1
|
Rahman R, Rahaman MH, Hanson AR, Choo N, Xie J, Townley SL, Shrestha R, Hassankhani R, Islam S, Ramm S, Simpson KJ, Risbridger GP, Best G, Centenera MM, Balk SP, Kichenadasse G, Taylor RA, Butler LM, Tilley WD, Conn SJ, Lawrence MG, Wang S, Selth LA. CDK9 inhibition inhibits multiple oncogenic transcriptional and epigenetic pathways in prostate cancer. Br J Cancer 2024; 131:1092-1105. [PMID: 39117800 PMCID: PMC11405875 DOI: 10.1038/s41416-024-02810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Muhammed H Rahaman
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Nicholas Choo
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Jianling Xie
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Scott L Townley
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Raj Shrestha
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia
| | - Ramin Hassankhani
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Susanne Ramm
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Gail P Risbridger
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Giles Best
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Margaret M Centenera
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ganessan Kichenadasse
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Department of Medical Oncology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, South Australia
| | - Renea A Taylor
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Simon J Conn
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia.
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Bose K, Shajahan A, Sreekumar N, Aneesh TP. Heterocyclic Compounds as CDK9 Inhibitors: Structural Diversity, Mechanism of Action, and Therapeutic Potential in Cancer and Beyond. Chem Biodivers 2024:e202401797. [PMID: 39267257 DOI: 10.1002/cbdv.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Cyclin-dependent kinases (CDKs) are crucial proteins involved in key cellular processes, such as cell division and transcription. Their dysregulation plays a significant role in cancer development. Inhibiting cyclin-dependent kinase 9 (CDK9) impacts several survival pathways in cancer cells, presenting a promising therapeutic approach for various cancers. CDK9, in association with cyclin T1, forms the positive transcription elongation factor b (P-TEFb) complex, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II (Pol II). This phosphorylation promotes the transition from transcription initiation to elongation. This review examines recent advancements in CDK9 modulators, with a particular emphasis on compounds currently in clinical trials.
Collapse
Affiliation(s)
- Kuntal Bose
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Afiya Shajahan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Nandana Sreekumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
3
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
4
|
Alsfouk AA, Alshibl HM, Altwaijry NA, Alanazi A, AlKamaly O, Sultan A, Alsfouk BA. New Imadazopyrazines with CDK9 Inhibitory Activity as Anticancer and Antiviral: Synthesis, In Silico, and In Vitro Evaluation Approaches. Pharmaceuticals (Basel) 2023; 16:1018. [PMID: 37513929 PMCID: PMC10383573 DOI: 10.3390/ph16071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
This study describes the synthesis and biological activity of new imadazopyrazines as first-in-class CDK9 inhibitors. The inhibition of CDK9 is a well-established therapeutic target in cancer therapy. The new compounds were assessed using an in vitro kinase assay against CDK9. In this assay, compound 1d exhibited the highest CDK9 inhibition with an IC50 of 0.18 µM. The cytotoxicity effect of the novel compounds was evaluated in three cancer cell lines: HCT116, K652, and MCF7. The results of this assay showed a correlation between the antiproliferative effect of the inhibitors and their CDK9 inhibitory effect in the biochemical assay. This suggests CDK9 inhibition as a mechanistic pathway for their anticancer effect. Several compounds demonstrated potent cytotoxic effects with single-digit micromolar IC50 values yielded through an MTT assay. The compounds with the most promising data were further assessed for their antiviral activity against human Coronavirus 229E. The results showed that compound 4a showed the highest antiviral potency with an IC50 of 63.28 µM and a selectivity index of 4.8. In silico target prediction data showed that 4a displayed a good affinity to proteases. The result of the docking studies of 4a with COVID-19 main protease revealed a high binding affinity, which confirmed the results obtained from in vitro study. The physiochemical and in silico pharmacokinetic parameters indicated reasonable drug-likeness properties of the new compounds, including solubility, lipophilicity, absorption, oral bioavailability, and metabolic stability. Further lead optimization of this novel scaffold could lead to a revolution of a new class of preclinical CDK9 agents.
Collapse
Affiliation(s)
- Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanan M Alshibl
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Najla A Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashwag Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Omkulthom AlKamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahlam Sultan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
5
|
van der Noord VE, van der Stel W, Louwerens G, Verhoeven D, Kuiken HJ, Lieftink C, Grandits M, Ecker GF, Beijersbergen RL, Bouwman P, Le Dévédec SE, van de Water B. Systematic screening identifies ABCG2 as critical factor underlying synergy of kinase inhibitors with transcriptional CDK inhibitors. Breast Cancer Res 2023; 25:51. [PMID: 37147730 PMCID: PMC10161439 DOI: 10.1186/s13058-023-01648-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive. METHODS Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors. RESULTS We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation. CONCLUSION Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.
Collapse
Affiliation(s)
- Vera E van der Noord
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijs Louwerens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Danielle Verhoeven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hendrik J Kuiken
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Melanie Grandits
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Thieme E, Bruss N, Sun D, Dominguez EC, Coleman D, Liu T, Roleder C, Martinez M, Garcia-Mansfield K, Ball B, Pirrotte P, Wang L, Xia Z, Danilov AV. CDK9 inhibition induces epigenetic reprogramming revealing strategies to circumvent resistance in lymphoma. Mol Cancer 2023; 22:64. [PMID: 36998071 PMCID: PMC10061728 DOI: 10.1186/s12943-023-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.
Collapse
Affiliation(s)
- Elana Thieme
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Nur Bruss
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Duanchen Sun
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA
- grid.27255.370000 0004 1761 1174Present address: School of Mathematics, Shandong University, Jinan, 250100 Shandong China
| | - Edward C. Dominguez
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Daniel Coleman
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Tingting Liu
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Carly Roleder
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Melissa Martinez
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Krystine Garcia-Mansfield
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Brian Ball
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Patrick Pirrotte
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Lili Wang
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Zheng Xia
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Biomedical Engineering Department, Oregon Health & Science University, Portland, OR USA
| | - Alexey V. Danilov
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| |
Collapse
|
7
|
Chen R, Hassankhani R, Long Y, Basnet SKC, Teo T, Yang Y, Mekonnen L, Yu M, Wang S. Discovery of Potent Inhibitors of Cyclin-Dependent Kinases 7 and 9: Design, Synthesis, Structure-Activity Relationship Analysis and Biological Evaluation. ChemMedChem 2023; 18:e202200582. [PMID: 36400715 DOI: 10.1002/cmdc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) 7 and 9 are deregulated in various types of human cancer and are thus viewed as therapeutic targets. Accordingly, small-molecule inhibitors of both CDKs are highly sought-after. Capitalising on our previous discovery of CDKI-73, a potent CDK9 inhibitor, medicinal chemistry optimisation was pursued. A number of N-pyridinylpyrimidin-2-amines were rationally designed, chemically synthesised and biologically assessed. Among them, N-(6-(4-cyclopentylpiperazin-1-yl)pyridin-3-yl)-4-(imidazo[1,2-a]pyrimidin-3-yl)pyrimidin-2-amine was found to be one of the most potent inhibitors of CDKs 7 and 9 as well as the most effective anti-proliferative agent towards multiple human cancer cell lines. The cellular mode of action of this compound was investigated in MV4-11 acute myeloid leukaemia cells, revealing that the compound dampened the kinase activity of cellular CDKs 7 and 9, arrested the cell cycle at sub-G1 phase and induced apoptosis.
Collapse
Affiliation(s)
- Renjie Chen
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ramin Hassankhani
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yi Long
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sunita K C Basnet
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Theodosia Teo
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
8
|
Gupta A, Dagar G, Chauhan R, Sadida HQ, Almarzooqi SK, Hashem S, Uddin S, Macha MA, Akil ASAS, Pandita TK, Bhat AA, Singh M. Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:21-55. [PMID: 37061333 DOI: 10.1016/bs.apcsb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Alkahtani HM, Zen AA, Obaidullah AJ, Alanazi MM, Almehizia AA, Ansari SA, Aleanizy FS, Alqahtani FY, Aldossari RM, Algamdi RA, Al-Rasheed LS, Abdel-Hamided SG, Abdel-Aziz AAM, El-Azab AS. Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationship of Substituted Quinazolinones as Cyclin-Dependent Kinase 9 Inhibitors. Molecules 2022; 28:120. [PMID: 36615314 PMCID: PMC9822073 DOI: 10.3390/molecules28010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcriptional elongation, through which short-lived antiapoptotic proteins are overexpressed and make cancer cells resistant to apoptosis. Therefore, CDK9 inhibition depletes antiapoptotic proteins, which in turn leads to the reinstatement of apoptosis in cancer cells. Twenty-seven compounds were synthesized, and their CDK9 inhibitory and cytotoxic activities were evaluated. Compounds 7, 9, and 25 were the most potent CDK9 inhibitors, with IC50 values of 0.115, 0.131, and 0.142 μM, respectively. The binding modes of these molecules were studied via molecular docking, which shows that they occupy the adenosine triphosphate binding site of CDK9. Of these three molecules, compound 25 shows good drug-like properties, as it does not violate Lipinski's rule of five. In addition, this molecule shows promising ligand and lipophilic efficiency values and is an ideal candidate for further optimization.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rana M. Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, 11 Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Raghad Abdullah Algamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lamees S. Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami G. Abdel-Hamided
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Yin L, Liu X, Wu J, Yang J, Wang J, Dou H, Hou Y. LS-007 inhibits melanoma growth via inducing apoptosis and cell cycle arrest and regulating macrophage polarization. Melanoma Res 2022; 32:419-427. [PMID: 36094494 DOI: 10.1097/cmr.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
LS-007, an inhibitor of cyclin-dependent kinase 9 (CDK9), exhibits potential antitumor activity against chronic lymphocytic leukemia and ovarian cancer, but its effect on melanoma and tumor microenvironment (TME) has not been reported yet. This study aimed to investigate the role of LS-007 in B16F10 melanoma and relevant mechanisms. LS-007 significantly inhibited viability and induced apoptosis of B16F10 cells in a dose-dependent manner, which were accompanied with the increased ratio of Bax to Bcl-2 and decreased Mcl-1 mRNA level. Western blot analysis showed that LS-007 increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP). Furthermore, flow cytometry analysis and qRT-PCR results showed that LS-007 treatment resulted in cell cycle arrest by changing cell cycle-related gene expression. Notably, in vivo evaluation showed that LS-007 significantly decreased the weight and volume of tumor and the expression of Ki67, promoted the expression of iNOS and inhibited the expression of CD206, suggesting that LS-007 might inhibit tumor growth by suppressing polarization of macrophages into tumor-associated macrophages (TAMs) in the TME. The increase in M1/M2 treated with LS-007 detected by flow cytometry hinted that macrophages were polarized towards an antitumor phenotype. In addition, LS-007 induced higher apoptotic rate of B16F10 cells when co-cultured B16F10 with BMDMs. LS-007 has inhibitory effects on B16F10 cells in vivo and in vitro via inducing apoptosis, cell cycle arrest, and changing macrophage function in the TME.
Collapse
Affiliation(s)
- Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Jinjin Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Given the importance of cyclin-dependent kinases (CDKs) in the maintenance of cell development, gene transcription, and other essential biological operations, CDK blockers have been generated to manage a variety of disorders resulting from CDK irregularities. Furthermore, CDK9 has a crucial role in transcription by regulating short-lived anti-apoptotic genes necessary for cancer cell persistence. Addressing CDK9 with blockers has consequently emerged as a promising treatment for cancer. This study scrutinizes the effectiveness of nature-derived compounds (geniposidic acid, quercetin, geniposide, curcumin, and withanolide C) against CDK9 through computational approaches. A molecular docking study was performed after preparing the protein and the ligands. The selected blockers of the CDK9 exerted reliable binding affinities (−8.114 kcal/mol to −13.908 kcal/mol) against the selected protein, resulting in promising candidates compared to the co-crystallized ligand (LCI). The binding affinity of geniposidic acid (−13.908 kcal/mol) to CDK9 is higher than quercetin (−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol), withanolide C (−8.114 kcal/mol), and the co-crystallized ligand LCI (−11.425 kcal/mol). Therefore, geniposidic acid is a promising inhibitor of CDK9. Moreover, the molecular dynamics studies assessed the structure–function relationships and protein–ligand interactions. The network pharmacology study for the selected ligands demonstrated the auspicious compound–target–pathway signaling pathways vital in developing tumor, tumor cell growth, differentiation, and promoting tumor cell progression. Moreover, this study concluded by analyzing the computational approaches the natural-derived compounds that have potential interacting activities against CDK9 and, therefore, can be considered promising candidates for CKD9-induced cancer. To substantiate this study’s outcomes, in vivo research is recommended.
Collapse
|
13
|
He F, Cong W, Yin C, Li C, Zhao S, Wu Z, Hu H, Fang M. Design, synthesis, and biological evaluation of (E)-N′-substitute-4-((4-pyridylpyrimidin-2-yl)amino)benzohydrazide derivatives as novel potential CDK9 inhibitors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Alsfouk AA, Alshibl HM, Alsfouk BA, Altwaijry NA, Al-Abdullah ES. Synthesis and Biological Evaluation of Imadazo[1,2-a]pyrazines as Anticancer and Antiviral Agents through Inhibition of CDK9 and Human Coronavirus. Pharmaceuticals (Basel) 2022; 15:ph15070859. [PMID: 35890157 PMCID: PMC9319549 DOI: 10.3390/ph15070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, novel imadazo[1,2-a]pyrazine derivatives were synthesized and evaluated as CDK9 inhibitors. The results of CDK9 assay showed that the derivatives with pyridin-4-yl in position 2 and benzyl in position 3 of imadazo[1,2-a]pyrazine 3c displayed the most potent CDK9 inhibitory activity with IC50 of 0.16 µM. The anti-proliferative effect of the new compounds was examined against breast cancer (MCF7), colorectal cancer (HCT116), and chronic myelogenous leukaemia (K652) cell lines. The data of MTT assay showed that the cytotoxic effect of the inhibitors is correlated to their inhibitory activity against CDK9. Compound 3c exhibited the most potent cytotoxicity effect with average IC50s of three cell lines of 6.66 µM. The drug likeness properties of 3c were predicated in silico and demonstrated that 3c have reasonable physiochemical and pharmacokinetic properties. Selected derivatives were assessed in antiviral assay against human coronavirus 229E. The results of this assay showed that the derivative with pyridin-4-yl in position 2 and cyclohexyl in position 3 of imadazo[1,2-a]pyrazine 3b exhibited the most potent anti-coronaviral activity with IC50 of 56.96 µM and selectivity index of 7.14. The target predication result revealed that 3b showed high affinity to protease enzyme. Docking studies of 3b with COVID-19 main protease was conducted and showed good binding affinity, which confirmed the in vitro assay data.
Collapse
Affiliation(s)
- Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (B.A.A.); (N.A.A.)
- Correspondence:
| | - Hanan M. Alshibl
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (E.S.A.-A.)
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (B.A.A.); (N.A.A.)
| | - Najla A. Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (B.A.A.); (N.A.A.)
| | - Ebtehal S. Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (E.S.A.-A.)
| |
Collapse
|
15
|
Lu X, Hackman GL, Saha A, Rathore AS, Collins M, Friedman C, Yi SS, Matsuda F, DiGiovanni J, Lodi A, Tiziani S. Metabolomics-based phenotypic screens for evaluation of drug synergy via direct-infusion mass spectrometry. iScience 2022; 25:104221. [PMID: 35494234 PMCID: PMC9046262 DOI: 10.1016/j.isci.2022.104221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Drugs used in combination can synergize to increase efficacy, decrease toxicity, and prevent drug resistance. While conventional high-throughput screens that rely on univariate data are incredibly valuable to identify promising drug candidates, phenotypic screening methodologies could be beneficial to provide deep insight into the molecular response of drug combination with a likelihood of improved clinical outcomes. We developed a high-content metabolomics drug screening platform using stable isotope-tracer direct-infusion mass spectrometry that informs an algorithm to determine synergy from multivariate phenomics data. Using a cancer drug library, we validated the drug screening, integrating isotope-enriched metabolomics data and computational data mining, on a panel of prostate cell lines and verified the synergy between CB-839 and docetaxel both in vitro (three-dimensional model) and in vivo. The proposed unbiased metabolomics screening platform can be used to rapidly generate phenotype-informed datasets and quantify synergy for combinatorial drug discovery.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA
| | - Atul Singh Rathore
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Chelsea Friedman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA,Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - John DiGiovanni
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA,Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Corresponding author
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA,Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Corresponding author
| |
Collapse
|
16
|
Guo T, Liu DF, Peng SH. CDK9 is up-regulated and associated with prognosis in patients with papillary thyroid carcinoma. Medicine (Baltimore) 2022; 101:e28309. [PMID: 35119000 PMCID: PMC8812708 DOI: 10.1097/md.0000000000028309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy but shows excellent prognosis. We investigated the clinical significance of cyclin-dependent kinase 9 (CDK9) in patients with PTC.This prospective observational study included 192 patients with PTC, who visited our hospital between August 2018 and February 2020. We obtained 93 tissue samples from patients with benign thyroid disease during the same period as controls. Immunohistochemical evaluation and reverse transcription-quantitative polymerase chain reaction assay were performed to evaluate CDK9 expression. Patients' demographic and clinical characteristics were analyzed.Delphian lymph node (DLN) metastasis in patients with PTC was associated with clinicopathological characteristics. CDK9 expression was up-regulated in patients with PTC, and those with DLN metastasis showed higher CDK9 expression. We also observed that tumor size, capsule invasion, tumor-node-metastasis classification (TNM) stage, and multifocality were the risk factors for DLN metastasis in patients with PTC. Additionally, CDK9 expression was strongly associated with tumor size, capsule invasion, TNM stage, and multifocality and weakly associated with the number of metastatic DLN.CDK9 is up-regulated in patients with PTC and associated with prognosis in these patients.
Collapse
|
17
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Huang Z, Wang T, Wang C, Fan Y. CDK9 Inhibitors in Cancer Research. RSC Med Chem 2022; 13:688-710. [PMID: 35814933 PMCID: PMC9215160 DOI: 10.1039/d2md00040g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Cyclin dependent kinase 9 (CDK9) played an essential role in regulating transcriptional elongation. Aberrations in CDK9 activity have been observed in various cancers, which made CDK9 was an attractive therapeutic...
Collapse
Affiliation(s)
- Zhi Huang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Cheng Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
19
|
Alsfouk A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J Enzyme Inhib Med Chem 2021; 36:693-706. [PMID: 33632038 PMCID: PMC7919902 DOI: 10.1080/14756366.2021.1890726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 01/23/2023] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a vital role in transcription through regulation of short-lived anti-apoptotic genes required for cancer cell survival. Therefore, targeting CDK9 with small molecule inhibitors has emerged as a potential cancer therapy. This article reviews the most recent CDK9 patent literature (2012-2020) related to small molecule inhibitors in cancer along with their selectivity profile and biological results in preclinical studies.
Collapse
Affiliation(s)
- Aisha Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
21
|
Cyclin-Dependent Kinase Inhibitors in Hematological Malignancies-Current Understanding, (Pre-)Clinical Application and Promising Approaches. Cancers (Basel) 2021; 13:cancers13102497. [PMID: 34065376 PMCID: PMC8161389 DOI: 10.3390/cancers13102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cyclin-dependent kinases are involved in the regulation of cancer-initiating processes like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression. Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and signaling molecule activities are considered as potential biomarkers. We therefore summarized relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and further discuss molecular mechanisms of resistance and other open questions. Abstract Genetically altered stem or progenitor cells feature gross chromosomal abnormalities, inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases (CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity and different clinical presentation is challenging for selecting the right target and defining the ideal combination to mediate long-term disease control. Preclinical and early clinical data suggest that specific CDKIs have activity in selected patients, dependent on the existing rearrangements and mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6 inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide an overview on molecular mechanisms of response vs. resistance and discuss open questions.
Collapse
|
22
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
23
|
Mandal R, Becker S, Strebhardt K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers (Basel) 2021; 13:2181. [PMID: 34062779 PMCID: PMC8124690 DOI: 10.3390/cancers13092181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclin Dependent Kinase 9 (CDK9) is one of the most important transcription regulatory members of the CDK family. In conjunction with its main cyclin partner-Cyclin T1, it forms the Positive Transcription Elongation Factor b (P-TEFb) whose primary function in eukaryotic cells is to mediate the positive transcription elongation of nascent mRNA strands, by phosphorylating the S2 residues of the YSPTSPS tandem repeats at the C-terminus domain (CTD) of RNA Polymerase II (RNAP II). To aid in this process, P-TEFb also simultaneously phosphorylates and inactivates a number of negative transcription regulators like 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) Sensitivity-Inducing Factor (DSIF) and Negative Elongation Factor (NELF). Significantly enhanced activity of CDK9 is observed in multiple cancer types, which is universally associated with significantly shortened Overall Survival (OS) of the patients. In these cancer types, CDK9 regulates a plethora of cellular functions including proliferation, survival, cell cycle regulation, DNA damage repair and metastasis. Due to the extremely critical role of CDK9 in cancer cells, inhibiting its functions has been the subject of intense research, resulting the development of multiple, increasingly specific small-molecule inhibitors, some of which are presently in clinical trials. The search for newer generation CDK9 inhibitors with higher specificity and lower potential toxicities and suitable combination therapies continues. In fact, the Phase I clinical trials of the latest, highly specific CDK9 inhibitor BAY1251152, against different solid tumors have shown good anti-tumor and on-target activities and pharmacokinetics, combined with manageable safety profile while the phase I and II clinical trials of another inhibitor AT-7519 have been undertaken or are undergoing. To enhance the effectiveness and target diversity and reduce potential drug-resistance, the future of CDK9 inhibition would likely involve combining CDK9 inhibitors with inhibitors like those against BRD4, SEC, MYC, MCL-1 and HSP90.
Collapse
Affiliation(s)
- Ranadip Mandal
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Sven Becker
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Shao H, Foley DW, Huang S, Abbas AY, Lam F, Gershkovich P, Bradshaw TD, Pepper C, Fischer PM, Wang S. Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. Eur J Med Chem 2021; 214:113244. [PMID: 33581551 DOI: 10.1016/j.ejmech.2021.113244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
Cyclin-dependent kinases (CDKs) are a family of Ser/Thr kinases involved in cell cycle and transcriptional regulation. CDK9 regulates transcriptional elongation and this unique property has made it a potential target for several diseases. Due to the conserved ATP binding site, designing selective CDK9 inhibitors has been challenging. Here we report our continued efforts in the optimization of 2,4,5-tri-substituted pyrimidine compounds as potent and selective CDK9 inhibitors. The most selective compound 30m was >100-fold selective for CDK9 over CDK1 and CDK2. These compounds showed broad anti-proliferative activities in various solid tumour cell lines and patient-derived chronic lymphocytic leukaemia (CLL) cells. Decreased phosphorylation of the carboxyl terminal domain (CTD) of RNAPII at Ser-2 and down-regulation of anti-apoptotic protein Mcl-1 were confirmed in both the ovarian cancer model A2780 and patient-derived CLL cells.
Collapse
Affiliation(s)
- Hao Shao
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - David W Foley
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Shiliang Huang
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Abdullahi Y Abbas
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Frankie Lam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Pavel Gershkovich
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Tracey D Bradshaw
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9PX, UK
| | - Peter M Fischer
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Shudong Wang
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
25
|
Synthesis and biological evaluation of seliciclib derivatives as potent and selective CDK9 inhibitors for prostate cancer therapy. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic β Cells. Cell Rep 2020; 28:2892-2904.e7. [PMID: 31509750 DOI: 10.1016/j.celrep.2019.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to vital cellular processes including cell cycle regulation. Loss of CDKs is associated with impaired insulin secretion and β cell survival; however, the function of CDK8 in β cells remains elusive. Here, we report that genetic ablation of Cdk8 improves glucose tolerance by increasing insulin secretion. We identify OSBPL3 as a CDK8-dependent phosphoprotein, which acts as a negative regulator of insulin secretion in response to glucose. We also show that embryonic gene silencing of neuropeptide Y in β cells is compromised in Cdk8-null mice, leading to continued expression into adulthood. Cdk8 ablation in β cells aggravates apoptosis and induces de novo expression of neuropeptides upon oxidative stress. Moreover, pancreatic islets exposed to stress display augmented apoptosis in the presence of these same neuropeptides. Our results reveal critical roles for CDK8 in β cell function and survival during metabolic stress that are in part mediated through de novo expression of neuropeptides.
Collapse
|
27
|
He S, Fang X, Xia X, Hou T, Zhang T. Targeting CDK9: A novel biomarker in the treatment of endometrial cancer. Oncol Rep 2020; 44:1929-1938. [PMID: 32901849 PMCID: PMC7551504 DOI: 10.3892/or.2020.7746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the female reproductive system. Although cyclin-dependent kinase 9 (CDK9) has a definitive pathogenic role in various types of cancer, little is known concerning its function in endometrial cancer. Our study was conducted to evaluate the expression and therapeutic potential of CDK9 in endometrial cancer. CDK9 expression was determined by immunohistochemistry in endometrial cancer tissues constructed with paired primary, metastatic, and recurrent tumor tissues from 32 endometrial cancer patients. Small interfering RNA (siRNA) and inhibitors of CDK9 were used to evaluate the effect of CDK9 inhibition on the anti-apoptotic activity and proliferation in endometrial cancer cells. Colony formation assay and wound-healing assays were adopted to assess clonal formation and migratory capacity. The results of the immunohistochemistry demonstrated that CDK9 was highly expressed in the human endometrial cancer cell lines; moreover, it was elevated in metastatic and recurrent endometrial tumor tissue compared when compared with that in patient-matched primary endometrial tumor tissue. Knockdown of CDK9 with siRNA and inhibition of CDK9 activity with the inhibitor suppressed cell proliferation and promoted apoptosis in endometrial cancer. In conclusion, our results provide evidence that CDK9 may be a potential prognostic biomarker and a promising therapeutic target for the treatment of endometrial cancer in the future.
Collapse
Affiliation(s)
- Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
28
|
Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02560-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ferreira Pimentel LC, Cunha AC, Boas Hoelz LV, Canzian HF, Leite Firmino Marinho DI, Boechat N, Bastos MM. Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications. Curr Top Med Chem 2020; 20:227-243. [DOI: 10.2174/1568026620666200124094949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/23/2022]
Abstract
The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.
Collapse
Affiliation(s)
- Luiz Claudio Ferreira Pimentel
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Departamento de Quimica Organica, Campus do Valonguinho, CEP 24020-150, Niteroi, RJ, Brazil
| | - Lucas Villas Boas Hoelz
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Henayle Fernandes Canzian
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Debora Inacio Leite Firmino Marinho
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| | - Monica Macedo Bastos
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Laboratório de Sintese de Farmacos - LASFAR, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
H.S. Richter G, Hensel T, Schmidt O, Saratov V, von Heyking K, Becker-Dettling F, Prexler C, Yen HY, Steiger K, Fulda S, Dirksen U, Weichert W, Wang S, Burdach S, Schäfer BW. Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12020304. [PMID: 32012890 PMCID: PMC7072515 DOI: 10.3390/cancers12020304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Previously, we used inhibitors blocking BET bromodomain binding proteins (BRDs) in Ewing sarcoma (EwS) and observed that long term treatment resulted in the development of resistance. Here, we analyze the possible interaction of BRD4 with cyclin-dependent kinase (CDK) 9. Methods: Co-immunoprecipitation experiments (CoIP) to characterize BRD4 interaction and functional consequences of inhibiting transcriptional elongation were assessed using drugs targeting of BRD4 or CDK9, either alone or in combination. Results: CoIP revealed an interaction of BRD4 with EWS-FLI1 and CDK9 in EwS. Treatment of EwS cells with CDKI-73, a specific CDK9 inhibitor (CDK9i), induced a rapid downregulation of EWS-FLI1 expression and block of contact-dependent growth. CDKI-73 induced apoptosis in EwS, as depicted by cleavage of Caspase 7 (CASP7), PARP and increased CASP3 activity, similar to JQ1. Microarray analysis following CDKI-73 treatment uncovered a transcriptional program that was only partially comparable to BRD inhibition. Strikingly, combined treatment of EwS with BRD- and CDK9-inhibitors re-sensitized cells, and was overall more effective than individual drugs not only in vitro but also in a preclinical mouse model in vivo. Conclusion: Treatment with BRD inhibitors in combination with CDK9i offers a new treatment option that significantly blocks the pathognomonic EWS-ETS transcriptional program and malignant phenotype of EwS.
Collapse
Affiliation(s)
- Günther H.S. Richter
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence:
| | - Tim Hensel
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Oxana Schmidt
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Vadim Saratov
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| | - Kristina von Heyking
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Fiona Becker-Dettling
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
| | - Carolin Prexler
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Hsi-Yu Yen
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe-University Frankfurt, 60528 Frankfurt/Main, Germany;
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, 45147 Essen, Germany;
- German Cancer Research Center (DKFZ), partner site Essen, 45147 Essen, Germany
| | - Wilko Weichert
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Shudong Wang
- Centre for Drug Discovery and Development and School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, South Australia 5001, Australia;
| | - Stefan Burdach
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| |
Collapse
|
31
|
Rahaman MH, Lam F, Zhong L, Teo T, Adams J, Yu M, Milne RW, Pepper C, Lokman NA, Ricciardelli C, Oehler MK, Wang S. Targeting CDK9 for treatment of colorectal cancer. Mol Oncol 2019; 13:2178-2193. [PMID: 31398271 PMCID: PMC6763784 DOI: 10.1002/1878-0261.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most lethal human malignancies, and pursuit of new therapeutic targets for treatment has been a major research focus. Cyclin-dependent kinase 9 (CDK9), which plays a crucial role in transcription, has emerged as a target for cancer treatment. CDKI-73, one of the most potent and pharmacologically superior CDK9 inhibitors, has demonstrated excellent anti-tumour efficacy against several types of cancers. In this study, we evaluated its therapeutic potential against CRC. CDKI-73 elicited high cytotoxicity against all colon cancer cell lines tested. Cell cycle and apoptosis analysis in HCT 116 and HT29 cells revealed that CDKI-73 induced cell death without accumulation of DNA at any phase of the cell cycle. Moreover, it caused depolarisation of mitochondrial membrane, leading to caspase-independent apoptosis. Knockdown by shRNA demonstrated the CDK9-targeted mechanism of CDKI-73, which also affected the Mnk/eIF4E signalling axis. In addition, RT-qPCR analysis showed that CDKI-73 down-regulated multiple pro-survival factors at the mRNA level. Its in vivo anti-tumour efficacy was further evaluated in Balb/c nude mice bearing HCT 116 xenograft tumours. CDKI-73 significantly inhibited tumour growth (***P < 0.001) without overt toxicity. Analysis of the tumour tissues collected from the xenografted animals confirmed that the in vivo anti-tumour efficacy was associated with CDK9 targeting of CDKI-73. Overall, this study provides compelling evidence that CDKI-73 is a promising drug candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Muhammed H Rahaman
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Frankie Lam
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Longjin Zhong
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Julian Adams
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Chris Pepper
- School of Medicine, Cardiff University, Health Park, UK
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| |
Collapse
|
32
|
Tong Z, Mejia A, Veeranki O, Verma A, Correa AM, Dokey R, Patel V, Solis LM, Mino B, Kathkuda R, Rodriguez-Canales J, Lin SH, Krishnan S, Kopetz S, Blum M, Ajani JA, Hofstetter WL, Maru DM. Targeting CDK9 and MCL-1 by a new CDK9/p-TEFb inhibitor with and without 5-fluorouracil in esophageal adenocarcinoma. Ther Adv Med Oncol 2019; 11:1758835919864850. [PMID: 31384313 PMCID: PMC6659187 DOI: 10.1177/1758835919864850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/16/2019] [Indexed: 01/03/2023] Open
Abstract
Background: CDK9 inhibitors are antitumorigenic against solid tumors, including
esophageal adenocarcinoma (EAC). However, efficacy of a CDK9 inhibitor
combined with 5-fluorouracil (5-FU) and target proteins that are targeted by
these agents in EAC are unknown. Methods: The anti-EAC efficacy of a new CDK9 inhibitor, BAY1143572, with and without
5-FU was assessed in vitro and in xenograft models in
athymic nu/nu mice. Synergy between BAY1143572 and 5-FU in inhibiting cell
proliferation was analyzed by calculating the combination index using
CompuSyn software. Potential targets of BAY1143572 and 5-FU were identified
by reverse-phase protein array. The effects of BAY1143572 and 5-FU on MCL-1
in vitro were analyzed by Western blotting,
quantitative real-time polymerase chain reaction, and chromatin
immunoprecipitation assay. MCL-1 protein expression in tumors from patients
with locoregional EAC treated with chemoradiation and surgery was assessed
by immunohistochemistry. Results: BAY1143572 had dose-dependent antiproliferative and proapoptotic effects and
demonstrated synergy with 5-FU against EAC in vitro. The
median volumes of FLO-1 and ESO-26 xenografts treated with 5-FU plus
BAY114352 were significantly smaller than those of xenografts treated with
either agent alone (p < 0.05). BAY1143572 downregulated
MCL-1 by inhibiting HIF-1α binding to the MCL-1 promoter. 5-FU enhanced
BAY1143572-induced MCL-1 downregulation and stable MCL-1 overexpression
reduced the apoptosis induced by BAY1143572 and 5-FU in
vitro. High patients’ tumor MCL-1 expression was correlated
with shorter overall and recurrence-free survival. Conclusions: BAY1143572 and 5-FU have synergistic antitumorigenic effects against EAC.
MCL-1 is a downstream target of CDK9 inhibitors and a predictor of response
to neoadjuvant chemoradiation in EAC.
Collapse
Affiliation(s)
- Zhimin Tong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alicia Mejia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omkara Veeranki
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuj Verma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arlene M Correa
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Dokey
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Viren Patel
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Maren Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riham Kathkuda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariela Blum
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M Maru
- Division of Pathology and Laboratory Medicine, Unit 085, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
33
|
Xie S, Wei F, Sun YM, Gao YL, Pan LL, Tan MJ, Wang SD, Ding J, Chen Y. EZH2 inhibitors abrogate upregulation of trimethylation of H3K27 by CDK9 inhibitors and potentiate its activity against diffuse large B-cell lymphoma. Haematologica 2019; 105:1021-1031. [PMID: 31289198 PMCID: PMC7109751 DOI: 10.3324/haematol.2019.222935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant expression of CDK9/cyclin T1 has been found in diffuse large B-cell lymphoma (DLBCL), and suggests that CDK9 is a potential therapeutic target for DLBCL. Here, we firstly demonstrated that CDKI-73, a novel cyclin-dependent kinases (CDK) inhibitor, potently blocks CDK9, triggered apoptosis and dramatically repressed DLBCL cell growth owing to CDK9 inhibition. CDK9 inhibitors specifically elevated the trimethylation of H3K27, which we speculate was due to reduced expression of JMJD3/UTX. Considering the important role of the trimethylation of H3K27 in tumor progression, the synergistic effect of the combination therapy of CDK9 inhibitors with EZH2 inhibitors was investigated. EZH2 inhibitors reversed the upregulation of trimethylation of H3K27, and synergistically inhibited DLBCL and other solid tumors growth in vitro and in vivo. These findings provide a rational basis for the application of CDK9 inhibitors in combination with EZH2 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Shao Xie
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research and Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Breast Cancer, and Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Fan Wei
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research and Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Ming Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research and Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Lei Gao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research and Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu-Lu Pan
- University of Chinese Academy of Sciences, Beijing, China.,Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica and Chinese Academy of Sciences, Shanghai, China
| | - Min-Jia Tan
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica and Chinese Academy of Sciences, Shanghai, China
| | - Shu-Dong Wang
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, Australia
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research and Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research and Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Wang J, Dean DC, Hornicek FJ, Shi H, Duan Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. FASEB J 2019; 33:5990-6000. [PMID: 30726104 PMCID: PMC6463912 DOI: 10.1096/fj.201801789rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
Despite surgical and chemotherapeutic advances over the past few decades, the prognosis for ovarian cancer remains very poor. Although cyclin-dependent kinase (CDK) 9 has an established pathogenic role in various cancers, its function in ovarian cancer remains poorly defined. The purpose of this study was to evaluate the expression of CDK9 and its therapeutic potential in ovarian cancer. CDK9 expression was determined by immunohistochemistry in a unique ovarian cancer tissue microarray constructed with paired primary, metastatic, and recurrent tumor tissues from 26 ovarian cancer patients. CDK9 was highly expressed in human ovarian cancer cell lines and was also elevated in metastatic and recurrent ovarian tumor tissue compared with patient-matched primary ovarian tumor tissue. In addition, increased CDK9 significantly correlated with poor patient prognosis. Inhibition of CDK9 by small interfering RNA or CDK9 inhibitor functionally suppressed RNA transcription elongation, induced apoptosis, and reduced proliferation of ovarian cancer cells. Inhibition of CDK9 also suppressed ovarian cancer cell spheroid growth, clonogenicity formation, and migration activity. Our results reveal CDK9 as a novel prognostic biomarker and a promising therapeutic target for preventing metastasis and recurrence while also improving the overall clinical outcome for ovarian cancer patients.-Wang, J., Dean, D. C., Hornicek, F. J., Shi, H., Duan, Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Jinglu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Dylan C. Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Francis J. Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| |
Collapse
|
35
|
Combined protein and ligand based physicochemical aspects of molecular recognition for the discovery of CDK9 inhibitor. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Wang B, Wu J, Wu Y, Chen C, Zou F, Wang A, Wu H, Hu Z, Jiang Z, Liu Q, Wang W, Zhang Y, Liu F, Zhao M, Hu J, Huang T, Ge J, Wang L, Ren T, Wang Y, Liu J, Liu Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur J Med Chem 2018; 158:896-916. [PMID: 30253346 DOI: 10.1016/j.ejmech.2018.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 01/06/2023]
Abstract
Through a structure-guided rational drug design approach, we have discovered a highly selective inhibitor compound 40 (JSH-150), which exhibited an IC50 of 1 nM against CDK9 kinase in the biochemical assay and achieved around 300-10000-fold selectivity over other CDK kinase family members. In addition, it also displayed high selectivity over other 468 kinases/mutants (KINOMEscan S score(1) = 0.01). Compound 40 displayed potent antiproliferative effects against melanoma, neuroblastoma, hepatoma, colon cancer, lung cancer as well as leukemia cell lines. It could dose-dependently inhibit the phosphorylation of RNA Pol II, suppress the expression of MCL-1 and c-Myc, arrest the cell cycle and induce the apoptosis in the leukemia cells. In the MV4-11 cell-inoculated xenograft mouse model, 10 mg/kg dosage of 40 could almost completely suppress the tumor progression. The high selectivity and good in vivo PK/PD profile suggested that 40 would be a good pharmacological tool to study CDK9-mediated physiology and pathology as well as a potential drug candidate for leukemia and other cancers.
Collapse
Affiliation(s)
- Beilei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiaxin Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yun Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Cheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Fengming Zou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Hong Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zongru Jiang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China
| | - Wei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yicong Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Feiyang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ming Zhao
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Jie Hu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Tao Huang
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Juan Ge
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Li Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Tao Ren
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Yuxin Wang
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Jing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China.
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
37
|
CDKI-73: an orally bioavailable and highly efficacious CDK9 inhibitor against acute myeloid leukemia. Invest New Drugs 2018; 37:625-635. [PMID: 30194564 DOI: 10.1007/s10637-018-0661-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia with dismal long-term prognosis with age. The most aggressive subtype of AML is MLL-AML that is characterized by translocations of the mixed-lineage leukemia gene (MLL) and resistance to conventional chemotherapy. Cyclin dependent kinase 9 (CDK9) plays a crucial role in the MLL-driven oncogenic transcription, and hence, inhibiting activity of CDK9 has been proposed as a promising strategy for treatment of AML. We investigated the therapeutic potential of CDKI-73, one of the most potent CDK9 inhibitors, against a panel of AML cell lines and samples derived from 97 patients. CDKI-73 induced cancer cells undergoing apoptosis through transcriptional downregulation of anti-apoptotic proteins Bcl-2, Mcl-1 and XIAP by majorly targeting CDK9. Contrastively, it was relatively low toxic to the bone marrow cells of healthy donors. In MV4-11 xenograft mouse models, oral administration of CDKI-73 resulted in a marked inhibition of tumor growth (p < 0.0001) and prolongation of animal life span (P < 0.001) without causing body weight loss and other overt toxicities. The study suggests that CDKI-73 can be developed as a highly efficacious and orally deliverable therapeutic agent for treatment of AML.
Collapse
|
38
|
Valenciaga A, Saji M, Yu L, Zhang X, Bumrah C, Yilmaz AS, Knippler CM, Miles W, Giordano TJ, Cote GJ, Ringel MD. Transcriptional targeting of oncogene addiction in medullary thyroid cancer. JCI Insight 2018; 3:122225. [PMID: 30135308 DOI: 10.1172/jci.insight.122225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Metastatic medullary thyroid cancer (MTC) is incurable and FDA-approved kinase inhibitors that include oncogenic RET as a target do not result in complete responses. Association studies of human MTCs and murine models suggest that the CDK/RB pathway may be an alternative target. The objective of this study was to determine if CDKs represent therapeutic targets for MTC and to define mechanisms of activity. Using human MTC cells that are either sensitive or resistant to vandetanib, we demonstrate that palbociclib (CDK4/6 inhibitor) is not cytotoxic to MTC cells but that they are highly sensitive to dinaciclib (CDK1/2/5/9 inhibitor) accompanied by reduced CDK9 and RET protein and mRNA levels. CDK9 protein was highly expressed in 83 of 83 human MTCs and array-comparative genomic hybridization had copy number gain in 11 of 30 tumors. RNA sequencing demonstrated that RNA polymerase II-dependent transcription was markedly reduced by dinaciclib. The CDK7 inhibitor THZ1 also demonstrated high potency and reduced RET and CDK9 levels. ChIP-sequencing using H3K27Ac antibody identified a superenhancer in intron 1 of RET. Finally, combined inhibition of dinaciclib with a RET kinase inhibitor was synergistic. In summary, we have identified what we believe is a novel mechanism of RET transcription regulation that potentially can be exploited to improve RET therapeutic targeting.
Collapse
Affiliation(s)
- Anisley Valenciaga
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | | | | | - Christina M Knippler
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gilbert J Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
39
|
Kinoshita S, Ishida T, Ito A, Narita T, Masaki A, Suzuki S, Yoshida T, Ri M, Kusumoto S, Komatsu H, Shimizu N, Inagaki H, Kuroda T, Scholz A, Ueda R, Sanda T, Iida S. Cyclin-dependent kinase 9 as a potential specific molecular target in NK-cell leukemia/lymphoma. Haematologica 2018; 103:2059-2068. [PMID: 30076184 PMCID: PMC6269314 DOI: 10.3324/haematol.2018.191395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
BAY 1143572 is a highly selective inhibitor of cyclin-dependent kinase 9/positive transcription elongation factor b. It has entered phase I clinical studies. Here, we have assessed the utility of BAY 1143572 for treating natural killer (NK) cell leukemias/lymphomas that have a poor prognosis, namely extranodal NK/T-cell lymphoma, nasal type and aggressive NK-cell leukemia, in a preclinical mouse model in vivo as well as in tissue culture models in vitro Seven NK-cell leukemia/lymphoma lines and primary aggressive NK-cell leukemia cells from two individual patients were treated with BAY 1143572 in vitro Primary tumor cells from an aggressive NK-cell leukemia patient were used to establish a xenogeneic murine model for testing BAY 1143572 therapy. Cyclin-dependent kinase 9 inhibition by BAY 1143572 resulted in prevention of phosphorylation at the serine 2 site of the C-terminal domain of RNA polymerase II. This resulted in lower c-Myc and Mcl-1 levels in the cell lines, causing growth inhibition and apoptosis. In aggressive NK-cell leukemia primary tumor cells, exposure to BAY 1143572 in vitro resulted in decreased Mcl-1 protein levels resulting from inhibition of RNA polymerase II C-terminal domain phosphorylation at the serine 2 site. Orally administering BAY 1143572 once per day to aggressive NK-cell leukemia-bearing mice resulted in lower tumor cell infiltration into the bone marrow, liver, and spleen, with less export to the periphery relative to control mice. The treated mice also had a survival advantage over the untreated controls. The specific small molecule targeting agent BAY1143572 has potential for treating NK-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Shiori Kinoshita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan .,Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Asahi Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Ayako Masaki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan.,Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Japan
| | - Takashi Yoshida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hirokazu Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Norio Shimizu
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | - Arne Scholz
- Bayer AG Pharmaceuticals Division, Berlin, Germany
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
40
|
Brägelmann J, Dammert MA, Dietlein F, Heuckmann JM, Choidas A, Böhm S, Richters A, Basu D, Tischler V, Lorenz C, Habenberger P, Fang Z, Ortiz-Cuaran S, Leenders F, Eickhoff J, Koch U, Getlik M, Termathe M, Sallouh M, Greff Z, Varga Z, Balke-Want H, French CA, Peifer M, Reinhardt HC, Örfi L, Kéri G, Ansén S, Heukamp LC, Büttner R, Rauh D, Klebl BM, Thomas RK, Sos ML. Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma. Cell Rep 2018; 20:2833-2845. [PMID: 28930680 PMCID: PMC5622049 DOI: 10.1016/j.celrep.2017.08.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.
Collapse
Affiliation(s)
- Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Marcel A Dammert
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Felix Dietlein
- Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | - Axel Choidas
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Stefanie Böhm
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - André Richters
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Debjit Basu
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Verena Tischler
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Peter Habenberger
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Zhizhou Fang
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Sandra Ortiz-Cuaran
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Frauke Leenders
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Jan Eickhoff
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Uwe Koch
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Matthäus Getlik
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Martin Termathe
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Muhammad Sallouh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Zoltán Greff
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary
| | - Zoltán Varga
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary
| | - Hyatt Balke-Want
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Peifer
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - H Christian Reinhardt
- Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - László Örfi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. U.9, Budapest, Hungary
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary
| | - Sascha Ansén
- Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lukas C Heukamp
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Institute of Pathology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Bert M Klebl
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Institute of Pathology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
41
|
Göthert JR, Imsak R, Möllmann M, Kesper S, Göbel M, Dührsen U, Scholz A, Lücking U, Baumann M, Unger A, Schultz-Fademrecht C, Klebl B, Eickhoff J, Choidas A, Dürig J. Potent anti-leukemic activity of a specific cyclin-dependent kinase 9 inhibitor in mouse models of chronic lymphocytic leukemia. Oncotarget 2018; 9:26353-26369. [PMID: 29899864 PMCID: PMC5995184 DOI: 10.18632/oncotarget.25293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/07/2018] [Indexed: 12/23/2022] Open
Abstract
Onset of progression even during therapy with novel drugs remains an issue in chronic lymphocytic leukemia (CLL). Thus, there is ongoing demand for novel agents. Approaches targeting cyclin-dependent kinases (CDK) have reached the clinical trial stage. CDK9 mediating RNA transcriptional elongation is the evolving pivotal CLL CDK inhibitor target. However, more CDK9 selective compounds are desirable. Here, we describe the CDK9 inhibitor LDC526 displaying a low nanomolar biochemical activity against CDK9 and an at least 50-fold selectivity against other CDKs. After demonstrating in vitro MEC-1 cell line and primary human CLL cell cytotoxicity we evaluated the LDC526 in vivo effect on human CLL cells transplanted into NOD/scid/γcnull (NSG) mice. LDC526 administration (75 mg/kg) for 5 days resulted in a 77% reduction of human CLL cells in NSG spleens compared to carrier control treatment. Next, we longitudinally studied the LDC526 impact on circulating CLL cells in the TCL1 transgenic mouse model. LDC526 (50 mg/kg) administration for two days led to a 16-fold reduction of blood CLL cell numbers. Remarkably, residual CLL cells exhibited significantly increased intracellular BCL-2 levels. However, the LDC526 cytotoxic effect was not restricted to CLL cells as also declining numbers of normal B and T lymphocytes were observed in LDC526 treated TCL1 mice. Taken together, our in vivo data provide a strong rational for continued LDC526 development in CLL therapy and argue for the combination with BCL-2 inhibitors.
Collapse
Affiliation(s)
- Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Roze Imsak
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Michael Möllmann
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Maria Göbel
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Arne Scholz
- Bayer AG, Pharmaceuticals, Drug Discovery, Berlin, Germany
| | - Ulrich Lücking
- Bayer AG, Pharmaceuticals, Drug Discovery, Berlin, Germany
| | | | - Anke Unger
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Jan Dürig
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| |
Collapse
|
42
|
Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37:36. [PMID: 29471852 PMCID: PMC5824552 DOI: 10.1186/s13046-018-0704-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Current treatment for acute myeloid leukemia (AML) is less than optimal, but increased understanding of disease pathobiology and genomics has led to clinical investigation of novel targeted therapies and rational combinations. Targeting the cyclin-dependent kinase 9 (CDK9) pathway, which is dysregulated in AML, is an attractive approach. Inhibition of CDK9 leads to downregulation of cell survival genes regulated by super enhancers such as MCL-1, MYC, and cyclin D1. As CDK9 inhibitors are nonselective, predictive biomarkers that may help identify patients most likely to respond to CDK9 inhibitors are now being utilized, with the goal of improving efficacy and safety.
Collapse
Affiliation(s)
- Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
| | - Angela Damato
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS–Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
43
|
Perego P, Hempel G, Linder S, Bradshaw TD, Larsen AK, Peters GJ, Phillips RM. Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group. Cancer Chemother Pharmacol 2017; 81:427-441. [PMID: 29285635 DOI: 10.1007/s00280-017-3502-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023]
|
44
|
Ponder KG, Matulis SM, Hitosugi S, Gupta VA, Sharp C, Burrows F, Nooka AK, Kaufman JL, Lonial S, Boise LH. Dual inhibition of Mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma. Cancer Biol Ther 2017; 17:769-77. [PMID: 27246906 DOI: 10.1080/15384047.2016.1192086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Carfilzomib (Kyprolis®), a second generation proteasome inhibitor, is FDA approved for single-agent use among relapsed/refractory multiple myeloma (MM). To enhance the therapeutic efficacy of carfilzomib, we sought to combine carfilzomib with other novel agents. TG02, a multi-kinase inhibitor, targets JAK2 and CDK9. The rationale for co-treatment with carfilzomib and TG02 is that both independently target Mcl-1 and most myeloma cells are dependent on this anti-apoptotic protein for survival. We observed at least additive effects using the combination treatment in MM cell lines and patient samples. To determine how the bone marrow environment affects the efficacy of the combination we conducted co-culture experiments with Hs-5 stromal cells. We also examined the mechanism of increased apoptosis by determining the affect on expression of the Bcl-2 family of proteins. We found that carfilzomib increases NOXA mRNA expression, as expected, and TG02 treatment caused a decrease in Mcl-1 protein but not mRNA levels. Consistent with this possibility, we find silencing CDK9 does not change carfilzomib sensitivity in the same manner as addition of TG02. Since changes in Mcl-1 protein occur in the presence of a proteasome inhibitor we hypothesize that regulation of Mcl-1 translation is the most likely mechanism. Taken together our data suggest that dual inhibition of Mcl-1 via decreased expression and the induction of its antagonist NOXA by the combination of carfilzomib and TG02 is active in myeloma and warrants further testing preclinically and in clinical trials. Moreover, regulation of Mcl-1 by TG02 is more complex than initially appreciated.
Collapse
Affiliation(s)
- Katelyn G Ponder
- a Cancer Biology Graduate Program , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Shannon M Matulis
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Sadae Hitosugi
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Vikas A Gupta
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Cathy Sharp
- c Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | | | - Ajay K Nooka
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA.,c Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Jonathan L Kaufman
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA.,c Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Sagar Lonial
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA.,c Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Lawrence H Boise
- b Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA.,c Winship Cancer Institute of Emory University , Atlanta , GA , USA
| |
Collapse
|
45
|
Cyclin-dependent kinase 9 is required for the survival of adult Drosophila melanogaster glia. Sci Rep 2017; 7:6796. [PMID: 28754981 PMCID: PMC5533735 DOI: 10.1038/s41598-017-07179-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/23/2017] [Indexed: 11/09/2022] Open
Abstract
Neuronal and glial progenitor cells exist in the adult Drosophila brain. The primarily glial progenitor cells rely on a microRNA, mir-31a, to inhibit the expression of a predicted E3 ubiquitin ligase, CG16947. Erroneous inheritance of CG16947 by the progeny when the neural progenitor cell divides leads to death of the progeny, however how CG16947 achieves glial cell death is unknown. I have identified the interacting partner of CG16947 to be cdk9. I show that reduction of cdk9 expression in glia causes glial loss; highlighting the importance of cdk9 in mediating the survival of glia. Further, glial loss observed in mir-31a mutants was prevented with adult-specific expression of cdk9 in glia. I provide biochemical evidence that the binding of CG16947 to cdk9 causes its degradation. Taken together, this data shows that cdk9 plays a role in the survival of adult glia in the Drosophila brain. Thus, a fine balance exists between mir-31a and CG16947 expression in the progenitor cells that in turn regulates the levels of cdk9 in the progeny. This serves to allow the progenitor cells to regulate the number of glia in the adult brain.
Collapse
|
46
|
Abstract
Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies.
Collapse
Affiliation(s)
- Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Aurélie Mallinger
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A Clarke
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| |
Collapse
|
47
|
Abstract
Ovarian cancer is the most common gynecological malignancy in the United States, and prognosis is generally poor because the disease is often diagnosed at an advanced stage. Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases whose activity is regulated by CDK inhibitors (CKIs) and cyclins. Generally, cyclins and CKIs promote and inhibit CDK activation, respectively. Since cancer commonly involves dysregulation of cell cycle, cyclins and CDKs have been targeted in a variety of tumors using small molecules, peptides, immunotherapy, and CKIs. In this review we discuss the significance of cell cycle dysregulation in ovarian cancer as well as recent advances targeting CDKs in ovarian cancer and potential future directions. Although many of the studies assessing CDK-targeting therapies in ovarian cancer are at an early preclinical stage, there is significant evidence that targeting CDKs, particularly in combination with traditional platinum-based drugs, could have significant efficacy in ovarian cancer. Nevertheless, before these agents can be investigated in humans, additional preclinical development is needed, including using in vivo tumor models and additional studies into their mechanism of action.
Collapse
Affiliation(s)
- Qi Zhou
- a Department of Obstetrics and Gynecology , The Affiliate Hospital of Guizhou Medical University , Guizhou , China
| |
Collapse
|
48
|
Tadesse S, Yu M, Mekonnen LB, Lam F, Islam S, Tomusange K, Rahaman MH, Noll B, Basnet SKC, Teo T, Albrecht H, Milne R, Wang S. Highly Potent, Selective, and Orally Bioavailable 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine Cyclin-Dependent Kinases 4 and 6 Inhibitors as Anticancer Drug Candidates: Design, Synthesis, and Evaluation. J Med Chem 2017; 60:1892-1915. [PMID: 28156111 DOI: 10.1021/acs.jmedchem.6b01670] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin D dependent kinases (CDK4 and CDK6) regulate entry into S phase of the cell cycle and are validated targets for anticancer drug discovery. Herein we detail the discovery of a novel series of 4-thiazol-N-(pyridin-2-yl)pyrimidin-2-amine derivatives as highly potent and selective inhibitors of CDK4 and CDK6. Medicinal chemistry optimization resulted in 83, an orally bioavailable inhibitor molecule with remarkable selectivity. Repeated oral administration of 83 caused marked inhibition of tumor growth in MV4-11 acute myeloid leukemia mouse xenografts without having a negative effect on body weight and showing any sign of clinical toxicity. The data merit 83 as a clinical development candidate.
Collapse
Affiliation(s)
- Solomon Tadesse
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Frankie Lam
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Khamis Tomusange
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Muhammed H Rahaman
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Theodosia Teo
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Robert Milne
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Center for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, and Center for Cancer Biology, University of South Australia , Adelaide, South Australia 5001, Australia
| |
Collapse
|
49
|
Abstract
CDK9 is a protein in constant development in cancer therapy. Herein we present an overview of the enzyme as a target for cancer therapy. We provide data on its characteristics and mechanism of action. In recent years, CDK9 inhibitors that have been designed with molecular modeling have demonstrated good antitumoral activity in vitro. Clinical studies of the drugs flavopiridol, dinaciclib, seliciclib, SNS-032 and RGB-286638 used as CDK9 inhibitors are also reviewed, with their additional targets and their relative IC50 values. Unfortunately, treatment with these drugs remains unsuccessful and involves many adverse effects. We could conclude that there are many small molecules that bind to CDK9, but their lack of selectivity against other CDKs do not allow them to get to the clinical use. However, drug designers currently have the tools needed to improve the selectivity of CDK9 inhibitors and to make successful treatment available to patients.
Collapse
Affiliation(s)
- Fatima Morales
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| | - Antonio Giordano
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA.,b Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|
50
|
Rahaman MH, Kumarasiri M, Mekonnen LB, Yu M, Diab S, Albrecht H, Milne RW, Wang S. Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocr Relat Cancer 2016; 23:T211-T226. [PMID: 27582311 DOI: 10.1530/erc-16-0299] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer (PCa) development and progression. In castrate-resistant PCa, traditional therapies that only target androgen receptor (AR) have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease. This review focuses on biological functions of CDK9, its involvement with AR and the potential for therapeutic opportunities in PCa treatment.
Collapse
Affiliation(s)
| | | | - Laychiluh B Mekonnen
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Diab
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert W Milne
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Shudong Wang
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|