa development and progression. This also contributes to androgen receptor activation and the emergence of CRPC. In addition, TGF-β signaling regulates long non-coding RNA (lncRNA) expression in multiple cancers, including PCa. Here, we discuss the complex regulatory network of lncRNAs and TGF-β signaling in PCa and their potential applications in diagnosing, prognosis, and treating PCa. Further investigations on the role of lncRNAs in the TGF-β pathway will help to better understand PCa pathogenesis.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koyel Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
7
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
8
|
Chen SX, Simpson E, Reiter JL, Liu Y. Bioinformatics detection of modulators controlling splicing factor-dependent intron retention in the human brain. Hum Mutat 2022; 43:1629-1641. [PMID: 35391504 PMCID: PMC9537345 DOI: 10.1002/humu.24379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/02/2022] [Accepted: 04/02/2022] [Indexed: 12/30/2022]
Abstract
Alternative RNA splicing is an important means of genetic control and transcriptome diversity. However, when alternative splicing events are studied independently, coordinated splicing modulated by common factors is often not recognized. As a result, the molecular mechanisms of how splicing regulators promote or repress splice site recognition in a context-dependent manner are not well understood. The functional coupling between multiple gene regulatory layers suggests that splicing is modulated by additional genetic or epigenetic components. Here, we developed a bioinformatics approach to identify causal modulators of splicing activity based on the variation of gene expression in large RNA sequencing datasets. We applied this approach in a neurological context with hundreds of dorsolateral prefrontal cortex samples. Our model is strengthened with the incorporation of genetic variants to impute gene expression in a Mendelian randomization-based approach. We identified novel modulators of the splicing factor SRSF1, including UIMC1 and the long noncoding RNA CBR3-AS1, that function over dozens of SRSF1 intron retention splicing targets. This strategy can be widely used to identify modulators of RNA-binding proteins involved in tissue-specific alternative splicing.
Collapse
Affiliation(s)
- Steven X. Chen
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ed Simpson
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jill L. Reiter
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
9
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
10
|
Lv W, Li Y, Fu L, Meng F, Li J. Linc01133 promotes proliferation and metastasis of human renal cell carcinoma through sponging miR-760. Cell Cycle 2022; 21:1502-1511. [PMID: 35446199 PMCID: PMC9278430 DOI: 10.1080/15384101.2022.2054250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most frequent human tumors and has brought great threats to the health of the people around the globe. It was reported that linc01133, a long non-coding RNA (lncRNA), was involved in the pathogenesis and development of several human cancer. But the biological role of linc01133 in RCC is still not understood. The present study aimed to investigate the biological functions of linc01133 in RCC. We did some biological experiments in this study, including quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, MTT assay, wound healing assay, Transwell invasion assay and xenograft tumor assay. In this study, we found the expression levels of linc01133 markedly increased in the RCC tissues compared with the normal tissues. And we found that the over-expressing of linc01133 promoted cell proliferation, migration and invasion, the interfering of linc01133 inhibited cell proliferation, migration and invasion. Furthermore, we found that the interfering of linc01133 inhibited tumor growth in murine xenograft models. Additionally, we found that linc01133 promotes RCC cell proliferation, migration and invasion through sponging miR-760. Collectively, our work preliminarily illuminated the tumor-promoting role of linc01133 in RCC and the potential molecular mechanism. Thus, our study may provide some evidence for the treatment of RCC.
Collapse
Affiliation(s)
- Wei Lv
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Liye Fu
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Li
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Abbaszadegan MR, Mojarrad M, Rahimi HR, Moghbeli M. Genetic and molecular biology of gastric cancer among Iranian patients: an update. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00232-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
There is a declining trend of gastric cancer (GC) incidence in the world during recent years that is related to the development of novel diagnostic methods. However, there is still a high ratio of GC mortality among the Iranian population that can be associated with late diagnosis. Despite various reports about the novel diagnostic markers, there is not any general and standard diagnostic panel marker for Iranian GC patients. Therefore, it is required to determine an efficient and general panel of molecular markers for early detection.
Main body of the abstract
In the present review, we summarized all of the reported markers until now among Iranian GC patients to pave the way for the determination of a population-based diagnostic panel of markers. In this regard, we categorized these markers in different groups based on their involved processes to know which molecular process is more frequent during the GC progression among Iranians.
Conclusion
We observed that the non-coding RNAs are the main factors involved in GC tumorigenesis in this population.
Collapse
|
12
|
Long noncoding RNA CBR3-AS1 mediates tumorigenesis and radiosensitivity of non-small cell lung cancer through redox and DNA repair by CBR3-AS1 /miR-409-3p/SOD1 axis. Cancer Lett 2022; 526:1-11. [PMID: 34801596 DOI: 10.1016/j.canlet.2021.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The long noncoding RNA CBR3-AS1 has important functions in various cancers. However, the biological functions of CBR3-AS1 in non-small cell lung cancer (NSCLC) remain unclear. This study aimed to investigate the roles and molecular mechanisms of CBR3-AS1 in NSCLC tumorigenesis and radiosensitivity. Here, we demonstrate CBR3-AS1 overexpression in NSCLC tissue compared with adjacent normal tissue. CBR3-AS1 downregulation reduced proliferation, invasion, and migration; inhibited cell cycle progression; and promoted apoptosis of NSCLC cells. CBR3-AS1 also promoted tumor growth in vivo. CBR3-AS1 may regulate the expression and functions of the miR-409-3p target gene SOD1. CBR3-AS1 expression was negatively correlated with radiosensitivity. CBR3-AS1 downregulation decreased post-irradiation SOD1 expression, increased γH2AX formation, raised levels of reactive oxygen species, and promoted apoptosis. Our results suggest that CBR3-AS1 functions as an oncogene through the CBR3-AS1/miR-409-3p/SOD1 pathway, and may represent a new therapeutic target, especially to regulate radiosensitivity in NSCLC.
Collapse
|
13
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
14
|
Cui Z, Gao H, Yan N, Dai Y, Wang H, Wang M, Wang J, Zhang D, Sun P, Qi T, Wang Q, Kang W, Jin X. LncRNA PlncRNA-1 accelerates the progression of prostate cancer by regulating PTEN/Akt axis. Aging (Albany NY) 2021; 13:12113-12128. [PMID: 33848262 PMCID: PMC8109094 DOI: 10.18632/aging.202919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs are key regulators of tumor development and progression, with the potential to be biomarkers of tumors. This study aimed to explore the role of PlncRNA-1 in the progression of prostate cancer (PCa). We found that PlncRNA-1 was up-regulated in 85.29% of PCa tissues and could predict the T stage of PCa patients to a certain extent. Results showed that inhibition of PlncRNA-1 expression potentially promoted cell apoptosis, suppressed the proliferation, migration, and invasion of cells, and triggered G2/M cycle arrest in vitro and in vivo. PlncRNA-1 was mainly localized in the nucleus and PlncRNA-1 expression and phosphatase and tensin homologue (PTEN) expression were negatively correlated. Mechanistically, knockdown of PlncRNA-1 increased expression levels of PTEN protein and phosphorylated PTEN protein, and decreased expression levels of Akt protein and phosphorylated Akt protein. Rescue experiments demonstrated that PTEN inhibitors abolished the changes in PTEN/Akt pathway caused by PlncRNA-1 interference. PlncRNA-1 can promote the occurrence and development of PCa via the PTEN/Akt pathway. PlncRNA-1 may, therefore, be a new candidate target for the treatment of PCa.
Collapse
Affiliation(s)
- Zilian Cui
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hui Gao
- Department of Urology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Ning Yan
- Department of Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Yun Dai
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.,Department of Ultrasound, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Hanbo Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peng Sun
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Taiguo Qi
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qiang Wang
- Department of Human Resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.,Department of Human Resources, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
15
|
Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis. Cell Death Dis 2020; 11:1038. [PMID: 33288752 PMCID: PMC7721747 DOI: 10.1038/s41419-020-03240-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Apart from being potential prognostic biomarkers and therapeutic targets, long non-coding RNAs (lncRNAs) modulate the development and progression of multiple cancers. PlncRNA-1 is a newly discovered lncRNA that exhibits the above properties through multiple regulatory pathways. However, the clinical significance and molecular mechanisms of PlncRNA-1 in bladder cancer have not been established. PlncRNA-1 was found to be overexpressed in 71.43% of bladder cancer tissues. Moreover, the expression level correlated with tumor invasion, T stage, age, and number of tumors, but not with gender, recurrent status, preoperative treatment, pathological grade, and tumor size. The expression level of PlncRNA-1 can, to a certain extent, be used as a predictor of the degree of tumor invasion and T stage among BC patients. Inhibiting PlncRNA-1 expression impaired the proliferation, migration, and invasion of T24 and 5637 bladder cancer cells in vitro and in vivo. Specifically, PlncRNA-1 promoter in BC tissues was found to be hypomethylated at position 131 (36157603 on chromosome 21). PlncRNA-1 promoter hypomethylation induces the overexpression of PlncRNA-1. In addition, PlncRNA-1 modulated the expression of smad3 and has-miR-136-5p (miR-136). Conversely, miR-136 regulated the expression of PlncRNA-1 and smad3. PlncRNA-1 mimics competitive endogenous RNA (ceRNA) in its regulation of smad3 expression by binding miR-136. Rescue analysis further revealed that modulation of miR-136 could reverse the expression of smad3 and epithelial–mesenchymal transition (EMT) marker proteins impaired by PlncRNA-1. In summary, PlncRNA-1 has important clinical predictive values and is involved in the post-transcriptional regulation of smad3. The PlncRNA-1/miR-136/smad3 axis provides insights into the regulatory mechanism of BC, thus may serve as a potential therapeutic target and prognostic biomarker for cancer.
Collapse
|
16
|
Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int 2020; 20:571. [PMID: 33292272 PMCID: PMC7694907 DOI: 10.1186/s12935-020-01665-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer (PC) is common male cancer with high mortality worldwide. Emerging evidence demonstrated that long noncoding RNAs (lncRNAs) play critical roles in various type of cancers including PC by serving as competing endogenous RNAs (ceRNAs) to modulate microRNAs (miRNAs). LncRNA activated by DNA damage (NORAD) was found to be upregulated in PC cells, while the detailed function and regulatory mechanism of NORAD in PC progression remains largely unclear. Methods Expression of NORAD in PC tissues and cell lines were detected by real-time quantitative PCR (qRT-PCR). NORAD was respectively overexpressed and knocked down by transfection with pcDNA-NORAD and NORAD siRNA into PC-3 and LNCap cells. Cell proliferation, invasion and apoptosis were determined by using CCK-8, Transwell and Flow cytometry assays, respectively. The target correlations between miR-30-5p and NORAD or RAB11A were confirmed by using dual luciferase reporter assay. Moreover, expression levels of RAB11A, the epithelial-mesenchymal transition (EMT) marker proteins and the Wnt pathway related proteins were measured by Western blotting. Tumor xenograft assay was used to study the effect of NORAD on tumor growth in vivo. Results NORAD was upregulated in PC tissues and cells. Overexpression of NORAD promoted cell proliferation, invasion, EMT, and inhibited cell apoptosis; while knockdown of NORAD had the opposite effect. NORAD was found to be functioned as a ceRNA to bind and downregulated miR-30a-5p that was downregulated in PC tumor tissues. Rescue experiments revealed that miR-30a-5p could weaken the NORAD-mediated promoting effects on cell proliferation, invasion and EMT. Furthermore, RAB11A that belongs to a member of RAS oncogene family was verified as a target of miR-30a-5p, and reintroduction of RAB11A attenuated the effects of miR-30a-5p overexpression on cell proliferation, invasion, EMT and apoptosis of PC cells. More importantly, silencing RAB11A partially reversed the promoting effects of NORAD overexpression on cell proliferation, invasion and EMT of PC cells via the WNT/β-catenin pathway. Lastly, tumorigenicity assay in vivo demonstrated that NORAD increased tumor volume and weight via miR-30a-5p /RAB11A pathway. Conclusion Our results indicated a significant role of NORAD in mechanisms associated with PC progression. NORAD promoted cell proliferation, invasion and EMT via the miR-30a-5p/RAB11A/WNT/β-catenin pathway, thus inducing PC tumor growth.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Nursing, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China.
| | - Yang Li
- The Second Ward, Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China
| |
Collapse
|
17
|
Subtype specific expression and survival prediction of pivotal lncRNAs in muscle invasive bladder cancer. Sci Rep 2020; 10:20472. [PMID: 33235218 PMCID: PMC7687888 DOI: 10.1038/s41598-020-77252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Comprehensive transcriptome expression analyses of bladder cancer revealed distinct lncRNA clusters with differential molecular and clinical characteristics. In this study, pivotal lncRNAs were assessed for their impact on survival and their differential expression between the molecular bladder cancer subtypes. FFPE samples from chemotherapy-naïve patients with muscle invasive bladder cancer (MIBC) were analyzed on the Nanostring nCounter platform for absolute quantification. An established 36-gene panel was used for molecular subtype classification into basal, luminal and infiltrated MIBC. In a second step, 14 pivotal lncRNAs were assessed for their molecular subtype attribution, and their predictive value in disease-specific survival. In silico validation was performed on a total of 487 MIBC patients (MDA, TGCA and Chungbuk cohort). Several pivotal lncRNAs showed a distinct molecular subtype attribution: e.g. MALAT1 showed a downregulation in the basal subtype (p = 0.009), TUG1 and CBR3AS1 showed an upregulation in the luminal subtype (p ≤ 0.001). High transcript levels of SNHG16, CBR3AS1 and H19 appeared to be predictive for a shorter disease-specific survival. Patients overexpressing putative oncogenes MALAT1 and TUG1 in MIBC tissue presented prolonged survival, suggesting tumor suppressive effects of both lncRNAs. The Nanostring nCounter proved to be a valid platform for the quantification of low-abundance transcripts including lncRNAs.
Collapse
|
18
|
Lou N, Liu G, Pan Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol 2020; 16:2981-2995. [PMID: 32986472 DOI: 10.2217/fon-2020-0470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The long noncoding RNA ANRIL, located in the human chromosome 9p21 region, has been reported to be involved in tumor progression. ANRIL regulates gene expression via recruiting PRC2 or titrating miRNA; it also participates in signaling pathways. Evidence has indicated that ANRIL is overexpressed in many cancer types and is capable of enhancing cell proliferation and cell cycle progression and inhibiting apoptosis and senescence. ANRIL has the potential to serve as a biomarker for diagnosis and prognosis in cancer. In this article we focus on recent advances in studies of the oncogenic role of ANRIL and its potential role in cancer medicine.
Collapse
Affiliation(s)
- Ning Lou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
19
|
Xue BZ, Xiang W, Zhang Q, Wang YH, Wang HF, Yi DY, Xiong NX, Jiang XB, Zhao HY, Fu P. Roles of long non-coding RNAs in the hallmarks of glioma. Oncol Lett 2020; 20:83. [PMID: 32863916 PMCID: PMC7436925 DOI: 10.3892/ol.2020.11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common types of tumor of the central nervous system. Due to the aggressiveness and invasiveness of high-level gliomas, the survival time of patients with these tumors is short, at ~15 months, even after combined treatment with surgery, radiotherapy and/or chemotherapy. Recently, a number of studies have demonstrated that long non-coding RNA (lncRNAs) serve crucial roles in the multistep development of human gliomas. Gliomas acquire numerous biological abilities during multistep development that collectively constitute the hallmarks of glioma. Thus, in this review, the roles of lncRNAs associated with glioma hallmarks and the current and future prospects for their development are summarized.
Collapse
Affiliation(s)
- Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
20
|
Bai M, Lei Y, Wang M, Ma J, Yang P, Mou X, Dong Y, Han S. Long Non-coding RNA SNHG17 Promotes Cell Proliferation and Invasion in Castration-Resistant Prostate Cancer by Targeting the miR-144/CD51 Axis. Front Genet 2020; 11:274. [PMID: 32351538 PMCID: PMC7174785 DOI: 10.3389/fgene.2020.00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Previously, we found that the expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) was up-regulated in castration-resistant prostate cancer (CRPC) cells compared to that in hormone sensitive prostate cancer (HSPC) cells. Moreover, we found that CD51 was up-regulated in prostate cancer cells and promoted the carcinogenesis and progression of prostate cancer. However, the regulatory mechanism of SNHG17 and CD51 in the development of CRPC remains unclear. In the current study, we aimed to elucidate the expressions, functions, and underlying mechanism of SNHG17 and CD51 in CRPC. Our results further confirmed that both SNHG17 and CD51 were up-regulated in CRPC tissues and cells. In addition, we found that SNHG17 expression was positively correlated with CD51 expression in prostate cancer. Mechanically, SNHG17 functioned as a competing endogenous RNA (ceRNA) to up-regulate CD51 expression through competitively sponging microRNA-144 (miR-144), and CD51 was identified as a direct downstream target of miR-144 in CRPC. Functionally, down-regulation of SNHG17 or up-regulation of miR-144 inhibited the proliferation, migration, and invasion of CRPC cells, whereas up-regulation of SNHG17 and down-regulation of miR-144 promoted the proliferation, migration and invasion of CRPC cells in vitro and in vivo. Using gain and loss-of function assay and rescue assay, we showed that miR-144 inhibited cell proliferation, migration and invasion by directly inhibiting CD51 expression, and SNHG17 promoted cell proliferation, migration and invasion by directly enhancing CD51 expression in CRPC cells. Taken together, our study reveals the role of the SNHG17/miR-144/CD51 axis in accelerating CRPC cell proliferation and invasion, and suggests that SNHG17 may serve as a novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yutiantian Lei
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Mou
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yiping Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Ghafouri-Fard S, Esmaeili M, Shoorei H, Taheri M. A comprehensive review of the role of long non-coding RNAs in organs with an endocrine function. Biomed Pharmacother 2020; 125:110027. [PMID: 32106365 DOI: 10.1016/j.biopha.2020.110027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with sizes larger than 200 nucleotides and no/ small open reading frame that cannot produce functional proteins. The number of these transcripts surpasses the number of coding genes. LncRNAs regulate many aspects of cell functions such as proliferation, cell cycle transition and differentiation; so their dysregulation has pervasive effects on cell phenotype. Increasing numbers of these transcripts have been shown to participate in the pathogenesis of cancer. In the current review, we summarize recent findings regarding the role of lncRNAs in tumors originated from organs which have an endocrine function. We mostly focused on adrenal, pancreas and pituitary gland as prototypes of these organs. Moreover, we presented the obtained data of the role of lncRNAs in prostate, ovarian and testicular cancers. Recent data highly supports the role of lncRNAs in the pathogenesis of cancers originated from these organs. Moreover, certain genomic loci within lncRNAs have been shown to be associated with risk of these cancers. Diagnostic and prognostic role of some lncRNAs in these cancers have been evaluated recently. Taken together, lncRNAs are putative biomarkers for cancers originated from organs which have an endocrine function.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadhosein Esmaeili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Zheng S, Li M, Miao K, Xu H. lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J Cell Biochem 2019; 121:2225-2235. [PMID: 31692053 DOI: 10.1002/jcb.29445] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Long-chain noncoding RNAs (lncRNAs) are involved in regulating the sensitivity of cancer cells to chemotherapeutic drugs, but the specific mechanism of action is not well understood. The aim of this study was to investigate the effect of lncRNA growth-stasis specific transcript 5 (GAS5) on triple-negative breast cancer (TNBC). METHODS Quantitative real-time polymerase chain reaction and flow cytometry were used to screen lncRNA associated with tumor resistance. Double luciferase reporter gene assay, flow cytometry, and Western blot assay were used to determine whether miRNA 378a-5p and SUFU were involved in tumor cell apoptosis induced by lncRNA GAS5. A mouse model of subcutaneous xenografts was established to investigate the relationship between lncRNA GAS5 and tumor resistance in vivo. RESULTS In this study, the expression of lncRNA GAS5 was significantly downregulated in cells treated with paclitaxel (PTX) or cisplatin (CIS). Furthermore, TNBC cells with low expression of lncRNA GAS5 had a lower percentage of apoptosis under stress conditions, especially in serum-free medium. More interestingly, the expression level of lncRNA GAS5 in TNBC patients was associated with tumor resistance to PTX and CIS. In addition, RNA immunoprecipitation experiments confirmed that lncRNA GAS5 and miR-378 could directly bind to each other. Moreover, the miR-378a-5p target of SUFU could promote lncRNA GAS5-induced apoptosis of TNBC cells. Finally, lncRNA GAS5 overexpressed MDA-231R could enhance the sensitivity of TNBC to PTX. CONCLUSION The above results confirmed that lncRNA GAS5 could induce apoptosis in TNBC cells by targeting miR-378a-5p/SUFU signaling.
Collapse
Affiliation(s)
- Shipeng Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengquan Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Miao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Han Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Cui P, Su J, Li Q, Xu G, Zhu N. LncRNA RHPN1-AS1 Targeting miR-625/REG3A Promotes Cell Proliferation And Invasion Of Glioma Cells. Onco Targets Ther 2019; 12:7911-7921. [PMID: 31576148 PMCID: PMC6769163 DOI: 10.2147/ott.s209563] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Glioma arises from the proliferation of neuroglial cells differentiated from the ectoderm. Evidence has confirmed that differentially expressed long non-coding RNAs (lncRNAs) may be involved in the development and progression of various tumors. The present study aimed to explore the biological function of lncRNA RHPN1-AS1 in glioma. Materials and methods The expressions of RHPN1-AS1 in glioma tissues and cells were examined using RT-PCR. Colony formation assay, MTT assay, wound healing assay and transwell assay were performed to detect cell cloning efficiency, proliferation, migration and invasion of glioma cells, respectively. Western blot was applied to assess the expression levels of migration-related and invasion-related proteins. Online bioinformatic tools and luciferase reporter assay were, respectively, employed to predict and verify the downstream target microRNA/gene of RHPN1-AS1. Results RHPN1-AS1 was up-regulated in glioma tissues and cells. The cell proliferation, migration and invasion of glioma were inhibited when the expression of RHPN1-AS1 was down-regulated in glioma cells. The expressions of migration-related and invasion-related proteins were also suppressed in siRHPN1-AS1 groups. Furthermore, we predicted and verified that RHPN1-AS1 was directly targeted to miR-625-5p/REG3A. Our study demonstrated that the knockdown of RHPN1-AS1 inhibited the proliferation, migration and invasion activity of glioma cells via regulating miR-625-5p/REG3A expression. Conclusion The results revealed that the lncRNA RHPN1-AS1 may be a molecular target in glioma therapy.
Collapse
Affiliation(s)
- Peng Cui
- Department of Neurosurgery, Taian Center Hospital, Taian 271000, People's Republic of China.,School of Medicine, Shandong University, Jinan 250000, People's Republic of China
| | - Jichun Su
- Department of Neurosurgery, Taian Center Hospital, Taian 271000, People's Republic of China
| | - Qingmin Li
- Department of Neurosurgery, Taian Center Hospital, Taian 271000, People's Republic of China
| | - Guangming Xu
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan 250021, People's Republic of China
| | - Ningxi Zhu
- Department of Neurosurgery, Taian Center Hospital, Taian 271000, People's Republic of China
| |
Collapse
|
24
|
Xu YH, Deng JL, Wang G, Zhu YS. Long non-coding RNAs in prostate cancer: Functional roles and clinical implications. Cancer Lett 2019; 464:37-55. [PMID: 31465841 DOI: 10.1016/j.canlet.2019.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNA transcripts longer than 200 nucleotides that do not encode proteins. LncRNAs have been documented to exhibit aberrant expression in various types of cancer, including prostate cancer. Currently, screening for prostate cancer results in overdiagnosis. The consequent overtreatment of patients with indolent disease in the clinic is due to the lack of appropriately sensitive and specific biomarkers. Thus, the identification of lncRNAs as novel biomarkers and therapeutic targets for prostate cancer is promising. In the present review, we attempt to summarize the current knowledge of lncRNA expression patterns and mechanisms in prostate cancer. In particular, we focus on lncRNAs regulated by the androgen receptor and the specific molecular mechanism of lncRNAs in prostate cancer to provide a potential clinical therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Yun-Hua Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Yuan-Shan Zhu
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019; 20:ijms20112767. [PMID: 31195692 PMCID: PMC6600375 DOI: 10.3390/ijms20112767] [Citation(s) in RCA: 729] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation, migration, and the differentiation of a plethora of different cell types. Consistent with these findings, TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair, as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages, when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition (EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Yang Hao
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
26
|
Wu Y, Shao A, Wang L, Hu K, Yu C, Pan C, Zhang S. The Role of lncRNAs in the Distant Metastasis of Breast Cancer. Front Oncol 2019; 9:407. [PMID: 31214490 PMCID: PMC6555305 DOI: 10.3389/fonc.2019.00407] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) remains the most frequently diagnosed cancer worldwide. Among breast cancer patients, distant metastasis and invasion is the leading cause of BC related death. Recently, long non-coding RNAs (lncRNAs), which used to be considered a genetic byproduct (owing to their unknown biological function), have been reported to be highly implicated in the development and progression of BC. In this review, we produce a summary of the functions and mechanisms of lncRNAs implicated in the different distant metastases of BC. The functions of lncRNAs have been divided into two types: oncogenic type and tumor suppressor. Furthermore, the majority of them exert their roles through the regulation of invasion, migration, epithelial-mesenchymal transition (EMT), and the metastasis process. In the final part, we briefly addressed future research prospects of lncRNAs, especially the testing methods through which to detect lncRNAs in the clinical work, and introduced several different tools with which to detect lncRNAs more conveniently. Although lncRNA research is still in the initial stages, it is a promising prognosticator and a novel therapeutic target for BC metastasis, which requires more research in the future.
Collapse
Affiliation(s)
- Yinan Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kaimin Hu
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chi Pan
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Suzhan Zhang
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Wang HL, Hou SY, Li HB, Qiu JP, Bo L, Mao CP. Biological Function and Mechanism of Long Noncoding RNAs Nuclear-Enriched Abundant Transcript 1 in Development of Cervical Cancer. Chin Med J (Engl) 2018; 131:2063-2070. [PMID: 30127216 PMCID: PMC6111676 DOI: 10.4103/0366-6999.239308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Accumulating documents have demonstrated that long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. As an lncRNA, nuclear-enriched abundant transcript 1 (NEAT1) has been identified to be involved in the progression of many types of cancers. However, the biological function of NEAT1 in cervical cancer is not fully investigated. The aim of this study was to disclose the specific biological function of lncRNA NEAT1 in cervical cancer progression. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to identify the expression of lncRNA NEAT1 in the cervical cancer tissues and cell lines. All cervical cancer samples used in this study were collected from the Affiliated Suzhou Hospital of Nanjing Medical University between September 2012 and September 2017. The correlation between NEAT1 expression and the overall survival rate of cervical cancer patients was analyzed by Kaplan-Meier analysis. The effects of NEAT1 knockdown or overexpression on cell proliferation were tested by performing MTT assays and colony formation assays. Transwell assays were conducted to detect the migratory ability of cervical cancer cells, in which NEAT1 was silenced or overexpressed. Western blotting was utilized to validate whether NEAT1 promotes cervical cancer progression through activating PI3K-Akt signaling pathway. Results: High expression of NEAT1 predicted poor prognosis of cervical cancer patients (χ2 = 0.735, P = 0.005). Knockdown of NEAT1 decreased the number of colonies in CaSki cell from 136.667 ± 13.503 to 71.667 ± 7.506 (t = −18.76, P = 0.003) and decreased the number of colonies in HeLa cell from 128.667 ± 13.317 to 65.667 ± 7.024 (t = −5.54, P = 0.031). However, overexpression of NEAT1 increased the number of colonies in SiHa cell from 84.667 ± 12.014 to 150.667 ± 18.037 (t = 7.27, P = 0.018). Knockdown of NEAT1 decreased the migratory number of CaSki cell from 100.333 ± 9.866 to 58.333 ± 5.859 (t = −8.08, P = 0.015) and reduced the migratory number in HeLa cell from 123.667 ± 12.097 to 67.667 ± 7.095 (t = −6.03, P = 0.026). Overexpression of NEAT1 increased the migratory number of SiHa cell from 127.333 ± 16.042 to 231.333 ± 31.786 (t = 4.92, P = 0.039). Conclusion: NEAT1 may exert oncogenic function in cervical cancer and serve as a novel therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hui-Ling Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006; Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Shun-Yu Hou
- Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Hai-Bo Li
- Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Jian-Ping Qiu
- Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Le Bo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cai-Ping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
28
|
Qiu Y, Yang W, Wang Q, Yan S, Li B, Zhai X. Osteoporosis in postmenopausal women in this decade: a bibliometric assessment of current research and future hotspots. Arch Osteoporos 2018; 13:121. [PMID: 30406425 DOI: 10.1007/s11657-018-0534-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/05/2018] [Accepted: 10/19/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED Postmenopausal osteoporosis (PMOP) has already become a major public health problem. However, there was no bibliometric analysis estimating the evolutionary process of PMOP research. PURPOSE This study aimed to assess its scientific activity. METHODS Publications on PMOP were retrieved from Science Citation Index-Expanded (SCI-E) of the Web of Science (WoS) from 2008 to 2018. VOSviewer software was used for data mining and visualization. The quantity of papers, number of citations, citation frequency per year, and H-index were assessed and compared among different countries, institutes, and researchers. RESULTS A total of 11,142 papers were included and were cited 184,416 times. The USA contributed the most papers (3162), the most citations (83,270 times), and the highest H-index (115). Canada ranked first for the number of papers per million populations and per trillion GDP. Seven of the top ten funding agencies were industries. The key words were stratified into four clusters: cluster 1 ("basic research"), cluster 2 ("diagnosis"), cluster 3 ("treatment"), and cluster 4 ("others"). Average appearing years (AAY) of key words in cluster 1 were the largest compared to those in clusters 2 and 3. For hotspots, "miRNA" showed a relatively latest AAY of 2017.63, followed by "abaloparatide" and "adipokine". CONCLUSION We concluded that the USA and Europe were the most productive regions on PMOP, with a high prevalence of articles supported by pharmaceutical companies. Key word focus gradually shifted from "diagnosis" to "treatment" and then to precision medicine orientated "basic research". It is recommended to pay attention to potential research hotspots, such as "miRNA," "abaloparatide," and "adipokine".
Collapse
Affiliation(s)
- Yuanyu Qiu
- Department of Gynecology and Obstetrics, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin, China.
| | - Wu Yang
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin, China
| | - Qijin Wang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Sijia Yan
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Li
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
29
|
Wang S, Liu J, Yang Y, Hao F, Zhang L. PlncRNA-1 is overexpressed in retinoblastoma and regulates retinoblastoma cell proliferation and motility through modulating CBR3. IUBMB Life 2018; 70:969-975. [PMID: 30096220 DOI: 10.1002/iub.1886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
PlncRNA-1 has been suggested to function as an oncogenic role in prostate cancer, colorectal cancer, hepatocellular carcinoma, esophageal squamous cell carcinoma, and gastric cancer. The expression pattern of PlncRNA-1 in retinoblastoma remained unknown. Therefore, the aim of this study was to explore the clinical significance of PlncRNA-1 in retinoblastoma patient and the biological function and molecular mechanism of PlncRNA-1 in regulating retinoblastoma cell proliferation, migration, and invasion. The results showed the level of PlncRNA-1 expression was obviously increased in retinoblastoma tissues and cell lines compared with compared with normal retina tissues and retina cell lines, respectively. Meanwhile, patients with advanced stage retinoblastoma had higher levels of PlncRNA-1 expression than patients with early stage retinoblastoma. There was an inverse correlation between PlncRNA-1 expression and CBR3 expression in retinoblastoma tissues, and PlncRNA-1 negatively regulated mRNA and protein expressions of CBR3. The in vitro experiments showed that down-regulation of PlncRNA-1 expression suppressed retinoblastoma cell proliferation, migration and invasion through up-regulating CBR3. In conclusion, PlncRNA-1 serves as an oncogenic lncRNA in regulating retinoblastoma cell proliferation, migration, and invasion through proliferation, migration, and invasion through up-regulating CBR3. © 2018 IUBMB Life, 70(10):969-975, 2018.
Collapse
Affiliation(s)
- Shuna Wang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jianwei Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yang Yang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Fengqin Hao
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, China
| | - Laixia Zhang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
30
|
Fang H, Liu HM, Wu WH, Liu H, Pan Y, Li WJ. Upregulation of long noncoding RNA CCAT1-L promotes epithelial-mesenchymal transition in gastric adenocarcinoma. Onco Targets Ther 2018; 11:5647-5655. [PMID: 30254457 PMCID: PMC6141104 DOI: 10.2147/ott.s170553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective In this study, we aimed to investigate the role of a long-chain noncoding RNA, colorectal cancer-associated transcript 1-long (CCAT1-L) in gastric adenocarcinoma. Patients and methods Expressions of CCAT1-L and c-MYC mRNA and MYC protein in gastric adenocarcinoma tissue and adjacent normal tissues of 60 patients were analyzed using quantitative real-time polymerase chain reaction and Western blot, respectively. The CCAT1-L levels in the normal gastric epithelial cell line, GES1, and human gastric adenocarcinoma cell lines, MGC803, MKN-28, SGC7901, and BGC823 were analyzed by quantitative real-time polymerase chain reaction. CCAT1-L knockdown in MGC803 and MKN28 cells was performed using RNA interference, followed by evaluating cell proliferation, invasion, and migration with soft agar colony formation assay, scratch wound assay, and transwell assay. Twenty BALB/C-nu-nu nude mice were inoculated with gastric tumor xenografts and treated with CCAT1-L small-interfering RNA (siRNA), followed by monitoring survival and tumor growth. Western blot was also used to analyze the expression of epithelial–mesenchymal transition-related proteins, including MYC, RAS, T-ERK, P-ERK, E-cadherin, and vimentin, in gastric adenocarcinoma MKN-28 cells. Results The expression of CCAT1-L and MYC in tumor tissue was significantly higher than that in adjacent normal tissues (P<0.001). There was a positive correlation between the expression level of CCAT1-L mRNA and c-MYC mRNA (r=0.863, P<0.001). CCAT1-L expression was also significantly higher in gastric adenocarcinoma cell lines than that in normal cell lines (P<0.01). Knockdown of CCAT1-L in MGC803 and MKN-28 cells markedly reduced the cell proliferation, migration, and invasion (P<0.001). CCAT1-L knockdown also evidently inhibited tumor growth and improved survival in nude mice (P<0.001). Expressions of MYC, RAS, and vimentin, and the phosphorylation of ERK protein were dramatically decreased, while the expression of E-cadherin protein was increased by CCAT1-L knockdown in MKN-28 cell. Conclusion CCAT1-L is a pro-oncogenic marker in gastric adenocarcinoma. CCAT1-L knockdown inhibits epithelial–mesenchymal transition of gastric adenocarcinoma cells and thus suppresses the gastric adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Hua Fang
- Department of Oncology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Hui-Min Liu
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Wei-Hua Wu
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing 100038, China
| | - Han Liu
- Department of Oncology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Yong Pan
- Department of Oncology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Jun Li
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China,
| |
Collapse
|
31
|
Li B, Ren P, Wang Z. Long non-coding RNA Ftx promotes osteosarcoma progression via the epithelial to mesenchymal transition mechanism and is associated with poor prognosis in patients with osteosarcoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4503-4511. [PMID: 31949847 PMCID: PMC6962994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/20/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Long non-coding RNA Ftx (lncRNA Ftx) is involved in a variety of cancers. However, the association between lncRNA Ftx and osteosarcoma is still unclear. In this study, we investigated the correlation between lncRNA Ftx and osteosarcoma, and the regulative effect of Ftx on the migration and invasion of osteosarcoma cells, as well as its molecular mechanism. METHODS Expression levels of lncRNA Ftx in osteosarcoma tissues and adjacent non-tumor corresponding tissues (ANCTs) were detected using quantitative real-time PCR (qRT-PCR). Differences in patient survival were determined by the Kaplan-Meier method and a log-rank test. The Cox regression analysis was used for univariate and multivariate analyses of prognostic values. Human osteosarcoma cell lines Saos2 and HOS were transfected with the pcDNA-Ftx constructs. The scratch wound healing assay and Transwell assay were used to assess cell migration and invasion capability, respectively. Western blot analysis was conducted to investigate the expression of mesenchymal and epithelial markers. RESULTS The results showed that the lncRNA Ftx group was higher in osteosarcoma tissues compared with the ANCTs group. Expression of lncRNA Ftx was correlated with the clinical stage and distant metastasis (P<0.05). The overall survival rate was lower in the high lncRNA Ftx group than in the low lncRNA Ftx group (log-rank test, P<0.05). Multivariate analysis revealed that in osteosarcoma patients, higher lncRNA MEG3, advanced clinical stage, and distant metastasis were all independent predictors of overall survival. Cell research showed that transfection of lncRNA Ftx significantly promoted the migration and invasion ability of osteosarcoma cells. In addition, E-cadherin was decreased, while N-cadherin and Snail-1 were increased, at both the protein and mRNA levels. Pre-treatment with Snail-1 siRNA abrogated the promotion effect of Ftx on the migration and invasion of osteosarcoma cells. CONCLUSIONS Increased expression of lncRNA Ftx could not only be a biomarker for progression and prognosis of osteosarcoma, but also could regulate the development of osteosarcoma via the epithelial to mesenchymal transition (EMT) mechanism.
Collapse
Affiliation(s)
- Bo Li
- Heart Center, Central Hospital of ZiboZibo, P. R. China
| | - Peng Ren
- Department of Orthopedics, Second Hospital of Shandong UniversityJinan, Shandong, P. R. China
| | - Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong UniversityJinan, Shandong, P. R. China
| |
Collapse
|
32
|
Zhao B, Lu YL, Yang Y, Hu LB, Bai Y, Li RQ, Zhang GY, Li J, Bi CW, Yang LB, Hu C, Lei YH, Wang QL, Liu ZM. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway. Cancer Biomark 2018; 21:613-620. [PMID: 29278879 PMCID: PMC5859458 DOI: 10.3233/cbm-170683] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) were playing critical roles in tumorigenesis. However, in prostate cancer, the roles and mechanisms of lncRNAs especially ANRIL were largely unknown. We investigated the effects of ANRIL on the proliferation and migration of prostate cancer cells using CCK-8 assay and Transwell migration assay. Real-time PCR and western blotting assays were used to analyze the levels of ANRIL, let-7a, TGF-β1, p-Smad2 and p-Smad7. Our results showed that ANRIL was significantly overexpressed in prostate cancer tissues compared with corresponding normal tissues. Knockdown of ANRIL significantly inhibited the proliferation and migration of prostate cancer LNCap, PC3 and DU145 cells. Knockdown of ANRIL significantly decreased the levels of TGF-β1 and p-Smad2, and increased the level of p-Smad7 in prostate cancer LNCap cells. We further found that knockdown of ANRIL significantly enhanced the expression of let-7a, and rescue experiment found that let-7a inhibitor recovered the suppressive effects of ANRIL silencing on the proliferation and migration of prostate cancer LNCap, PC3 and DU145 cells. And let-7a inhibitor recovered the suppressive effects of ANRIL silencing on the activity of TGF-β1/Smad signaling pathway in prostate cancer LNCap cells. Taken together, our findings indicated that overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Lin Lu
- Faculty of Nursing, Kunming Medical University, Kunming, Yunnan, China.,Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Yang
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li-Bing Hu
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Bai
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rui-Qian Li
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guo-Ying Zhang
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jun Li
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Cheng-Wei Bi
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li-Bo Yang
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chen Hu
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong-Hong Lei
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qi-Lin Wang
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhi-Min Liu
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
33
|
Lingadahalli S, Jadhao S, Sung YY, Chen M, Hu L, Chen X, Cheung E. Novel lncRNA LINC00844 Regulates Prostate Cancer Cell Migration and Invasion through AR Signaling. Mol Cancer Res 2018; 16:1865-1878. [DOI: 10.1158/1541-7786.mcr-18-0087] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/22/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022]
|
34
|
Zhu X, Chen F, Shao Y, Xu D, Guo J. Long intergenic non-protein coding RNA 1006 used as a potential novel biomarker of gastric cancer. Cancer Biomark 2018; 21:73-80. [PMID: 29060927 DOI: 10.3233/cbm-170273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accumulating evidences have shown that long non-coding RNAs (lncRNAs), longer than 200 nucleotides in length, play a crucial role in cancer occurrence and development. However, the relationships between most lncRNAs and gastric carcinogenesis remain poorly understood. OBJECTIVE To explore the diagnostic value of one typical lncRNA, long intergenic non-protein coding RNA 1006 (LINC01006), in gastric cancer. METHODS First, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression levels of LINC01006 in various gastric tissues from gastric cancer patients, healthy controls, and gastric dysplasia. Next, the correlation between LINC01006 expression levels and clinicopathological features of patients with gastric cancer was assessed. Finally, the relative levels of LINC01006 in gastric cancer cell lines comparing to normal gastric epithelial cell line were analyzed. RESULTS LINC01006 levels in cancer tissues were significantly lower than those in adjacent normal tissues (P< 0.001) and healthy control tissues (P< 0.001). Its expression was associated with age (P= 0.013), tumor location (P= 0.022), tumor size (P= 0.030), and venous invasion (P= 0.018). Moreover, expression of LINC01006 was downregulated in two gastric cancer cell lines, MGC-803 (P< 0.05) and AGS (P< 0.001) compared to normal gastric epithelial cell line GES-1. CONCLUSIONS All the data implied that LINC01006 may be a novel biomarker for gastric cancer.
Collapse
|
35
|
Peng J. si-TP73-AS1 suppressed proliferation and increased the chemotherapeutic response of GC cells to cisplatin. Oncol Lett 2018; 16:3706-3714. [PMID: 30127981 PMCID: PMC6096144 DOI: 10.3892/ol.2018.9107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Previous studies have revealed that long noncoding RNAs (lncRNAs) function as crucial regulators in various biological processes, including tumorigenesis. Although the expression of lncRNA TP73-antisense RNA1 (AS1) has been identified in hepatocellular carcinoma and glioma, the biological function of TP73-AS1 in gastric cancer (GC) remains unclear. Thus, the present study employed a comprehensive analysis on the function of lncRNA TP73-AS1 in GC. The aim of the present study was to determine the clinical significance and biological function of TP73-AS1 in human GC tissues and cells. Additionally, the expression of TP73-AS1 was increased in GC tissues and cell lines and increased expression level of TP73-AS1 was associated with poor prognosis in patients with GC. Functional assays revealed that silencing of TP73-AS1 may suppress cell proliferation and enhance the chemotherapeutic response of GC cells to cisplatin through targeting the high mobility group 1/receptor for advanced glycation endproducts signaling pathway. Collectively, the results of the present study demonstrated that TP73-AS1 may be a novel lncRNA for the clinical prognosis of GC and a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
36
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
37
|
Wang X, Yan Y, Zhang C, Wei W, Ai X, Pang Y, Bian Y. Upregulation of lncRNA PlncRNA-1 indicates the poor prognosis and promotes glioma progression by activation of Notch signal pathway. Biomed Pharmacother 2018; 103:216-221. [DOI: 10.1016/j.biopha.2018.03.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
|
38
|
Jia G, Zhang M, Wang K, Zhao G, Pang M, Chen Z. Long non‐coding RNA PlncRNA‐1 promotes cell proliferation and hepatic metastasis in colorectal cancer. J Cell Biochem 2018; 119:7091-7104. [DOI: 10.1002/jcb.27031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Gui‐Qing Jia
- Department of Liver Surgery and Liver Transplantation CenterWest China HospitalSichuan UniversityChengduChina
- Department of Gastrointestinal SurgerySichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ming‐Ming Zhang
- Department of Gastrointestinal SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Kang Wang
- Department of Gastrointestinal SurgerySichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Gao‐Ping Zhao
- Department of Gastrointestinal SurgerySichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ming‐Hui Pang
- Department of Gastrointestinal SurgerySichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Zhe‐Yu Chen
- Department of Liver Surgery and Liver Transplantation CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
39
|
Mitobe Y, Takayama KI, Horie-Inoue K, Inoue S. Prostate cancer-associated lncRNAs. Cancer Lett 2018; 418:159-166. [DOI: 10.1016/j.canlet.2018.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023]
|
40
|
Zheng P, Li H, Xu P, Wang X, Shi Z, Han Q, Li Z. High lncRNA HULC expression is associated with poor prognosis and promotes tumor progression by regulating epithelial-mesenchymal transition in prostate cancer. Arch Med Sci 2018; 14:679-686. [PMID: 29765457 PMCID: PMC5949918 DOI: 10.5114/aoms.2017.69147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play critical roles in tumor progression and development. However, the expression pattern and biological function of lncRNA HULC (highly upregulated in liver cancer) in prostate cancer (PCa) remain largely unclear. MATERIAL AND METHODS The expression of lncRNA HULC in 53 paired PCa tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The χ2 test was used to explore the association of lncRNA HULC expression with clinicopathologic features. Kaplan-Meier analysis was used to detect the association between HULC expression and overall survival of PCa patients. Furthermore, the function of HULC in cell growth and metastasis was detected in PCa cells. RESULTS Our data showed that HULC expression was upregulated in PCa tissues and cell lines compared to adjacent non-tumor tissues and the normal prostate cell line RWPE-1 (p < 0.05). High HULC expression was positively associated with advanced clinicopathologic features and poor overall survival (OS) for PCa patients (p < 0.05). HULC inhibition suppressed PCa cell growth and metastasis both in vitro and in vivo (p < 0.05). Furthermore, HULC knockdown reduced N-cadherin and vimentin expression and increased E-cadherin expression in PCa cells (p < 0.05). CONCLUSIONS Our data suggested that lncRNA HULC might play oncogenic roles in PCa progression, which provided a novel therapeutic strategy for PCa patients.
Collapse
Affiliation(s)
- Pengyi Zheng
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Huibing Li
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Po Xu
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Xiaohui Wang
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Zhenguo Shi
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Qingjiang Han
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| | - Zhijun Li
- Department of Urologic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan, China
| |
Collapse
|
41
|
Wang LP, Wang JP, Wang XP. HOTAIR contributes to the growth of liver cancer via targeting miR-217. Oncol Lett 2018; 15:7963-7972. [PMID: 29849802 DOI: 10.3892/ol.2018.8341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/23/2018] [Indexed: 01/17/2023] Open
Abstract
Non-coding RNAs are important in the progression of liver cancer. The present study aimed to investigate the effects of long non-coding RNA HOX transcript antisense RNA (HOTAIR) on the proliferation of liver cancer and the association between HOTAIR and microRNA (miR)-217. It was demonstrated that the expression of HOTAIR was upregulated in liver cancer tissues and 3 liver cancer cell lines (MHCC97H, HepG2 and Hep3B). Inhibition of HOTAIR with HOTAIR small interfering (si) RNA lentiviral vectors significantly suppressed the cell proliferation of HepG2 cells, and downregulated the protein expression levels of two proliferation markers, Ki67 and proliferating cell nuclear antigen (PCNA). Furthermore, inhibition of HOTAIR induced G0/G1 cycle arrest by increasing the expression of p27 and decreasing the expression of cyclin D1. It was then predicted and verified that miR-217 was the target of HOTAIR. Expression of miR-217 was downregulated in liver cancer tissues and the 3 liver cancer cell lines. Further results revealed that inhibition of HOTAIR markedly upregulated the expression of miR-217 in HepG2 cells, and miR-217 inhibitor-induced reduction of miR-217 was significantly suppressed by HOTAIR inhibition. Furthermore, the increased cell proliferation and growth, the upregulated expression of Ki67 and PCNA, and the reduced G0/G1 cycle arrest induced by miR-217 inhibitor were partly rescued by inhibition of HOTAIR. Finally, the in vivo experiment indicated that HOTAIR inhibition suppressed tumorigenesis, including the smaller tumor volume and the reduced levels of Ki67. Overall, HOTAIR contributes to the proliferation and growth of liver cancer via downregulation of miR-217.
Collapse
Affiliation(s)
- Li-Ping Wang
- Department of Medicine, Xi'an Honghui Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jun-Ping Wang
- Department of Medicine, The Friendship Hospital of Shaanxi, Xi'an, Shaanxi 710000, P.R. China
| | - Xin-Ping Wang
- Department of General Surgery, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
42
|
Zhang Y, Meng W, Cui H. LncRNA CBR3-AS1 predicts unfavorable prognosis and promotes tumorigenesis in osteosarcoma. Biomed Pharmacother 2018; 102:169-174. [PMID: 29554595 DOI: 10.1016/j.biopha.2018.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
LncRNA CBR3-AS1 has been suggested to promote malignancy in several types of human cancers, but the clinical significance and biological function of lncRNA CBR3-AS1 in osteosarcoma is still unknown. The purpose of our study is to explore the clinical significance of lncRNA CBR3-AS1 in osteosarcoma patients and the biological function in osteosarcoma cells. In our results, we found lncRNA CBR3-AS1 was highly-expressed in osteosarcoma tissues and cell lines, and associated with Enneking stage, distant metastasis and histological grade. Survival analysis indicated that the high-expression of lncRNA CBR3-AS1 was an independent poor prognostic factor for osteosarcoma patients. Loss-of-function studies showed knockdown of lncRNA CBR3-AS1 suppressed osteosarcoma cells proliferation, migration and invasion, and promotes cells apoptosis, but had no effect on cell-cycle distribution. There was no association between lncRNA CBR3-AS1 and CBR3 expression in osteosarcoma tissues, and knockdown of lncRNA CBR3-AS1 had no effect on CBR3 mRNA and protein expression osteosarcoma cells. In conclusion, lncRNA CBR3-AS1 serves an oncogenic role to regulate osteosarcoma cells proliferation, migration, invasion and apoptosis, and is an independent poor prognostic factor for osteosarcoma patients.
Collapse
Affiliation(s)
- Yunxing Zhang
- Department of Emergency Surgery, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Wang Meng
- Department of Medical Abministration, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Hongxia Cui
- Department of Oncology, Jining No.1 People's Hospital, No. 6 Jiankang Road, Jining 272000, Shandong, China.
| |
Collapse
|
43
|
Zhang Y, Zhu M, Sun Y, Li W, Wang Y, Yu W. Upregulation of lncRNA CASC2 Suppresses Cell Proliferation and Metastasis of Breast Cancer via Inactivation of the TGF-β Signaling Pathway. Oncol Res 2018. [PMID: 29523222 PMCID: PMC7848420 DOI: 10.3727/096504018x15199531937158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the major malignancies with a mounting mortality rate in the world. Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) has been identified to regulate the initiation and progression of multiple tumorous diseases according to previous studies. However, its biological role has been rarely reported in breast cancer. In the present study, lncRNA CASC2 was found to be significantly downregulated in breast cancer tissues and cell lines using real-time quantitative PCR. Furthermore, gain-of-function assays demonstrated that overexpression of lncRNA CASC2 significantly repressed breast cancer cell proliferation and metastasis. Moreover, CASC2 induced cell cycle arrest and much more early apoptosis of breast cancer. Additionally, based on the above research, we illustrated that inactivation of the TGF-β signaling pathway was involved in the function of lncRNA CASC2. Collectively, lncRNA CASC2 was a key factor in the tumorigenesis and malignancy of breast cancer, suggesting it may possibly be a potential therapy target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yang Zhang
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Min Zhu
- Department of Imaging, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Yuanbo Sun
- Department of Nephrology, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Wenyuan Li
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Ying Wang
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Weiguang Yu
- The First Department of General Surgery, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| |
Collapse
|
44
|
Liu H, Wu Y. Long non-coding RNA gastric carcinoma highly expressed transcript 1 promotes cell proliferation and invasion in human head and neck cancer. Oncol Lett 2018; 15:6941-6946. [PMID: 29725422 PMCID: PMC5920369 DOI: 10.3892/ol.2018.8185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Recent evidence indicates that the long non-coding RNA gastric carcinoma highly expressed transcript 1 (GHET1) is involved in the development and carcinogenesis of several tumor types; however, the exact roles of GHET1 and its underlying mechanisms in head and neck cancer (HNC) remain largely unknown. In the present study, the expression patterns of GHET1 in HNC were determined and its clinical significance was assessed. The expression level of GHET1 was significantly increased in HNC tissues, compared with paired adjacent normal tissues. High GHET1 expression was significantly associated with advanced Tumor-Node-Metastasis stages and poor prognosis. Furthermore, inhibition of GHET1 suppressed cell proliferation, induced cell apoptosis and caused cell cycle arrest in vitro. In addition, GHET1 silencing inhibited cell migration and invasion. Taken together, the results of the present study indicated that GHET1 acts as an oncogene in HNC and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Hui Liu
- Department of Head and Neck Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yu Wu
- Department of Head and Neck Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
45
|
Aird J, Baird AM, Lim MC, McDermott R, Finn SP, Gray SG. Carcinogenesis in prostate cancer: The role of long non-coding RNAs. Noncoding RNA Res 2018; 3:29-38. [PMID: 30159437 PMCID: PMC6084828 DOI: 10.1016/j.ncrna.2018.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
LncRNAs appear to play a considerable role in tumourigenesis through regulating key processes in cancer cells such as proliferative signalling, replicative immortality, invasion and metastasis, evasion of growth suppressors, induction of angiogenesis and resistance to apoptosis. LncRNAs have been reported to play a role in prostate cancer, particularly in regulating the androgen receptor signalling pathway. In this review article, we summarise the role of 34 lncRNAs in prostate cancer with a particular focus on their role in the androgen receptor signalling pathway and the epithelial to mesenchymal transition pathway.
Collapse
Affiliation(s)
- John Aird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marvin C.J. Lim
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Medical Oncology, Tallaght Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Medical Oncology, Tallaght Hospital, Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Steven G. Gray
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- HOPE Directorate, St. James's Hospital, Dublin, Ireland
- Labmed Directorate, St. James's Hospital, Dublin, Ireland
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
46
|
Zhao J, Yu G, Cai M, Lei X, Yang Y, Wang Q, Zhai X. Bibliometric analysis of global scientific activity on umbilical cord mesenchymal stem cells: a swiftly expanding and shifting focus. Stem Cell Res Ther 2018; 9:32. [PMID: 29415771 PMCID: PMC5803908 DOI: 10.1186/s13287-018-0785-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Several studies have focused on umbilical cord-derived mesenchymal stem cells (UC-MSCs) due to their potential therapeutic effects in a cluster of diseases. However, there has been no bibliometric analysis evaluating the evolution in UC-MSC research. Therefore, this study aimed to assess scientific activity regarding UC-MSC research. Publications on UC-MSCs were retrieved from the Science Citation Index-Expanded (SCI-E) of the Web of Science (WoS) from 1975 to 2017. Statistical analyses were performed using Excel, GraphPad Prism 5, and VOSviewer software. Comparative analyses were employed to assess contributions between different countries, institutes, and researchers. With 21.26 citations per paper, 1206 papers cited 25,517 times were included. Mainland China contributed the most with 558 papers, with the most citations (6858 times) and the highest H-index (43). South Korea ranked first for number of papers per million people and per trillion gross domestic product (GDP). Keywords were stratified into two clusters by VOSviewer software: cluster 1, "treatments and effects"; and cluster 2, "characteristics". The average appearing years (AAY) of keywords in cluster 1 was more recent than that in cluster 2. For promising hotspots, "TNF-α" showed the latest AAY at 2014.09, followed by "migration", "angiogenesis", and "apoptosis". We conclude that the number of publications has been continuously growing dramatically since 2002 and that mainland China and South Korea are the most productive regions. The focus gradually shifts from "characteristics" to "treatments and effects". Attention should be drawn to the latest hotspots, such as "TNF-α", "migration", "angiogenesis", and "apoptosis". Furthermore, funding agencies might increase investments in exploring the therapeutic potential of UC-MSCs.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guanyu Yu
- Graduate Management Unit, Second Military Medical University, Shanghai, China.,Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengxi Cai
- Graduate Management Unit, Second Military Medical University, Shanghai, China
| | - Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Qijin Wang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
47
|
Baratieh Z, Khalaj Z, Honardoost MA, Emadi-Baygi M, Khanahmad H, Salehi M, Nikpour P. Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression. Biomark Med 2017; 11:1077-1090. [DOI: 10.2217/bmm-2017-0090] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: To evaluate PlncRNA-1, TUG1 and FAM83H-AS1 gene expression and their possible role as a biomarker in gastric cancer (GC) progression. Patients & methods: Long noncoding RNA expressions and clinicopathological characteristics were assessed in 70 paired GC tissues. Furthermore, corresponding data from 318 GC patients were downloaded from The Cancer Genome Atlas database. Results: Expression of PlncRNA-1 and TUG1 were significantly upregulated in GC tumoral tissues, and significantly correlated with clinicopathological characters. However, FAM83H-AS1 showed no consistently differential expression. The expression of these three long noncoding RNAs was significantly higher in The Cancer Genome Atlas tumoral tissues. Conclusion: In conclusion, PlncRNA-1 and TUG1 genes may play a critical role in GC progression and may serve as potential diagnostic biomarkers in GC patients.
Collapse
Affiliation(s)
- Zohreh Baratieh
- Department of Genetics & Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Khalaj
- Department of Genetics & Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Honardoost
- Department of Genetics & Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Division of Cellular & Molecular Biology, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Hossein Khanahmad
- Department of Genetics & Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics & Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics & Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth & Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Jin X, Zhang Z, Lu Y, Fan Z. Suppression of long non-coding RNA LET potentiates bone marrow-derived mesenchymal stem cells (BMSCs) proliferation by up-regulating TGF-β1. J Cell Biochem 2017; 119:2843-2850. [PMID: 29068476 DOI: 10.1002/jcb.26459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Long non coding RNAs (lncRNAs) show an encouraging trend in regulating the proliferation of bone marrow-derived mesenchymal stromal cells (BMSCs). The present study investigated the role of lncRNA low expression in tumor (LET) in BMSCs proliferation. Our result showed that LET was down-regulated in rapidly proliferated BMSCs (P < 0.05). Suppression of LET promoted BMSCs proliferation and over-expression of LET inhibited BMSCs proliferation (P < 0.05). LET negatively regulated the expression of transforming growth factor β1 (TGF-β1) in BMSCs (P < 0.05). Knockdown of TGF-β1 reversed the LET suppression-induced BMSCs proliferation (P < 0.05). Moreover, knockdown of TGF-β1 alleviated the LET suppression-induced activation of Wnt/β-catenin pathway in BMSCs. Therefore, we drew the conclusion that LET suppression promoted BMSCs proliferation by up-regulating the expression of TGF-β1 and activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiliang Zhang
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihong Fan
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Shan Y, Ying R, Jia Z, Kong W, Wu Y, Zheng S, Jin H. LINC00052 Promotes Gastric Cancer Cell Proliferation and Metastasis via Activating the Wnt/β-Catenin Signaling Pathway. Oncol Res 2017; 25:1589-1599. [PMID: 28337962 PMCID: PMC7841087 DOI: 10.3727/096504017x14897896412027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. The etiology of GC is complex, and much more attention should be paid to genetic factors. In this study, we explored the role and function of LINC00052 in GC. We applied qRT-PCR and Northern blot to detect the expression of LINC00052 and found it was highly expressed during GC. We also investigated the effects of LINC00052 on tumor prognosis and progression and found that LINC00052 indicated poor prognosis and tumor progression. By performing MTT, colony formation, and Transwell assays, we found that LINC00052 promoted MGC-803 cell proliferation and metastasis. Pull-down and RIP assays showed that LINC00052 could interact with β-catenin and methyltransferase SMYD2, and immunoprecipitation detection showed that LINC00052 promoted β-catenin methylation to maintain its stability, so as to activate the Wnt/β-catenin pathway. Furthermore, XAV939 (inhibitor of β-catenin) was used to treat MGC-803 cells, and we found that LINC00052 promoted proliferation and metastasis, possibly by activation of the Wnt/β-catenin pathway. In conclusion, our research demonstrated a carcinogenic role for LINC000052 in GC, which may represent a new approach for the prevention and therapy of this cancer.
Collapse
Affiliation(s)
- Yuqiang Shan
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| | - Rongchao Ying
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| | - Zhong Jia
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| | - Wencheng Kong
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| | - Yi Wu
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| | - Sixin Zheng
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| | - Huicheng Jin
- Department of General Surgery, Hangzhou First People’s Hospital, Hangzhou, P.R. China
| |
Collapse
|
50
|
Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther 2017; 24:381-385. [PMID: 29027534 DOI: 10.1038/cgt.2017.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
Abstract
Glioma has been identified as one of the most aggressive primary tumors. Long non-coding RNAs (lncRNAs), with length larger than 200 bp, have drawn increasing attention to their abnormal expression and regulation function in carcinogenesis. However, the role of lncRNAs in glioma remains largely unknown. Maternally expressed gene 3 (MEG3), also known as gene-trap locus 2 (GTL2), is an imprinted gene, and is encoded by the MEG3 transcript of the DLK1/MEG3 locus on human chromosome, or Meg3 on mouse chromosome. In this study, we found that lncRNA MEG3 was significantly downregulated in malignant glioma tissues and cell lines. The employment of the loss-of and gain-of functions assays presented that MEG3 suppressed glioma cells proliferation and induced cell-cycle arrest. Furthermore, our findings showed that highly expressed MEG3 could weaken Wnt/β-catenin signaling in glioma. Collectively, our findings revealed that downregulated lncRNA MEG3 could promote glioma cell proliferation through targeting Wnt/β-catenin signaling, which mainly influenced cell cycle.
Collapse
|