1
|
Gao N, Gao X, Du M, Xiang Y, Zuo H, Huang R, Wan W, Hu K. Lutein protects senescent ciliary muscle against oxidative stress through the Keap1/Nrf2/ARE pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155982. [PMID: 39244941 DOI: 10.1016/j.phymed.2024.155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Aging-induced decline in ciliary muscle function is an important factor in visual accommodative deficits in elderly adults. With this study, we provide an innovative investigation of the interaction between ciliary muscle aging and oxidative stress. METHODS Tricolor guinea pigs were used for the experiments in vivo and primary guinea pig ciliary smooth muscle cells were used for the experiments in vitro. RESULTS We enriched for genes associated with muscle-aging-lutein relationship using bioinformatics, including Nuclear factor-erythroid 2-related factor-2 (Nrf2), Glutathione Peroxidase (GPx) gene family, Superoxide Dismutase (SOD) gene family, NAD(P)H: Quinone Oxidoreductase 1 (NQO1) and Heme Oxygenase-1 (HO-1). After gavage to aged guinea pigs, lutein reduced Reactive Oxygen Species (ROS) and P21 levels in senescent ciliary muscle; lutein decreased refractive error and restored accommodation of the eye. In addition, lutein increased GPx, SOD, and Catalase (CAT) levels in serum; lutein increased GPx and CAT levels in ciliary bodies. Lutein regulated the expression of proteins such as Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and downstream proteins in senescent ciliary bodies. Similarly, guinea pig ciliary muscle cell senescence was associated with oxidative stress. In vitro, 100 μM lutein reversed the damage caused by 800 μM H2O2; it reduced Senescence-Associated β-galactosidase (SA-β-Gal) and ROS activites, cell apoptosis and cell migration. Also, lutein increased the expression of smooth muscle contractile proteins. Lutein also increased the expression of Nrf2, GPx2, NQO1 and HO-1, decreased the expression of Keap1. A reduction in Nrf2 activity led to a reduction in the ability of lutein to activate antioxidant enzymes in the cells, thus reducing its inhibitory effect on cell senescence. CONCLUSION lutein improved resistance to oxidative stress in senescent ciliary muscle in vivo and in vitro by regulating the Keap1/Nrf2/Antioxidant Response Element pathway. We have innovatively demonstrated the molecular pharmacological mechanism by which lutein reverse age-related ciliary muscle systolic and diastolic deficits.
Collapse
Affiliation(s)
- Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Rongxi Huang
- Chongqing General Hospital, Endocrinology, Chongqing 400013, PR China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Si L, Lai Y. Pharmacological mechanisms by which baicalin ameliorates cardiovascular disease. Front Pharmacol 2024; 15:1415971. [PMID: 39185317 PMCID: PMC11341428 DOI: 10.3389/fphar.2024.1415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Baicalin is a flavonoid glycoside obtained from the dried root of Scutellaria baicalensis Georgi, which belongs to the Labiatae family. Accumulating evidence indicates that baicalin has favorable therapeutic effects on cardiovascular diseases. Previous studies have revealed the therapeutic effects of baicalin on atherosclerosis, myocardial ischemia/reperfusion injury, hypertension, and heart failure through anti-inflammatory, antioxidant, and lipid metabolism mechanisms. In recent years, some new ideas related to baicalin in ferroptosis, coagulation and fibrinolytic systems have been proposed, and new progress has been made in understanding the mechanism by which baicalin protects cardiomyocytes. However, many relevant underlying mechanisms remain unexplained, and much experimental data is lacking. Therefore, further research is needed to determine these mechanisms. In this review, we summarize the mechanisms of baicalin, which include its anti-inflammatory and antioxidant effects; inhibition of endothelial cell apoptosis; modulation of innate immunity; suppression of vascular smooth muscle cells proliferation, migration, and contraction; regulation of coagulation and fibrinolytic systems; inhibition of myocardial hypertrophy; prevention of myocardial fibrosis; and anti-apoptotic effects on cardiomyocytes.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Xiong J, Ling J, Yan J, Duan Y, Yu J, Li W, Yu W, Gao J, Xie D, Liu Z, Deng Y, Liao Y. LILRB4 knockdown inhibits aortic dissection development by regulating pyroptosis and the JAK2/STAT3 signaling pathway. Sci Rep 2024; 14:15564. [PMID: 38971897 PMCID: PMC11227527 DOI: 10.1038/s41598-024-66482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianxian Xiong
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jiayuan Ling
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jie Yan
- Department of Thoracic Surgery, Nankang District First People's Hospital, Ganzhou City, 341400, Jiangxi Province, China
| | - Yanyu Duan
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Junjian Yu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Wentong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Wenbo Yu
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jianfeng Gao
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Dilin Xie
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Ziyou Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, Taiyuan, 030024, China.
| | - Yongling Liao
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
4
|
Kugo H, Moriyama T, Zaima N. Nicotine induces vasa vasorum stenosis in the aortic wall. Biotech Histochem 2024; 99:197-203. [PMID: 38780082 DOI: 10.1080/10520295.2024.2352724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease that involves aortic wall dilation. Cigarette smoking is an established risk factor and rupture, and nicotine may be a major contributor to the onset of AAA. In humans the condition is associated with stenosis of the vasa vasorum (VV), which may be caused by nicotine. In this study, we evaluated the effects of nicotine on VV pathology. After 4 weeks of nicotine administration to rats using an osmotic pump, the VV patency rate in the nicotine administration group was significantly lower than that in the control group. The levels of Ki-67, a cell proliferation marker, were significantly increased in the regions containing VV in the nicotine group, as were hypoxia inducible factor-α levels. Collagen levels around VV were significantly lower in the nicotine group than in the controls. Our data suggest that nicotine can cause VV stenosis by inducing abnormal proliferation of smooth muscle cells in the VV. The increased risk of AAA development due to cigarette smoking may be partially explained by nicotine-induced VV denaturation and collagen fiber degradation.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| |
Collapse
|
5
|
Scotti MM, Wilson BK, Bubenik JL, Yu F, Swanson MS, Allen JB. Spaceflight effects on human vascular smooth muscle cell phenotype and function. NPJ Microgravity 2024; 10:41. [PMID: 38548798 PMCID: PMC10979029 DOI: 10.1038/s41526-024-00380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
The cardiovascular system is strongly impacted by the hazards of spaceflight. Astronauts spending steadily increasing lengths of time in microgravity are subject to cardiovascular deconditioning resulting in loss of vascular tone, reduced total blood volume, and diminished cardiac output. Appreciating the mechanisms by which the cells of the vasculature are altered during spaceflight will be integral to understanding and combating these deleterious effects as the human presence in space advances. In this study, we performed RNA-Seq analysis coupled with review by QIAGEN Ingenuity Pathway Analysis software on human aortic smooth muscle cells (HASMCs) cultured for 3 days in microgravity and aboard the International Space Station to assess the transcriptomic changes that occur during spaceflight. The results of our RNA-Seq analysis show that SMCs undergo a wide range of transcriptional alteration while in space, significantly affecting 4422 genes. SMCs largely down-regulate markers of the contractile, synthetic, and osteogenic phenotypes including smooth muscle alpha actin (αSMA), matrix metalloproteinases (MMPs), and bone morphogenic proteins (BMPs). Additionally, components of several cellular signaling pathways were strongly impacted including the STAT3, NFκB, PI3K/AKT, HIF1α, and Endothelin pathways. This study highlights the significant changes in transcriptional behavior SMCs exhibit during spaceflight and puts these changes in context to better understand vascular function in space.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Brandon K Wilson
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Huang B, Chen N, Chen Z, Shen J, Zhang H, Wang C, Sun Y. HIF-1α Contributes to Hypoxia-induced VSMC Proliferation and Migration by Regulating Autophagy in Type A Aortic Dissection. Adv Biol (Weinh) 2024; 8:e2300292. [PMID: 37786269 DOI: 10.1002/adbi.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Type A aortic dissection (AD) is a catastrophic cardiovascular disease. Hypoxia-inducible factor-1α (HIF-1α) and autophagy are reported to be upregulated in the AD specimens. However, the interaction between HIF-1α and autophagy in the pathogenesis of AD remains to be explored. HIF-1α and LC3 levels are evaluated in 10 AD and 10 normal aortic specimens. MDC staining, autophagic vacuoles, and autophagic flux are detected in human aortic smooth muscle cells (HASMCs) under hypoxia treatment. CCK-8, transwell, and wound healing assay are used to identify proliferation and migration under hypoxia treatment. Furthermore, 3-MA is used to inhibit autophagy in hypoxia-treated HASMCs. This study reveals that AD tissues highly express HIF-1α and the LC3. Autophagy is induced under hypoxia in a time-dependent manner, and autophagy is positively related to HIF-1α in HASMCs. Moreover, the proliferation and migration of HASMCs are enhanced by hypoxia, whereas the knockdown of HIF-1α attenuates this effect. Additionally, inhibiting autophagy with 3-MA ameliorates hypoxia-induced proliferation and migration of HASMCs. In summary, the above results indicate that HIF-1α facilitates HASMC proliferation and migration by upregulating autophagy in a hypoxic microenvironment. Thus, inhibition of autophagy may be a novel therapeutic target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Nan Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Hao Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| |
Collapse
|
7
|
Kugo H, Sugiura Y, Fujishima R, Jo S, Mishima H, Sugamoto E, Tanaka H, Yamaguchi S, Ikeda Y, Hirano KI, Moriyama T, Zaima N. Tricaprin can prevent the development of AAA by attenuating aortic degeneration. Biomed Pharmacother 2023; 160:114299. [PMID: 36724640 DOI: 10.1016/j.biopha.2023.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Medical therapeutic options to prevent rupture of abdominal aortic aneurysm (AAA), a critical event, must be developed. Moreover, further understanding of the process of AAA development and rupture is crucial. Previous studies have revealed that aortic hypoperfusion can induce the development of AAA, and we successfully developed a hypoperfusion-induced AAA animal model. In this study, we examined the effects of medium-chain triglycerides (MCTs), tricaprylin (C8-TG) and tricaprin (C10-TG), on hypoperfusion-induced AAA rat model. We estimated the effects of MCTs on aortic pathologies, mechanical properties of the aorta, and development of AAA. C10-TG, but not C8-TG, significantly suppressed AAA development and completely prevented the rupture. We observed that C10-TG prevented the development and rupture of AAA, but not C8-TG. Additionally, regression of AAA diameter was observed in the C10-TG group. Pathological analysis revealed C10-TG improved the hypoperfusion-induced increase in hypoxia-inducible factor-1α levels, medial smooth muscle cells (SMCs) loss, degeneration of aortic elastin and collagen fibers, and loss of aortic wall elasticity. In addition, regression of the formed AAA was observed by administration of C10-TG after AAA formation. C10-TG administration after AAA formation improved degeneration of AAA wall including degradation of aortic elastin and collagen fibers, stenosis of vasa vasorum, and loss of medial SMCs. These data suggest C10-TG can prevent AAA by attenuating aortic hypoperfusion and degeneration. Considering the clinical safety of C10-TG, C10-TG can be a promising AAA drug candidate.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Rena Fujishima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Shintou Jo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Hirotaka Mishima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Erina Sugamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Hiroki Tanaka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Yamaguchi
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiko Ikeda
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Ken-Ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan.
| |
Collapse
|
8
|
Bergman D, Jackson TL. Phenotype switching in a global method for agent-based models of biological tissue. PLoS One 2023; 18:e0281672. [PMID: 36780481 PMCID: PMC9925070 DOI: 10.1371/journal.pone.0281672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Agent-based models (ABMs) are an increasingly important tool for understanding the complexities presented by phenotypic and spatial heterogeneity in biological tissue. The resolution a modeler can achieve in these regards is unrivaled by other approaches. However, this comes at a steep computational cost limiting either the scale of such models or the ability to explore, parameterize, analyze, and apply them. When the models involve molecular-level dynamics, especially cell-specific dynamics, the limitations are compounded. We have developed a global method for solving these computationally expensive dynamics significantly decreases the computational time without altering the behavior of the system. Here, we extend this method to the case where cells can switch phenotypes in response to signals in the microenvironment. We find that the global method in this context preserves the temporal population dynamics and the spatial arrangements of the cells while requiring markedly less simulation time. We thus add a tool for efficiently simulating ABMs that captures key facets of the molecular and cellular dynamics in heterogeneous tissue.
Collapse
Affiliation(s)
- Daniel Bergman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
9
|
Reoxygenation Modulates the Adverse Effects of Hypoxia on Wound Repair. Int J Mol Sci 2022; 23:ijms232415832. [PMID: 36555485 PMCID: PMC9781139 DOI: 10.3390/ijms232415832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a major stressor and a prominent feature of pathological conditions, such as bacterial infections, inflammation, wounds, and cardiovascular defects. In this study, we investigated whether reoxygenation has a protective effect against hypoxia-induced acute injury and burn using the C57BL/6 mouse model. C57BL/6 mice were exposed to hypoxia and treated with both acute and burn injuries and were in hypoxia until wound healing. Next, C57BL/6 mice were exposed to hypoxia for three days and then transferred to normoxic conditions for reoxygenation until wound healing. Finally, skin wound tissue was collected to analyze healing-related markers, such as inflammation, vascularization, and collagen. Hypoxia significantly increased inflammatory cell infiltration and decreased vascular and collagen production, and reoxygenation notably attenuated hypoxia-induced infiltration of inflammatory cells, upregulation of pro-inflammatory cytokine levels (IL-6 and TNF-α) in the wound, and remission of inflammation in the wound. Immunofluorescence analysis showed that reoxygenation increased the expression of the angiogenic factor α-SMA and decreased ROS expression in burn tissues compared to hypoxia-treated animals. Moreover, further analysis by qPCR showed that reoxygenation could alleviate the expression of hypoxic-induced inflammatory markers (IL-6 and TNF), increase angiogenesis (SMA) and collagen synthesis (Col I), and thus promote wound healing. It is suggested that oxygen can be further evaluated in combination with oxygen-releasing materials as a supplementary therapy for patients with chronic hypoxic wounds.
Collapse
|
10
|
Wang X, Xu X, Zhu Q, Han Y, Zhang W. Hypoxia-induced miR-182-5p regulates vascular smooth muscle cell phenotypic switch by targeting RGS5. Cell Biol Int 2022; 46:1864-1875. [PMID: 35946384 DOI: 10.1002/cbin.11883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
In response to vascular injury or alterations in the local environment, such as hypoxia and hypertension, contractile vascular smooth muscle cells (VSMCs) are able to switch to a synthetic phenotype characterized by increased extracellular matrix synthesis with decreased expression of contractile markers. miR-182-5p has recently been reported to play a regulatory role in VSMCs proliferation. However, little is known about its target genes and related pathways in VSMCs phenotypic switch. Here, we investigated the function of miR-182-5p in VSMCs phenotypic switch. The results showed that upregulation of miR-182-5p promoted the switching of VSMCs from a contractile to a synthetic phenotype under hypoxic conditions. Mechanistically, hypoxia elevated miR-182-5p, leading to a reduction in expression of contractile markers and weakened RhoA signaling. Using bioinformatics analysis, dual-luciferase reporter assays and rescue assays, we demonstrated that miR-182-5p suppressed RhoA signaling by targeting RGS5. Collectively, the results from the present study indicated that miR-182-5p/RGS5/RhoA axis regulated hypoxia-induced VSMCs phenotypic switch.
Collapse
Affiliation(s)
- Xiaozhou Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China.,Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Xiaolong Xu
- Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China.,Department of Endocrinology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ying Han
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
11
|
Xiang Y, Duan Y, Peng Z, Huang H, Ding W, Chen E, Liu Z, Dou C, Li J, Ou J, Wan Q, Yang B, He Z. Microparticles from Hyperphosphatemia-Stimulated Endothelial Cells Promote Vascular Calcification Through Astrocyte-Elevated Gene-1. Calcif Tissue Int 2022; 111:73-86. [PMID: 35195734 DOI: 10.1007/s00223-022-00960-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
Endothelial microparticles (EMPs) can be released in chronic kidney disease (CKD). Plasma concentration of high inorganic phosphate (HP) is considered as a decisive determinant of vascular calcification in CKD. We therefore explored the role of HP-induced EMPs (HP-EMPs) in the vascular calcification and its potential mechanism. We observed the shape of HP-EMPs captured by vascular smooth muscle cells (VSMCs) dynamically changed from rare dots, rosettes, to semicircle or circle. Our results demonstrated that HP-EMPs could directly promote VSMC calcification, or accelerate HP-induced calcification through signal transducers and activators of transcription 3 (STAT3)/bone morphogenetic protein-2 (BMP2) signaling pathway. AEG-1 activity was increased through HP-EMPs-induced VSMC calcification, in arteries from uremic rats, or from uremic rats treated with HP-EMPs. AEG-1 deficiency blocked, whereas AEG-1 overexpression exacerbated, the calcium deposition of VSMCs. AEG-1, a target of miR-153-3p, could be suppressed by agomiR-153-3p. Notably, VSMC-specific enhance of miR-153-3p by tail vein injection of aptamer-agomiR-153-3p decreased calcium deposition in both uremia rats treated with HP-EMPs or not. HP-EMPs could directly induce VSMCs calcification and accelerate Pi-induced calcification, and AEG-1 may act as crucial regulator of HP-EMPs-induced vascular calcification. This study sheds light on the therapeutic agents that influence HP-EMPs production or AEG-1 activity, which may be of benefit to treat vascular calcification.
Collapse
Affiliation(s)
- Yazhou Xiang
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhong Peng
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong Huang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Ding
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - En Chen
- Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zilong Liu
- Department of Stomatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengyun Dou
- Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jianlong Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jihong Ou
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Qingsong Wan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Bo Yang
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
12
|
Zhang RM, Tiedemann K, Muthu ML, Dinesh NEH, Komarova S, Ramkhelawon B, Reinhardt DP. Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation. Cell Mol Life Sci 2022; 79:314. [PMID: 35606547 PMCID: PMC11072253 DOI: 10.1007/s00018-022-04337-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Thoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1mgR/mgR) revealed a spectrum of differentially regulated miRNAs. Bioinformatic analyses predicted the involvement of these miRNAs in inflammatory and extracellular matrix-related pathways. We demonstrate that upregulation of pro-inflammatory cytokines and matrix metalloproteinases is a common characteristic of mouse and human TAA tissues. miR-122, the most downregulated miRNA in the aortae of 10-week-old Fbn1mgR/mgR mice, post-transcriptionally upregulated CCL2, IL-1β and MMP12. Similar data were obtained at 70 weeks of age using Fbn1C1041G/+ mice. Deficient fibrillin-1-smooth muscle cell interaction suppressed miR-122 levels. The marker for tissue hypoxia HIF-1α was upregulated in the aortic wall of Fbn1mgR/mgR mice, and miR-122 was reduced under hypoxic conditions in cell and organ cultures. Reduced miR-122 was partially rescued by HIF-1α inhibitors, digoxin and 2-methoxyestradiol in aortic smooth muscle cells. Digoxin-treated Fbn1mgR/mgR mice demonstrated elevated miR-122 and suppressed CCL2 and MMP12 levels in the ascending aortae, with reduced elastin fragmentation and aortic dilation. In summary, this study demonstrates that miR-122 in the aortic wall inhibits inflammatory responses and matrix remodeling, which is suppressed by deficient fibrillin-1-cell interaction and hypoxia in TAA.
Collapse
Affiliation(s)
- Rong-Mo Zhang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Svetlana Komarova
- Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Bhama Ramkhelawon
- Department of Surgery, New York University School of Medicine, New York, USA
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
13
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
15
|
Zhang K, Qi Y, Wang M, Chen Q. Long non-coding RNA HIF1A-AS2 modulates the proliferation, migration, and phenotypic switch of aortic smooth muscle cells in aortic dissection via sponging microRNA-33b. Bioengineered 2022; 13:6383-6395. [PMID: 35212609 PMCID: PMC8974049 DOI: 10.1080/21655979.2022.2041868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aortic dissection (AD), also known as aortic dissecting aneurysm, is one of the most common and dangerous cardiovascular diseases with high morbidity and mortality. This study was aimed to investigate the functional role of long non-coding RNA Hypoxia-inducible factor 1 alpha-antisense RNA 2 (lncRNA HIF1A-AS2) in AD. An in vitro model of AD was established by platelet-derived growth factor-BB (PDGF-BB)-mediated human aortic Smooth Muscle Cells (SMCs). HIF1A-AS2 expression in human AD tissues was determined by quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) assays, followed by investigation of biological roles of HIF1A-AS2 in AD development by Cell Counting Kit-8 (CCK-8), immunofluorescence, and transwell assays. Additionally, the correlation between HIF1A-AS2, miR-33b, and high mobility group AT-hook2 (HMGA2) were identified by RNA immunoprecipitation (RIP), RNA pull-down and luciferase reporter assays. Results showed that HIF1A-AS2 was obviously increased, while the contractile-phenotype markers of vascular SMCs were significantly decreased in human AD tissues, when compared to normal tissues. Inhibition of HIF1A-AS2 attenuated SMCs proliferation and migration, whereas enhanced the phenotypic switch under the stimulation of PDGF-BB. Results from RIP, RNA pull-down and luciferase reporter assays demonstrated that miR-33b directly bound with HIF1A-AS2, and HIF1A-AS2 silencing suppressed the expression of HMGA2, which was induced by miR-33b inhibitor. In conclusion, knockdown of HIF1A-AS2 suppressed the proliferation and migration, while promoted the phenotypic switching of SMCs through miR-33b/HMGA2 axis, which laid a theoretical foundation for understanding the development of AD and shed light on a potential target for AD treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China.,Department of Cardiac ICU, Tianjin Chest HospitalTianjin, China , Tianjin China
| | - Yujuan Qi
- Department of Cardiac ICU, Tianjin Chest Hospital, Tianjin, China
| | - Meng Wang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qingliang Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China.,Department of Cardiac ICU, Tianjin Chest HospitalTianjin, China , Tianjin China
| |
Collapse
|
16
|
Liang Z, Liang Q, Zhang W, Zheng L, Shen X, Zhang Y. Promotional effects of HIF1α and KDM3A interaction on vascular smooth muscle cells in thoracic aortic dissection. Epigenomics 2022; 14:227-241. [PMID: 35172598 DOI: 10.2217/epi-2021-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The current study was performed to define the role of KDM3A in thoracic aortic dissection (TAD). Methods: The binding of HIF1α and KDM3A in HES1 was detected by ChIP and dual-luciferase reporter gene assay. Loss and gain-of function assays of HIF1α, KDM3A and HES1 were further performed in Ang-II-induced mouse aortic smooth muscle cell line (MOVAS) cells. Lastly, in vivo TAD models were established. Results: HIF1α was highly expressed in TAD. KDM3A promoted the transcription activation of HES1. HIF1α enhanced the proliferation and migration of Ang-II-induced MOVAS cells, in addition to increasing thoracic aorta dilation to induce TAD formation in vivo. Silencing of HES1 reversed the effects of HIF1α in vivo and in vitro. Conclusion: The findings indicated that interaction between HIF1α and KDM3A enhances the proliferation and migration of MOVAS cells to induce TAD.
Collapse
Affiliation(s)
- Zheyong Liang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qi Liang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Road, Xi'an, 710004, Shaanxi, China
| | - Lei Zheng
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Xuji Shen
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.,Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
17
|
Grossmannova K, Barathova M, Belvoncikova P, Lauko V, Csaderova L, Tomka J, Dulka T, Pastorek J, Madaric J. Hypoxia Marker Carbonic Anhydrase IX Is Present in Abdominal Aortic Aneurysm Tissue and Plasma. Int J Mol Sci 2022; 23:ijms23020879. [PMID: 35055064 PMCID: PMC8778372 DOI: 10.3390/ijms23020879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of premature deaths worldwide. Since there is no specific treatment for reducing AAA progression, it is crucial to understand the pathogenesis leading to aneurysm wall weakening/remodeling and identify new proteins involved in this process which could subsequently serve as novel therapeutic targets. In this study, we analyzed the presence of the hypoxia-related proteins carbonic anhydrase IX (CA IX), hypoxia-inducible factor 1α (HIF-1α), and AKT as the key molecule in the phosphoinositide-3-kinase pathway in the AAA wall. Additionally, we used a blood-based assay to examine soluble CA IX (s-CA IX) levels in the plasma of AAA patients. Using western blotting, we detected CA IX protein in 12 out of 15 AAA tissue samples. Immunohistochemistry staining proved CA IX expression in the media of the aneurysmal wall. Evaluation of phosphorylated (p-AKT) and total AKT showed elevated levels of both forms in AAA compared to normal aorta. Using ELISA, we determined the concentration of s-CA IX >20 pg/mL in 13 out of 15 AAA patients. Results obtained from in silico analysis of CA9 and aneurysm-associated genes suggest a role for CA IX in aneurysmal wall remodeling. Our results prove the presence of hypoxia-related CA IX in AAA tissues and indicate a possible role of CA IX in hypoxia-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Katarina Grossmannova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Monika Barathova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
- Correspondence: ; Tel.: +421-2-59302439
| | - Petra Belvoncikova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Viliam Lauko
- Department of Laboratory Medicine, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| | - Lucia Csaderova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Jan Tomka
- Department of Vascular Surgery, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia; (J.T.); (T.D.)
| | - Tomas Dulka
- Department of Vascular Surgery, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia; (J.T.); (T.D.)
| | | | - Juraj Madaric
- Department of Angiology, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| |
Collapse
|
18
|
Sun XJ, Liu NF. Diabetic mellitus, vascular calcification and hypoxia: A complex and neglected tripartite relationship. Cell Signal 2021; 91:110219. [PMID: 34921978 DOI: 10.1016/j.cellsig.2021.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 11/15/2022]
Abstract
DM (diabetic mellitus) and its common vascular complications VC (vascular calcification), are increasingly harmful to human health. In recent years, the research on the relationship between DM and VC is also deepening. Hypoxia, as one of the pathogenic factors of many disease models, is also closely related to the occurrence of DM and VC. There are some studies on the role of hypoxia in the pathogenesis of DM and VC respectively, but no one has made an in-depth summary of the systematic connection between hypoxia, DM and VC. Therefore, what we want to review in this article are the relationship between DM, VC and hypoxia, respectively, as well as the role of hypoxia in the development of DM and VC, which has little concern but is a novel and potentially target that may provide some new ideas for the prevention and treatment of DM, VC, especially diabetic VC.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China.
| |
Collapse
|
19
|
Martin‐Blazquez A, Heredero A, Aldamiz‐Echevarria G, Martin‐Lorenzo M, Alvarez‐Llamas G. Non-syndromic thoracic aortic aneurysm: cellular and molecular insights. J Pathol 2021; 254:229-238. [PMID: 33885146 PMCID: PMC8251829 DOI: 10.1002/path.5683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm (TAA) develops silently and asymptomatically and is a major cause of mortality. TAA prevalence is greatly underestimated, it is usually diagnosed incidentally, and its treatment consists mainly of prophylactic surgery based on the aortic diameter. The lack of effective drugs and biological markers to identify and stratify TAAs by risk before visible symptoms results from scant knowledge of its pathophysiological mechanisms. Here we integrate the structural impairment affecting non-syndromic non-familial TAA with the main cellular and molecular changes described so far and consider how these changes are interconnected through specific pathways. The ultimate goal is to define much-needed novel markers of TAA, and so the potential of previously identified molecules to aid in early diagnosis/prognosis is also discussed. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Angeles Heredero
- Department of Cardiac SurgeryFundación Jiménez Díaz, UAMMadridSpain
| | | | | | - Gloria Alvarez‐Llamas
- Department of ImmunologyIIS‐Fundación Jiménez Díaz, UAMMadridSpain
- REDInRENMadridSpain
| |
Collapse
|
20
|
Li S, Wang F, Sun D. The renal microcirculation in chronic kidney disease: novel diagnostic methods and therapeutic perspectives. Cell Biosci 2021; 11:90. [PMID: 34001267 PMCID: PMC8130426 DOI: 10.1186/s13578-021-00606-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide and is characterized by fibrotic processes. Understanding the cellular and molecular mechanisms underpinning renal fibrosis is critical to the development of new therapeutics. Microvascular injury is considered an important contributor to renal progressive diseases. Vascular endothelium plays a significant role in responding to physical and chemical signals by generating factors that help maintain normal vascular tone, inhibit leukocyte adhesion and platelet aggregation, and suppress smooth muscle cell proliferation. Loss of the rich capillary network results in endothelial dysfunction, hypoxia, and inflammatory and oxidative effects and further leads to the imbalance of pro- and antiangiogenic factors, endothelial cell apoptosis and endothelial-mesenchymal transition. New techniques, including both invasive and noninvasive techniques, offer multiple methods to observe and monitor renal microcirculation and guide targeted therapeutic strategies. A better understanding of the role of endothelium in CKD will help in the development of effective interventions for renal microcirculation improvement. This review focuses on the role of microvascular injury in CKD, the methods to detect microvessels and the novel treatments to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Fei Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
21
|
MiR-4787-5p regulates vascular smooth muscle cell apoptosis by targeting PKD1 and inhibiting the PI3K/Akt/FKHR pathway. J Cardiovasc Pharmacol 2021; 78:288-296. [PMID: 33958547 DOI: 10.1097/fjc.0000000000001051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
ABSTRACT Vascular smooth muscle cell (VSMC) dysfunction is the main cause of aortic dissection (AD). In this study, we focused on the role and mechanism of miR-4787-5p in regulating VSMC apoptosis. RT-qPCR was used to detect the expression of miR-4787-5p in aorta tissues of AD (n=10) and normal aortic tissues of donors (n=10). Cell apoptosis was tested by TUNEL assay and Annexin V FITC/PI staining flow cytometry. The expression of PC1 and the PI3K/Akt/FKHR signaling pathway associated proteins in VSMCs was measured by Western blot. We found that the miR-4787-5p was highly expressed in aorta tissues of AD compared with 10 healthy volunteers. Meanwhile, PI3K/Akt/FKHR signaling pathway was inactive in the aortic tissue of AD. The overexpression of miR-4787-5p significantly induced VSMC apoptosis, and miR-4787-5p knockdown showed the opposite results. In addition, polycystic kidney disease 1 gene (PKD1), which encodes polycystin-1(PC1), was found to be a direct target of miR-4787-5p in the VSMCs and this was validated using a luciferase reporter assay. Overexpression of PC1 by LV-PC1 plasmids markedly eliminated the promotion of miR-4787-5p overexpression on VSMC apoptosis. Finally, it was found that miR-4787-5p deactivated the PI3K/Akt/FKHR pathway, as demonstrated by the down-regulation of phosphorylated (p-)PI3K, p-Akt, and p-FKHR. In conclusion, these findings confirm an important role for the miR-4787-5p/PKD1 axis in AD pathobiology.
Collapse
|
22
|
Xiao X, Liu YZ, Cheng ZB, Sun JX, Shao YD, Qu SL, Huang L, Zhang C. Adipokines in vascular calcification. Clin Chim Acta 2021; 516:15-26. [PMID: 33476587 DOI: 10.1016/j.cca.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Adipose tissue (AT), a critical endocrine gland, is capable of producing and secreting abundant adipokines. Adipokines act on distant or adjacent organ tissues via paracrine, autocrine, and endocrine mechanism, which play attractive roles in the regulation of glycolipid metabolism and inflammatory response. Increasing evidence shows that adipokines can connect obesity with cardiovascular diseases by serving as promoters or inhibitors in vascular calcification. The chronic hypoxia in AT, caused by the adipocyte hypertrophy, is able to trigger imbalanced adipokine generation, which leads to apoptosis, osteogenic differentiation of vascular smooth muscle cells (VSMCs), vascular inflammation, and abnormal deposition of calcium and phosphorus in the vessel wall. The objectives of this review aim at providing a brief summary of the crucial influence of major adipokines on the formation and development of vascular calcification, which may contribute to better understanding these adipokines for establishing the appropriate therapeutic strategies to counteract obesity-associated vascular calcification.
Collapse
Affiliation(s)
- Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jia-Xiang Sun
- Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
23
|
Chen J, Dai S, Liu L, Maitz MF, Liao Y, Cui J, Zhao A, Yang P, Huang N, Wang Y. Photo-functionalized TiO 2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioact Mater 2021; 6:45-54. [PMID: 32817912 PMCID: PMC7417617 DOI: 10.1016/j.bioactmat.2020.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Titanium dioxide (TiO2) has a long history of application in blood contact materials, but it often suffers from insufficient anticoagulant properties. Recently, we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties. However, for long-term vascular implant devices such as vascular stents, besides anticoagulation, also anti-inflammatory, anti-hyperplastic properties, and the ability to support endothelial repair, are desired. To meet these requirements, here, we immobilized silver nanoparticles (AgNPs) on the surface of TiO2 nanotubes (TiO2-NTs) to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties. The photo-functionalized TiO2-NTs showed protein-fouling resistance, causing the anticoagulant property and the ability to suppress cell adhesion. The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property. The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property, a strong inhibitory effect on smooth muscle cells (SMCs), and low toxicity to endothelial cells (ECs). The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs, and therefore has enormous potential in the field of cardiovascular implant devices. Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.
Collapse
Affiliation(s)
- Jiang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, No.29 of Wangjiang Road, Wuhou District, Chengdu, Sichuan, 610064, China
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Manfred F. Maitz
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Jiawei Cui
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No.29 of Wangjiang Road, Wuhou District, Chengdu, Sichuan, 610064, China
| |
Collapse
|
24
|
Bonacina F, Da Dalt L, Catapano AL, Norata GD. Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis. Mol Aspects Med 2020; 77:100918. [PMID: 33032828 PMCID: PMC7534736 DOI: 10.1016/j.mam.2020.100918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming is a physiological cellular adaptation to intracellular and extracellular stimuli that couples to cell polarization and function in multiple cellular subsets. Pathological conditions associated to nutrients overload, such as dyslipidaemia, may disturb cellular metabolic homeostasis and, in turn, affect cellular response and activation, thus contributing to disease progression. At the vascular/immune interface, the site of atherosclerotic plaque development, many of these changes occur. Here, an intimate interaction between endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and immune cells, mainly monocytes/macrophages and lymphocytes, dictates physiological versus pathological response. Furthermore, atherogenic stimuli trigger metabolic adaptations both at systemic and cellular level that affect the EC layer barrier integrity, VSMC proliferation and migration, monocyte infiltration, macrophage polarization, lymphocyte T and B activation. Rewiring cellular metabolism by repurposing “metabolic drugs” might represent a pharmacological approach to modulate cell activation at the vascular immune interface thus contributing to control the immunometabolic response in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - L Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - A L Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCSS Multimedica, Milan, Italy.
| | - G D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS, Ospedale Bassini, Cinisello Balsamo, Italy.
| |
Collapse
|
25
|
Kaur M, Kumar A, Siddaraju NK, Fairoze MN, Chhabra P, Ahlawat S, Vijh RK, Yadav A, Arora R. Differential expression of miRNAs in skeletal muscles of Indian sheep with diverse carcass and muscle traits. Sci Rep 2020; 10:16332. [PMID: 33004825 PMCID: PMC7529745 DOI: 10.1038/s41598-020-73071-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study presents the miRNA profiles of two Indian sheep populations with divergent carcass and muscle traits. The RNA sequencing of longissimus thoracis muscles from the two populations revealed a total of 400 known miRNAs. Myomirs or miRNAs specific to skeletal muscles identified in our data included oar-miR-1, oar-miR-133b, oar-miR-206 and oar-miR-486. Comparison of the two populations led to identification of 100 differentially expressed miRNAs (p < 0.05). A total of 45 miRNAs exhibited a log2 fold change of ≥ ( ±) 3.0. Gene Ontology analysis revealed cell proliferation, epithelial to mesenchymal transition, apoptosis, immune response and cell differentiation as the most significant functions of the differentially expressed miRNAs. The differential expression of some miRNAs was validated by qRT-PCR analysis. Enriched pathways included metabolism of proteins and lipids, PI3K-Akt, EGFR and cellular response to stress. The microRNA-gene interaction network revealed miR-21, miR-155, miR-143, miR-221 and miR-23a as the nodal miRNAs, with multiple targets. MicroRNA-21 formed the focal point of the network with 42 interactions. The hub miRNAs identified in our study form putative regulatory candidates for future research on meat quality traits in Indian sheep. Our results provide insight into the biological pathways and regulatory molecules implicated in muscling traits of sheep.
Collapse
Affiliation(s)
- Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | | | | | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anita Yadav
- Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
26
|
Cheng M, Yang Y, Xin H, Li M, Zong T, He X, Yu T, Xin H. Non-coding RNAs in aortic dissection: From biomarkers to therapeutic targets. J Cell Mol Med 2020; 24:11622-11637. [PMID: 32885591 PMCID: PMC7578866 DOI: 10.1111/jcmm.15802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aortic dissection (AD) is the rupture of the aortic intima, causing the blood in the cavity to enter the middle of the arterial wall. Without urgent and proper treatment, the mortality rate increases to 50% within 48 hours. Most patients present with acute onset of symptoms, including sudden severe pain and complex and variable clinical manifestations, which can be easily misdiagnosed. Despite this, the molecular mechanisms underlying AD are still unknown. Recently, non‐coding RNAs have emerged as novel regulators of gene expression. Previous studies have proven that ncRNAs can regulate several cardiovascular diseases; therefore, their potential as clinical biomarkers and novel therapeutic targets for AD has aroused widespread interest. To date, several studies have reported that microRNAs are crucially involved in AD progression. Additionally, several long non‐coding RNAs and circular RNAs have been found to be differentially expressed in AD samples, suggesting their potential roles in vascular physiology and disease. In this review, we discuss the functions of ncRNAs in AD pathophysiology and highlight their potential as biomarkers and therapeutic targets for AD. Meanwhile, we present the animal models previously used for AD research, as well as the specific methods for constructing mouse or rat AD models.
Collapse
Affiliation(s)
- Mengdie Cheng
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Xin
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqiang He
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Cheng CI, Chang HR, Tai MH, Chou MH, Chen GT, Chen PH, Kao YH. Hepatoma-derived growth factor enhances osteoblastic transformation of rat aortic vascular smooth muscle cells in vitro. Life Sci 2020; 256:117964. [DOI: 10.1016/j.lfs.2020.117964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
|
28
|
Bi S, Liu R, Shen Y, Gu J. Bioinformatics analysis of key genes and miRNAs associated with Stanford type A aortic dissection. J Thorac Dis 2020; 12:4842-4853. [PMID: 33145057 PMCID: PMC7578500 DOI: 10.21037/jtd-20-1337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Aortic dissection is one of the most detrimental cardiovascular diseases with a high risk of mortality and morbidity. This study aimed to examine the key genes and microRNAs associated with Stanford type A aortic dissection (AAD). Methods The expression data of AAD and healthy samples were downloaded from two microarray datasets in the Gene Expression Omnibus (GEO) database to identify highly preserved modules by weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) were selected and functionally annotated. The predicted interactions between the DEGs and DEmiRNAs were further illustrated. Results In two highly preserved modules, 459 DEGs were identified. These DEGs were functionally enriched in the HIF1, Notch, and PI3K/Akt pathways. Furthermore, 6 DEmiRNAs that were enriched in the regulation of vasculature development and HIF1 pathway, were predicted to target 23 DEGs. Conclusions Our study presented several promising modulators, both DEGs and DEmiRNAs, as well as possible pathological pathways for AAD, which narrows the scope for further fundamental research.
Collapse
Affiliation(s)
- Siwei Bi
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yinzhi Shen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Nagy A, Pethő D, Gáll T, Zavaczki E, Nyitrai M, Posta J, Zarjou A, Agarwal A, Balla G, Balla J. Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC Calcification Induced by High Phosphate. Front Physiol 2020; 10:1584. [PMID: 32009983 PMCID: PMC6974455 DOI: 10.3389/fphys.2019.01584] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification is a life-threatening clinical condition in chronic kidney disease (CKD) and is associated with reduced zinc serum levels. Anemia is another frequent complication of CKD. Hypoxia-inducible factor (HIF) stabilizers, also known as HIF prolyl hydroxylase inhibitors (PHI), are promising candidates to treat CKD-associated anemia by increasing erythropoietin synthesis. Recent evidence suggests that HIFs play a pivotal role in vascular calcification. Our study explored feasible impacts of HIF PHI on phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs) and tested whether zinc might inhibit this mineralization process. Treatment of VSMCs with PHI aggravated Pi-induced calcium deposition and Pi uptake. PHI promoted Pi-induced loss of smooth muscle cell markers (ACTA-2, MYH11, SM22α) and enhanced osteochondrogenic gene expression (Msx-2, BMP-2, Sp7) triggering osteochondrogenic phenotypic switch of VSMCs. These effects of PHI paralleled with increased pyruvate dehydrogenase kinase 4 (PDK4) expression, decreased Runx2 Ser451 phosphorylation, and reduced cell viability. Zinc inhibited Pi-induced mineralization of VSMCs in a dose-dependent manner and also attenuated the pro-calcification effect of PHI in Pi-induced mineralization. Zinc inhibited osteochondrogenic phenotypic switch of VSMCs reflected by lowering Pi uptake, decreasing the expressions of Msx-2, BMP-2, and Sp7 as well as the loss of smooth muscle cell-specific markers. Zinc preserved phosphorylation state of Runx2 Ser451, decreased PDK4 level, and restored cell viability. PHI alone reduced the expression of smooth muscle markers without inducing mineralization, which was also inhibited by zinc. In addition, we observed a significantly lower serum zinc level in CKD as well as in patients undergoing carotid endarterectomy compared to healthy individuals. Conclusion - PHI promoted the loss of smooth muscle markers and augmented Pi-induced osteochondrogenic phenotypic switch leading to VSMCs calcification. This mineralization process was attenuated by zinc. Enhanced vascular calcification is a potential risk factor during PHI therapy in CKD which necessitates the strict follow up of vascular calcification and zinc supplementation.
Collapse
Affiliation(s)
- Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Zavaczki
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Mónika Nyitrai
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - József Posta
- Department of Inorganic and Analytical Chemistry, UD Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
30
|
Alique M, Sánchez-López E, Bodega G, Giannarelli C, Carracedo J, Ramírez R. Hypoxia-Inducible Factor-1α: The Master Regulator of Endothelial Cell Senescence in Vascular Aging. Cells 2020; 9:cells9010195. [PMID: 31941032 PMCID: PMC7016968 DOI: 10.3390/cells9010195] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the hottest topics in biomedical research. Advances in research and medicine have helped to preserve human health, leading to an extension of life expectancy. However, the extension of life is an irreversible process that is accompanied by the development of aging-related conditions such as weakness, slower metabolism, and stiffness of vessels. It also debated that aging can be considered an actual disease with aging-derived comorbidities, including cancer or cardiovascular disease. Currently, cardiovascular disorders, including atherosclerosis, are considered as premature aging and represent the first causes of death in developed countries, accounting for 31% of annual deaths globally. Emerging evidence has identified hypoxia-inducible factor-1α as a critical transcription factor with an essential role in aging-related pathology, in particular, regulating cellular senescence associated with cardiovascular aging. In this review, we will focus on the regulation of senescence mediated by hypoxia-inducible factor-1α in age-related pathologies, with particular emphasis on the crosstalk between endothelial and vascular cells in age-associated atherosclerotic lesions. More specifically, we will focus on the characteristics and mechanisms by which cells within the vascular wall, including endothelial and vascular cells, achieve a senescent phenotype.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Elsa Sánchez-López
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92037, USA;
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| | - Chiara Giannarelli
- Cardiovascular Research Center, Institute for Genomics and Multiscale Biology, New York, NY 10029, USA;
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| |
Collapse
|
31
|
Intermittent Hypoxia Alleviates β-Aminopropionitrile Monofumarate Induced Thoracic Aortic Dissection in C57BL/6 Mice. Eur J Vasc Endovasc Surg 2019; 59:1000-1010. [PMID: 31879145 DOI: 10.1016/j.ejvs.2019.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Thoracic aortic dissection (TAD) has a high mortality rate. Intermittent hypoxia (IH) triggers both harmful and beneficial effects in numerous physiological systems. The effects of IH on TAD development were explored in a mouse model. METHODS β-Aminopropionitrile monofumarate (BAPN) was used to induce TAD in C57BL/6 mice. Three week old male mice were treated with 1 g/kg/day BAPN in drinking water for four weeks and simultaneously subjected to IH (n = 30) (21%-5% O2, 90 s/cycle, 10 h/day, IH + BAPN group) or normoxia (n = 30) (21% O2, 24 h/day, BAPN group). Human VSMCs (HUASMCs) exposed to IH (30 min, 5% O2)/re-oxygenation (30 min, 21% O2) cycles with a maximum of 60 min/cycle to detect the effect of IH on HIF-1α and LOX via HIF-1α-siRNA. RESULTS It was found that BAPN administration significantly increased the lumen size and wall thickness of aortas compared with the normal group, but was significantly reversed by IH exposure. Additionally, IH exposure significantly increased the survival rate of BAPN induced TAD (70% vs. 40%). Furthermore, IH exposure reduced BAPN induced elastin breaks and apoptosis of vascular smooth muscle cells. IH exposure also reversed BAPN induced upregulation of inflammation and extracellular matrix (ECM) degradation. Real time polymerase chain reaction (RT-PCR) confirmed that IH inhibited inflammation and ECM degradation related genes interleukin (IL)-1β, IL-6, cathepsin S (Cat S), and matrix metalloproteinase 9 (MMP-9), but upregulated the ECM synthesis related genes lysyl oxidase (LOX) and collagen type I alpha2 (Col1a2) compared with the BAPN group. In vitro results suggest that IH promotes the expression of LOX via HIF-1α. CONCLUSION The results suggest that IH alleviates BAPN induced TAD in C57BL/6 mice.
Collapse
|
32
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
33
|
Zhao M, Chen N, Li X, Lin L, Chen X. MiR-19a modulates hypoxia-mediated cell proliferation and migration via repressing PTEN in human pulmonary arterial smooth muscle. Life Sci 2019; 239:116928. [PMID: 31682848 DOI: 10.1016/j.lfs.2019.116928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
AIM The dysfunction of human pulmonary arterial smooth muscle cells (HPASMCs) has been suggested to participate in the pathophysiology of pulmonary arterial hypertension (PAH). This study determined miR-19a expression in hypoxia-induced HPASMCs and explored the mechanistic actions of miR-19a in hypoxia-induced HPASMC proliferation and migration. METHODS QRT-PCR and western blot assays respectively determined the mRNA and protein expression of miR-19a, phosphatase and tensin homolog (PTEN) and hypoxia-inducible factor-1 alpha (HIF-1α). In vitro functional assays determined HPASMC proliferation and migration, respectively. Luciferase reporter assay determined interaction between miR-19a and PTEN. The knockdown effects of miR-19a on PAH were confirmed in in vivo mice model. RESULTS Hypoxia treatment time-dependently up-regulated miR-19a expression and enhanced cell proliferation in HPASMCs. MiR-19a overexpression increased cell proliferation and migration of HPASMCs, while repression of miR-19a reduced cell proliferative and migratory potentials of hypoxia-treated HPASMCs. Bioinformatics analysis and luciferase reporter assay showed that PTEN 3' untranslated region was targeted by miR-19a, and miR-19a repressed the mRNA and protein expression of PTEN in HPASMCs. Further rescue studies revealed that miR-19a regulated proliferative and migratory potentials of hypoxia-treated HPASMCs via suppressing PTEN expression. In addition, HIF-1α was identified as one of the mediators for the hypoxia-induced aberrant expression levels of miR-19a and PTEN. MiR-19a overexpression enhanced PI3K/AKT signaling, which was attenuated by enforced expression of PTEN in HPASMCs. More importantly, knockdown of miR-19 attenuated the chronic hypoxia-induced PAH in in vivo mice model. CONCLUSION This study presented a novel mechanistic action of miR-19a-mediated cell proliferation and migration of HPASMCs.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, China.
| | - Ni Chen
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China.
| | - Xuelian Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin City, Heilongjiang Province, China.
| | - Ling Lin
- Department of Cardiovascular Medicine, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, China.
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China.
| |
Collapse
|
34
|
Hira VVV, Breznik B, Vittori M, Loncq de Jong A, Mlakar J, Oostra RJ, Khurshed M, Molenaar RJ, Lah T, Van Noorden CJF. Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies. J Histochem Cytochem 2019; 68:33-57. [PMID: 31566074 DOI: 10.1369/0022155419878416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most aggressive primary brain tumor. Slowly dividing and therapy-resistant glioblastoma stem cells (GSCs) reside in protective peri-arteriolar niches and are held responsible for glioblastoma recurrence. Recently, we showed similarities between GSC niches and hematopoietic stem cell (HSC) niches in bone marrow. Acute myeloid leukemia (AML) cells hijack HSC niches and are transformed into therapy-resistant leukemic stem cells (LSCs). Current clinical trials are focussed on removal of LSCs out of HSC niches to differentiate and to become sensitized to chemotherapy. In the present study, we elaborated further on these similarities by immunohistochemical analyses of 17 biomarkers in paraffin sections of human glioblastoma and human bone marrow. We found all 17 biomarkers to be expressed both in hypoxic peri-arteriolar HSC niches in bone marrow and hypoxic peri-arteriolar GSC niches in glioblastoma. Our findings implicate that GSC niches are being formed in glioblastoma as a copy of HSC niches in bone marrow. These similarities between HSC niches and GSC niches provide a theoretic basis for the development of novel strategies to force GSCs out of their niches, in a similar manner as in AML, to induce GSC differentiation and proliferation to render them more sensitive to anti-glioblastoma therapies.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Annique Loncq de Jong
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Jernej Mlakar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Cornelis J F Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Xu Q, You R, Yin G, Gu J. Hepatocellular carcinoma serum derived exosomal HIF-1α induces phosphoinositide-3 kinase/protein kinase B signaling to induce the angiogenesis and proliferation of HCC. Transl Cancer Res 2019; 8:1550-1559. [PMID: 35116898 PMCID: PMC8798372 DOI: 10.21037/tcr.2019.08.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/09/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tumor exosomes are nanovesicles mostly secreted by tumor cells that play roles of paracrine signaling during tumor progression, including tumor-stromal interactions, activation of proliferative pathways and inducing immunosuppression. The hypoxia-inducible factor (HIF) family serve role of the principal molecular mediators of hypoxia in physiological and pathophysiological course. HIF-1α excreted from tumor and stromal cells serves an important role in tumor angiogenesis, especially in hepatocellular carcinoma (HCC). However, exosomal HIF-1α from HCC serum has not been studied extensively. The present study aimed to determine role of HIF-1α derived from HCC serum exosomes in the development of HCC. METHODS We extracted exosomes from the serum of 48 patients suffering HCC and 24 healthy individuals. The exosomes were examined by transmission electron microscopy and nanoparticle tracking analysis. The concentrations of exosomal HIF-1α were measured by ELISA. In vitro experiments were performed to testify the exosomal role in human umbilical endothelial cells (HUVECs) and Huh-7 cells by tube formation, cell viability and western blotting analyses. Nude mouse xenograft Huh-7 tumors were generated by injecting HCC patient serum exosomes, healthy individuals' serum exosomes and PBS into nude mice. Tumors in vivo were isolated, weighed and subjected to immunohistochemical assays. RESULTS HCC patients exhibited a greater capacity to convert HIF-1α in serum exosomes than normal individuals (P=0.0007), and high serum exosomal HIF-1α levels were correlated with Barcelona Clinic Liver Cancer (BCLC) staging (P=0.031) and the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway. The results of flow cytometry analysis demonstrated that the HUVECs cocultured with HCC exosomes turned down the percentage of HUVECs in the G1 phase but turned up the percentage of HUVECs in the S phase (P<0.05). HUVECs and Huh-7 cells cultured with HCC serum exosomes enhanced the proliferation of HUVECs and Huh-7 cells, and the tube formation of HUVECs, while exosomes from healthy individuals and the controls did not. The results demonstrated that serum exosomes from patients with HCC appeared to accelerate tumor growth compared to the control group (P<0.05) and immunohistochemical analysis revealed that the nude mice injected with exosomes from HCC patient serum exhibited higher microvessel density (MVD) (P<0.05). CONCLUSIONS HCC serum derived exosomes could induce angiogenesis and the proliferation of HCC potentially via the HIF-1α-PI3K/AKT signaling pathway, it making the prevention and treatment of HCC angiogenesis and proliferation available.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Intervention Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Ran You
- Department of Intervention Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Guowen Yin
- Department of Intervention Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jianping Gu
- Department of Intervention Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
36
|
Shan F, Huang Z, Xiong R, Huang Q, Li J. HIF1α‐induced upregulation of KLF4 promotes migration of human vascular smooth muscle cells under hypoxia. J Cell Physiol 2019; 235:141-150. [PMID: 31270801 DOI: 10.1002/jcp.28953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Fabo Shan
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury Research Institute of Surgery, Daping Hospital, Army Medical University Chongqing P.R. China
| | - Zhizhong Huang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury Research Institute of Surgery, Daping Hospital, Army Medical University Chongqing P.R. China
| | - Renping Xiong
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury Research Institute of Surgery, Daping Hospital, Army Medical University Chongqing P.R. China
| | - Qing‐Yuan Huang
- Department of Cold Environmental Medicine College of High Altitude Military Medicine, Army Medical University Chongqing P.R. China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery Daping Hospital, Army Medical University Chongqing P.R. China
| |
Collapse
|
37
|
Li B, Wang Z, Chen R, Hong J, Wu Q, Hu J, Hu Z, Zhang M. Up regulation of isoleucyl-tRNA synthetase promotes vascular smooth muscle cells dysfunction via p38 MAPK/PI3K signaling pathways. Life Sci 2019; 224:51-57. [DOI: 10.1016/j.lfs.2019.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
38
|
He K, Sun H, Zhang J, Zheng R, Gu J, Luo M, Shao Y. Rab7‑mediated autophagy regulates phenotypic transformation and behavior of smooth muscle cells via the Ras/Raf/MEK/ERK signaling pathway in human aortic dissection. Mol Med Rep 2019; 19:3105-3113. [PMID: 30816458 PMCID: PMC6423587 DOI: 10.3892/mmr.2019.9955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy regulates the metabolism, survival and function of numerous types of cell, including cells that comprise the cardiovascular system. The dysfunction of autophagy has been demonstrated in atherosclerosis, restenotic lesions and hypertensive vessels. As a member of the Ras GTPase superfamily, Rab7 serves a significant role in the regulation of autophagy. The present study evaluated how Rab7 affects the proliferation and invasion, and phenotypic transformations of aortic dissection (AD) smooth muscle cells (SMCs) via autophagy. Rab7 was overexpressed in AD tissues and the percentage of synthetic human aortic SMCs (HASMCs) was higher in AD tissues compared with NAD tissues. Downregulation of Rab7 decreased cell growth, reduced the number of invasive cells and decreased the percentage cells in the G1 phase. Autophagy of HASMCs was inhibited following Rab7 knockdown. Inhibition of autophagy with 3‑methyladenine or Rab7 knockdown suppressed the phenotypic conversion of contractile to synthetic HASMCs. The action of Rab7 may be mediated by inhibiting the Ras/Raf/mitogen‑activated protein kinase (MAPK) kinase (MEK)/extracellular signal related kinase (ERK) signaling pathway. In conclusion, the results revealed that Rab7‑mediated autophagy regulated the behavior of SMCs and the phenotypic transformations in AD via activation of the Ras/Raf/MEK/ERK signaling pathway. The findings of the present study may improve understanding of the role Rab7 in the molecular etiology of AD and suggests the application of Rab7 as a novel therapeutic target in the treatment of human AD.
Collapse
Affiliation(s)
- Keshuai He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Haoliang Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Rui Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Ming Luo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
39
|
Li Y, Yang N, Zhou X, Bian X, Qiu G, Zhang M, Lin H, Li D. LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human thoracic aortic dissection. Mol Med Rep 2018; 18:3167-3176. [PMID: 30066903 PMCID: PMC6102671 DOI: 10.3892/mmr.2018.9308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to determine the potential core genes in the pathogenesis of human thoracic aortic dissection (TAD) by analyzing microarray profiles of long non‑coding (lnc)‑RNAs between TAD and normal thoracic aorta (NTA). The differentially expressed lncRNA profiles of the aorta tissues between TAD patients (TAD group, n=6) and age‑matched donors with aortic diseases (NTA group, n=6) were analyzed by lncRNAs microarray. Gene ontology (GO), pathway and network analyses were used to further investigate candidate lncRNAs and mRNAs. Differentially expressed lncRNAs and mRNAs were validated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). In total, the present study identified 765 lncRNAs and 619 mRNAs with differential expression between TAD and NTA (fold change >2.0, P<0.01). GO analysis demonstrated that the differentially upregulated lncRNAs are associated with cell differentiation, homeostasis, cell growth and angiogenesis. Kyoto Encyclopedia of Gene and Genomes pathway analysis demonstrated that the differentially downregulated lncRNAs are mainly associated with arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy and dilated cardiomyopathy. To reduce the lncRNAs for further investigation and to enrich those potentially involved in TAD, a total of 16 candidate lncRNAs with a significant expression (fold change >4, P<0.01) were selected, that were associated with an annotated protein‑coding gene through the GO term and scientific literatures. Then a set of significantly expressed lncRNAs [purinergic receptor P2X7 (P2RX7), hypoxia inducing factor (HIF)‑1A‑AS2, AX746823, RP11‑69I8.3 and RP11‑536K7.5) and the corresponding mRNAs (P2RX7, cyclin dependent kinase inhibitor 2B, HIF‑1A, runt‑related transcription factor 1, connective tissue growth factor and interleukin 2 receptor a chain] were confirmed using RT‑qPCR. The present study revealed that the expression profiles of lncRNAs and mRNAs in aorta tissues from TAD were significantly altered. These results may provide important insights into the pathogenesis of TAD disease.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Nan Yang
- Department of Stomatology, PLA 309th Hospital, Beijing 100091, P.R. China
| | - Xianbao Zhou
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Xuezhi Bian
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Genqiang Qiu
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Mo Zhang
- Department of Orthopedics, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Huagang Lin
- Department of Orthopedics, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Dingfeng Li
- Department of Orthopedics, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| |
Collapse
|
40
|
Chen F, Wang S, Wei Y, Wu J, Huang G, Chen J, Shi J, Xia J. Norcantharidin modulates the miR-30a/Metadherin/AKT signaling axis to suppress proliferation and metastasis of stromal tumor cells in giant cell tumor of bone. Biomed Pharmacother 2018; 103:1092-1100. [DOI: 10.1016/j.biopha.2018.04.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/24/2022] Open
|
41
|
Liao J, Zhang Y, Wu Y, Zeng F, Shi L. Akt modulation by miR-145 during exercise-induced VSMC phenotypic switching in hypertension. Life Sci 2018. [PMID: 29522767 DOI: 10.1016/j.lfs.2018.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIMS This study investigated whether long-term exercise can influence vascular smooth muscle cells (VSMCs) phenotypic switching in mesenteric arteries of hypertensive rats, with a focus on the modulation of protein kinase B (PKB/Akt) signaling by microRNA-145 (miR-145). MAIN METHODS In the exercise intervention experiment, mesenteric arteries from 3-month-old spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were isolated for histological observation, phenotypic marker analysis, Akt phosphorylation quantification, and miR-145 evaluation after being subjected to moderate-intensity treadmill training (E) or being sedentary (C) for 8 weeks. In the transfection experiment, VSMCs were harvested to determine Akt phosphorylation and mRNA expressions of the upstream and downstream signaling molecules. KEY FINDINGS Calponin, a VSMC contractile marker, was significantly up-regulated in SHR-E relative to SHR-C (P < 0.05); while osteopontin (OPN), a dedifferentiation marker, was down-regulated in SHR-E relative to SHR-C (P < 0.05). Exercise significantly normalized the expression of miR-145 and significantly enhanced Akt phosphorylation (P < 0.05). In VSMCs over-expressing miR-145, Akt phosphorylation was significantly decreased (P < 0.05) with inhibited mRNA of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS-1). In VSMCs transfected with miR-145 inhibitor, Akt phosphorylation and mRNA of IGF-1R and IRS-1 were all down-regulated. miR-145 did not exhibit a clear effect on p70 ribosomal kinase (p70S6K), the downstream of Akt, following the transfections. SIGNIFICANCE Overall, exercise remodels arterioles in hypertension and induces VSMCs maintaining contractile phenotype, in which miR-145 appears to be involved by inversely regulating Akt signaling via its upstream signals.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/prevention & control
- MicroRNAs/physiology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Physical Conditioning, Animal/physiology
- Proto-Oncogene Proteins c-akt/physiology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
Collapse
Affiliation(s)
- Jingwen Liao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China.
| |
Collapse
|
42
|
Luo X, Liu J, Zhou H, Chen L. Apelin/APJ system: A critical regulator of vascular smooth muscle cell. J Cell Physiol 2018; 233:5180-5188. [PMID: 29215755 DOI: 10.1002/jcp.26339] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
APJ, an orphan G protein-coupled receptor, is first identified through homology cloning in 1993. Apelin is endogenous ligand of APJ extracted from bovine stomach tissue in 1998. Apelin/APJ system is widely expressed in many kinds of cells such as endothelial cells, cardiomyocytes, especially vascular smooth muscle cell. Vascular smooth muscle cell (VSMC), an integral part of the vascular wall, takes part in many normal physiological processes. Our experiment firstly finds that apelin/APJ system enhances VSMC proliferation by ERK1/2-cyclin D1 signal pathway. Accumulating studies also show that apelin/APJ system plays a pivotal role in mediating the function of VSMC. In this paper, we review the exact role of apelin/APJ system in VSMC, including induction of proliferation and migration, enhance of contraction and relaxation, inhibition of calcification. Furthermore, we discuss the role of apelin/APJ system in vascular diseases, such as atherosclerosis, hypertension, and chronic kidney disease (CKD) from the point of VSMC. Above all, apelin/APJ system is a promising target for managing vascular disease.
Collapse
Affiliation(s)
- Xuling Luo
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jiaqi Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Hong Zhou
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|