1
|
Ahn SS, Yeo H, Jung E, Kim TY, Han J, Lee YH, Shin SY. Saikosaponin A Recovers Impaired Filaggrin Levels in Inflamed Skin by Downregulating the Expression of FRA1 and c-Jun. Molecules 2024; 29:4064. [PMID: 39274912 PMCID: PMC11396542 DOI: 10.3390/molecules29174064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Filaggrin (FLG) is an essential structural protein expressed in differentiated keratinocytes. Insufficient FLG expression contributes to the pathogenesis of chronic inflammatory skin diseases. Saikosaponin A (SSA), a bioactive oleanane-type triterpenoid, exerts anti-inflammatory activity. However, the effects of topically applied SSA on FLG expression in inflamed skin remain unclear. This study aimed to evaluate the biological activity of SSA in restoring reduced FLG expression. The effect of SSA on FLG expression in HaCaT cells was assessed through various biological methods, including reverse transcription PCR, quantitative real-time PCR, immunoblotting, and immunofluorescence staining. TNFα and IFNγ decreased FLG mRNA, cytoplasmic FLG protein levels, and FLG gene promoter-reporter activity compared to the control groups. However, the presence of SSA restored these effects. A series of FLG promoter-reporter constructs were generated to investigate the underlying mechanism of the effect of SSA on FLG expression. Mutation of the AP1-binding site (mtAP1) in the -343/+25 FLG promoter-reporter abrogated the decrease in reporter activities caused by TNFα + IFNγ, suggesting the importance of the AP1-binding site in reducing FLG expression. The SSA treatment restored FLG expression by inhibiting the expression and nuclear localization of FRA1 and c-Jun, components of AP1, triggered by TNFα + IFNγ stimulation. The ERK1/2 mitogen-activated protein kinase signaling pathway upregulates FRA1 and c-Jun expression, thereby reducing FLG levels. The SSA treatment inhibited ERK1/2 activation caused by TNFα + IFNγ stimulation and reduced the levels of FRA1 and c-Jun proteins in the nucleus, leading to a decrease in the binding of FRA1, c-Jun, p-STAT1, and HDAC1 to the AP1-binding site in the FLG promoter. The effect of SSA was evaluated in an animal study using a BALB/c mouse model, which induces human atopic-dermatitis-like skin lesions via the topical application of dinitrochlorobenzene. Topically applied SSA significantly reduced skin thickening, immune cell infiltration, and the expression of FRA1, c-Jun, and p-ERK1/2 compared to the vehicle-treated group. These results suggest that SSA can effectively recover impaired FLG levels in inflamed skin by preventing the formation of the repressor complex consisting of FRA1, c-Jun, HDAC1, and STAT1.
Collapse
Affiliation(s)
- Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Junekyu Han
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
MEK inhibition enhances presentation of targetable MHC-I tumor antigens in mutant melanomas. Proc Natl Acad Sci U S A 2022; 119:e2208900119. [PMID: 36454758 PMCID: PMC9894220 DOI: 10.1073/pnas.2208900119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Combining multiple therapeutic strategies in NRAS/BRAF mutant melanoma-namely MEK/BRAF kinase inhibitors, immune checkpoint inhibitors (ICIs), and targeted immunotherapies-may offer an improved survival benefit by overcoming limitations associated with any individual therapy. Still, optimal combination, order, and timing of administration remains under investigation. Here, we measure how MEK inhibition (MEKi) alters anti-tumor immunity by utilizing quantitative immunopeptidomics to profile changes in the peptide major histocompatibility molecules (pMHC) repertoire. These data reveal a collection of tumor antigens whose presentation levels are selectively augmented following therapy, including several epitopes present at over 1,000 copies per cell. We leveraged the tunable abundance of MEKi-modulated antigens by targeting four epitopes with pMHC-specific T cell engagers and antibody drug conjugates, enhancing cell killing in tumor cells following MEK inhibition. These results highlight drug treatment as a means to enhance immunotherapy efficacy by targeting specific upregulated pMHCs and provide a methodological framework for identifying, quantifying, and therapeutically targeting additional epitopes of interest.
Collapse
|
3
|
Felici C, Mannavola F, Stucci LS, Duda L, Cafforio P, Porta C, Tucci M. Circulating tumor cells from melanoma patients show phenotypic plasticity and metastatic potential in xenograft NOD.CB17 mice. BMC Cancer 2022; 22:754. [PMID: 35820816 PMCID: PMC9275157 DOI: 10.1186/s12885-022-09829-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Innovative therapies have improved the overall survival in melanoma, although a high number of patients still experience disease progression or recurrence. Ex-vivo culture of circulating tumour cells (CTCs) represents a valuable laboratory resource for in-depth characterization of rare cell populations responsible for disease progression. Methods CTCs from patients with metastatic melanoma were in-vitro established. Their stemness was demonstrated by both phenotypic and genotypic assays, as well as by functional studies. Xenograft experiments in NOD.CB17 mice injected with CTCs from a single patient were completed. Data were analysed by Student’s test and results expressed as mean ± SEM. Results CTCs share the mutational profile with primary cells, an intermediate epithelial-mesenchymal transition (EMT) phenotype and high expression of the immunosuppressive factors. A subclonal CTC population exhibited stem cell properties as high aldehyde dehydrogenase 1 activity, melanosphere-forming ability, and expression of major stemness transcription factors. Xenograft experiments confirmed the CTC ability to generate melanoma in-vivo and revealed enhanced metastatic propensity. Conclusions CTCs play a relevant role in melanoma and may actively contribute to drive the disease progression and metastasis. Thus, they are a unique potential tool for pharmacogenomic studies to guide treatment strategies in advanced disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09829-1.
Collapse
Affiliation(s)
- Claudia Felici
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Centre for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesco Mannavola
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Loren Duda
- Department of Clinical and Experimental Medicine, Pathology Unit, University of Foggia, Foggia, Italy
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy. .,Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy. .,Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', Bari, Italy.
| |
Collapse
|
4
|
Loxl3 Promotes Melanoma Progression and Dissemination Influencing Cell Plasticity and Survival. Cancers (Basel) 2022; 14:cancers14051200. [PMID: 35267510 PMCID: PMC8909883 DOI: 10.3390/cancers14051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Malignant melanoma is the most lethal skin cancer due to its aggressive clinical behavior and therapeutic resistance. A comprehensive knowledge of the molecular mechanisms underlying melanoma progression is urgently needed to improve the survival of melanoma patients. Phenotypic plasticity of melanoma cells has emerged as a key process in melanomagenesis and therapy resistance. This phenotypic plasticity is sustained by an epithelial-to-mesenchymal (EMT)-like program that favors multiple intermediate states and allows adaptation to changing microenvironments along melanoma progression. Given the essential role of lysyl oxidase-like 3 (LOXL3) in human melanoma cell survival and its contribution to EMT, we generated mice with conditional melanocyte-specific targeting of Loxl3, concomitant to Braf activation and Pten deletion. Our results supported a key role of Loxl3 for melanoma progression, metastatic dissemination, and genomic stability, and supported its contribution to melanoma phenotypic plasticity by modulating the expression of several EMT transcription factors (EMT-TFs). Abstract Malignant melanoma is a highly aggressive tumor causing most skin cancer-related deaths. Understanding the fundamental mechanisms responsible for melanoma progression and therapeutic evasion is still an unmet need for melanoma patients. Progression of skin melanoma and its dissemination to local or distant organs relies on phenotypic plasticity of melanoma cells, orchestrated by EMT-TFs and microphthalmia-associated TF (MITF). Recently, melanoma phenotypic switching has been proposed to uphold context-dependent intermediate cell states benefitting malignancy. LOXL3 (lysyl oxidase-like 3) promotes EMT and has a key role in human melanoma cell survival and maintenance of genomic integrity. To further understand the role of Loxl3 in melanoma, we generated a conditional Loxl3-knockout (KO) melanoma mouse model in the context of BrafV600E-activating mutation and Pten loss. Melanocyte-Loxl3 deletion increased melanoma latency, decreased tumor growth, and reduced lymph node metastatic dissemination. Complementary in vitro and in vivo studies in mouse melanoma cells confirmed Loxl3’s contribution to melanoma progression and metastasis, in part by modulating phenotypic switching through Snail1 and Prrx1 EMT-TFs. Importantly, a novel LOXL3-SNAIL1-PRRX1 axis was identified in human melanoma, plausibly relevant to melanoma cellular plasticity. These data reinforced the value of LOXL3 as a therapeutic target in melanoma.
Collapse
|
5
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
6
|
Bone Morphogenic Protein Signaling and Melanoma. Curr Treat Options Oncol 2021; 22:48. [PMID: 33866453 DOI: 10.1007/s11864-021-00849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Malignant melanoma is a deadly form of skin cancer caused by neoplastic transformation of melanocytic cells. Despite recent progress in melanoma therapy, by inhibition of activated oncogenes or immunotherapy, survival rate for metastatic melanoma patients remains low. The remarkable phenotypic plasticity of melanoma cells allows for rapid development of invasive properties and metastatic tumors, the main cause of mortality in melanoma patients. Phenotypic and molecular analyses of developing tumors revealed that epithelial-mesenchymal transition (EMT), a cellular and molecular mechanism, controls transition from mature melanocyte to less differentiated melanocyte lineage progenitor cells forming melanoma tumors. This transition is facilitated by persistence of transcriptional regulatory circuit characteristic of embryonic stage in mature melanocytes. Switching of the developmental program of mature melanocyte to EMT is induced by accumulated mutations, especially targeting BRAF, N-RAS, or MEK1/2 signaling pathways, and further promoted by dynamic stimuli from local environment including hypoxia, interactions with extracellular matrix and growth factors or cytokines. Recent reports demonstrate that signaling mediated by transforming growth factor-β (TGF-β) and bone morphogenic proteins (BMPs) play critical roles in inducing EMT by controlling expression of critical transcription factors. BMPs are essential modulators of differentiation, proliferation, apoptosis, invasiveness, and metastases in developing melanoma tumors. They control transcription and epigenetic landscape of melanoma cells. Better understanding of the role of BMPs may lead to new strategies to control EMT processes in melanocyte cell lineage and to achieve clinical benefits for the patients.
Collapse
|
7
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
8
|
Gramann AK, Venkatesan AM, Guerin M, Ceol CJ. Regulation of zebrafish melanocyte development by ligand-dependent BMP signaling. eLife 2019; 8:50047. [PMID: 31868592 PMCID: PMC6968919 DOI: 10.7554/elife.50047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Preventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.
Collapse
Affiliation(s)
- Alec K Gramann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Arvind M Venkatesan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Melissa Guerin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
9
|
Buckels A, Zhang Y, Jiang J, Athar M, Afaq F, Shevde-Samant L, Frank SJ. Autocrine/paracrine actions of growth hormone in human melanoma cell lines. Biochem Biophys Rep 2019; 21:100716. [PMID: 31890904 PMCID: PMC6928330 DOI: 10.1016/j.bbrep.2019.100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Ashiya Buckels
- Department of Medicine Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yue Zhang
- Department of Medicine Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jing Jiang
- Department of Medicine Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farrukh Afaq
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita Shevde-Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Department of Medicine Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Medical Service, Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
10
|
Long-Term Vemurafenib Exposure Induced Alterations of Cell Phenotypes in Melanoma: Increased Cell Migration and Its Association with EGFR Expression. Int J Mol Sci 2019; 20:ijms20184484. [PMID: 31514305 PMCID: PMC6770060 DOI: 10.3390/ijms20184484] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Acquired resistance during BRAF inhibitor therapy remains a major challenge for melanoma treatment. Accordingly, we evaluated the phenotypical and molecular changes of isogeneic human V600E BRAF-mutant melanoma cell line pairs pre- and post-treatment with vemurafenib. Three treatment naïve lines were subjected to in vitro long-term vemurafenib treatment while three pairs were pre- and post-treatment patient-derived lines. Molecular and phenotypical changes were assessed by Sulforhodamine-B (SRB) assay, quantitative RT-PCR (q-RT-PCR), immunoblot, and time-lapse microscopy. We found that five out of six post-treatment cells had higher migration activity than pretreatment cells. However, no unequivocal correlation between increased migration and classic epithelial–mesenchymal transition (EMT) markers could be identified. In fast migrating cells, the microphthalmia-associated transcription factor (MITF) and epidermal growth factor receptor (EGFR) mRNA levels were considerably lower and significantly higher, respectively. Interestingly, high EGFR expression was associated with elevated migration but not with proliferation. Cells with high EGFR expression showed significantly decreased sensitivity to vemurafenib treatment, and had higher Erk activation and FRA-1 expression. Importantly, melanoma cells with higher EGFR expression were more resistant to the EGFR inhibitor erlotinib treatment than cells with lower expression, with respect to both proliferation and migration inhibition. Finally, EGFR-high melanoma cells were characterized by higher PD-L1 expression, which might in turn indicate that immunotherapy may be an effective approach in these cases.
Collapse
|
11
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
12
|
Tripathi K, Garg M. Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J Cell Commun Signal 2018; 12:513-527. [PMID: 29330773 PMCID: PMC6039341 DOI: 10.1007/s12079-017-0441-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
RAS effector signaling instead of being simple, unidirectional and linear cascade, is actually recognized as highly complex and dynamic signaling network. RAF-MEK-ERK cascade, being at the center of complex signaling network, links to multiple scaffold proteins through feed forward and feedback mechanisms and dynamically regulate tumor initiation and progression. Three isoforms of Ras harbor mutations in a cell and tissue specific manner. Besides mutations, their epigenetic silencing also attributes them to exhibit oncogenic activities. Recent evidences support the functions of RAS oncoproteins in the acquisition of tumor cells with Epithelial-to-mesenchymal transition (EMT) features/ epithelial plasticity, enhanced metastatic potential and poor patient survival. Google Scholar electronic databases and PubMed were searched for original papers and reviews available till date to collect information on stimulation of EMT core inducers in a Ras driven cancer and their regulation in metastatic spread. Improved understanding of the mechanistic basis of regulatory interactions of microRNAs (miRs) and EMT by reprogramming the expression of targets in Ras activated cancer, may help in designing effective anticancer therapies. Apparent lack of adverse events associated with the delivery of miRs and tissue response make 'drug target miRNA' an ideal therapeutic tool to achieve progression free clinical response.
Collapse
Affiliation(s)
- Kiran Tripathi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
13
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
14
|
Vlčková K, Vachtenheim J, Réda J, Horák P, Ondrušová L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med 2018; 22:2240-2251. [PMID: 29369499 PMCID: PMC5867098 DOI: 10.1111/jcmm.13506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma arises from neural crest-derived melanocytes which reside mostly in the skin in an adult organism. Epithelial-mesenchymal transition (EMT) is a tumorigenic programme through which cells acquire mesenchymal, more pro-oncogenic phenotype. The reversible phenotype switching is an event still not completely understood in melanoma. The EMT features and increased invasiveness are associated with lower levels of the pivotal lineage identity maintaining and melanoma-specific transcription factor MITF (microphthalmia-associated transcription factor), whereas increased proliferation is linked to higher MITF levels. However, the precise role of MITF in phenotype switching is still loosely characterized. To exclude the changes occurring upstream of MITF during MITF regulation in vivo, we employed a model whereby MITF expression was inducibly regulated by shRNA in melanoma cell lines. We found that the decrease in MITF caused only moderate attenuation of proliferation of the whole cell line population. Proliferation was decreased in five of 15 isolated clones, in three of them profoundly. Reduction in MITF levels alone did not generally produce EMT-like characteristics. The stem cell marker levels also did not change appreciably, only a sharp increase in SOX2 accompanied MITF down-regulation. Oppositely, the downstream differentiation markers and the MITF transcriptional targets melastatin and tyrosinase were profoundly decreased, as well as the downstream target livin. Surprisingly, after the MITF decline, invasiveness was not appreciably affected, independently of proliferation. The results suggest that low levels of MITF may still maintain relatively high proliferation and might reflect, rather than cause, the EMT-like changes occurring in melanoma.
Collapse
Affiliation(s)
- Kateřina Vlčková
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jiri Réda
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Pavel Horák
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Lubica Ondrušová
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
15
|
Li MY, Liu JQ, Chen DP, Li ZY, Qi B, Yin WJ, He L. p68 prompts the epithelial-mesenchymal transition in cervical cancer cells by transcriptionally activating the TGF-β1 signaling pathway. Oncol Lett 2018; 15:2111-2116. [PMID: 29434913 PMCID: PMC5777103 DOI: 10.3892/ol.2017.7552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Overexpression of p68 has been reported in various types of cancer. However, little study has been conducted on the expression and role of p68 in cervical cancer. Therefore, the present study focuses on the role of p68 in cervical cancer cells, which may elucidate its potential mechanism of cervical cancer progression and shed light on the precision medical treatment of cervical cancer. Firstly, the expression of p68 was analyzed using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The changes to cell morphology were observed using an inverted microscope (XDS-500D; Shanghai Caikon Optical Instrument Co., Ltd., Shanghai, China). Cell migration was determined using an in vitro scratch assay. The present study demonstrated that the mRNA and protein levels of p68 were significantly enhanced in cervical cancer CaSki, HeLa [human papillomavirus (HPV)-18-positive], SiHa (HPV-16-positive) and C-33A (HPV-negative) cell lines compared with the human keratinocyte HaCaT cell line. Overexpression of p68 induced an elongated and spindle-shaped morphology in CaSki cells. Upregulation of p68 increased the expression of α-smooth muscle actin, vimentin and fibronectin however, epithelial marker E-cadherin was significantly decreased. Furthermore, the in vitro scratch assay demonstrated that overexpression of p68 markedly enhanced CaSki cell migration capacity at 24 and 48 h. Knockdown of p68 partially reversed transforming growth factor-β1 (TGF-β1)-induced changes in epithelial-mesenchymal transition (EMT) markers and cell morphological changes. In summary, the present study demonstrated that p68 transcriptionally activated the expression of TGF-β1, thereby prompting EMT in cervical cancer cells.
Collapse
Affiliation(s)
- Ming-Yi Li
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jin-Quan Liu
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Dong-Ping Chen
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zhou-Yu Li
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Bin Qi
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Wen-Jing Yin
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lu He
- The 5th Ward of The Radiotherapy Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
16
|
Wang W, Yi M, Chen S, Li J, Li G, Yang J, Zheng P, Zhang H, Xiong W, McCarthy JB, Li G, Li X, Xiang B. Significance of the NOR1-FOXA1/HDAC2-Slug regulatory network in epithelial-mesenchymal transition of tumor cells. Oncotarget 2017; 7:16745-59. [PMID: 26934447 PMCID: PMC4941348 DOI: 10.18632/oncotarget.7778] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is believed to play a crucial role in nasopharyngeal carcinoma (NPC) progression, a squamous cell carcinoma of the head and neck with the tendency to metastasize early. At present, much attention has been given to the inducer of EMT involved in NPC progression, while antagonists have been less intensively characterized. In this study, unbiased analysis of EMT-associated gene expression patterns was performed using data mining of global gene expression profiles derived from NPC samples, leading to the successful identification of NOR1, FOXA1, and Slug, all of which showed aberrant expression during NPC progression. The effect of tumor suppressor NOR1 on Slug-induced NPC cells during the EMT process was investigated by use of ectopic expression and RNA interference methods. The molecular mechanisms underlying the tumor-suppressing effect of NOR1 on Slug-induced EMT were thought to be dependent on the cooperation of NOR1 with the FOXA1-HDAC2 complex. We also showed that FOXA1 and HDAC2 bind the slug promoter and directly repress its transcription. Our data revealed a previously unrecognized role of the NOR1-FOXA1/HDAC2-Slug network in the regulation of the EMT process and aggressiveness of NPC.
Collapse
Affiliation(s)
- Wei Wang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Junjun Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pan Zheng
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Haijing Zhang
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Guiyuan Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Xiaoling Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| |
Collapse
|
17
|
Papadia A, Gasparri ML, Buda A, Mueller MD. Sentinel lymph node mapping in endometrial cancer: comparison of fluorescence dye with traditional radiocolloid and blue. J Cancer Res Clin Oncol 2017; 143:2039-2048. [PMID: 28828528 DOI: 10.1007/s00432-017-2501-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/10/2017] [Indexed: 02/01/2023]
Abstract
Sentinel lymph node (SLN) mapping in endometrial cancer (EMCA) is rapidly gaining acceptance in the clinical community. As compared to a full lymphadenectomy in every patient, to a selective lymphadenectomy after frozen section of uterus in selected patients with intrauterine risk factors or to a strategy in which a lymphadenectomy is always omitted, SLN mapping seems to be a reasonable and oncologically safe middle ground. Various protocols can be used when applying an SLN mapping. In this manuscript we review the characteristics, toxicity and clinical impact of technetium-99m radiocolloid (Tc-99m), of the blue dyes (methylene blue, isosulfan blue and patent blue) and of indocyanine green (ICG). ICG has an excellent toxicity profile, has higher overall and bilateral detection rates as compared to blue dyes and higher bilateral detection rates as compared to a combination of Tc-99m and blue dye. The detrimental effect of BMI on the detection rates is attenuated when ICG is used as a tracer. The ease of use of the ICG SLN mapping is perceived by the patients as a better quality of care delivered. Whenever possible, ICG should be favored over the other tracers for SLN mapping in EMCA patients.
Collapse
Affiliation(s)
- Andrea Papadia
- Department of Obstetrics and Gynecology, University Hospital of Bern and University of Bern, Effingerstrasse 102, 3010, Bern, Switzerland.
| | - Maria Luisa Gasparri
- Department of Obstetrics and Gynecology, University Hospital of Bern and University of Bern, Effingerstrasse 102, 3010, Bern, Switzerland
- Department of Gynecology Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
- Surgical and Medical Department of Translational Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Buda
- Unit of Gynecologic Oncology Surgery, Department of Obstetrics and Gynecology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Michael D Mueller
- Department of Obstetrics and Gynecology, University Hospital of Bern and University of Bern, Effingerstrasse 102, 3010, Bern, Switzerland
| |
Collapse
|
18
|
Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma. Oncotarget 2016; 7:1227-41. [PMID: 26517521 PMCID: PMC4811456 DOI: 10.18632/oncotarget.6237] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023] Open
Abstract
Melanoma is the most aggressive and deadly form of cutaneous neoplasm due to its propensity to metastasize. Oncogenic BRAF drives sustained activation of the BRAF/MEK/ERK (MAPK) pathway and cooperates with PI3K/AKT/mTOR (PI3K) signaling to induce epithelial to mesenchymal transition (EMT), leading to cell invasion and metastasis. Therefore, targeting these pathways is a promising preventive/therapeutic strategy. We have shown that fisetin, a flavonoid, reduces human melanoma cell invasion by inhibiting EMT. In addition, fisetin inhibited melanoma cell proliferation and tumor growth by downregulating the PI3K pathway. In this investigation, we aimed to determine whether fisetin can potentiate the anti-invasive and anti-metastatic effects of sorafenib in BRAF-mutated melanoma. We found that combination treatment (fisetin + sorafenib) more effectively reduced the migration and invasion of BRAF-mutated melanoma cells both in vitro and in raft cultures compared to individual agents. Combination treatment also effectively inhibited EMT as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin both in vitro and in xenograft tumors. Furthermore, combination therapy effectively inhibited Snail1, Twist1, Slug and ZEB1 protein expression compared to monotherapy. The expression of MMP-2 and MMP-9 in xenograft tumors was further reduced in combination treatment compared to individual agents. Bioluminescent imaging of athymic mice, intravenously injected with stably transfected CMV-luciferase-ires-puromycin. T2A.EGFP-tagged A375 melanoma cells, demonstrated fewer lung metastases following combination treatment versus monotherapy. Our findings demonstrate that fisetin potentiates the anti-invasive and anti-metastatic effects of sorafenib. Our data suggest that fisetin may be a worthy adjuvant chemotherapy for the management of melanoma.
Collapse
|
19
|
Richard G, Dalle S, Monet MA, Ligier M, Boespflug A, Pommier RM, de la Fouchardière A, Perier-Muzet M, Depaepe L, Barnault R, Tondeur G, Ansieau S, Thomas E, Bertolotto C, Ballotti R, Mourah S, Battistella M, Lebbé C, Thomas L, Puisieux A, Caramel J. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol Med 2016; 8:1143-1161. [PMID: 27596438 PMCID: PMC5048365 DOI: 10.15252/emmm.201505971] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas. Here, we show that high levels of ZEB1 expression are associated with inherent resistance to MAPKi in BRAFV600-mutated cell lines and tumors. ZEB1 levels are also elevated in melanoma cells with acquired resistance and in biopsies from patients relapsing while under treatment. ZEB1 overexpression is sufficient to drive the emergence of resistance to MAPKi by promoting a reversible transition toward a MITFlow/p75high stem-like and tumorigenic phenotype. ZEB1 inhibition promotes cell differentiation, prevents tumorigenic growth in vivo, sensitizes naive melanoma cells to MAPKi, and induces cell death in resistant cells. Overall, our results demonstrate that ZEB1 is a major driver of melanoma cell plasticity, driving drug adaptation and phenotypic resistance to MAPKi.
Collapse
Affiliation(s)
- Geoffrey Richard
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Marie-Ambre Monet
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Maud Ligier
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Amélie Boespflug
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Roxane M Pommier
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Arnaud de la Fouchardière
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Department of Biopathology, Centre Léon Bérard, Lyon, France
| | - Marie Perier-Muzet
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Lauriane Depaepe
- Department of Biopathology, Hospices Civils de Lyon CH Lyon Sud, Pierre-Bénite Cedex, France
| | - Romain Barnault
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Garance Tondeur
- Department of Biopathology, Hospices Civils de Lyon CH Lyon Sud, Pierre-Bénite Cedex, France
| | - Stéphane Ansieau
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Corine Bertolotto
- INSERM U1065 Equipe 1 Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome Equipe labellisée Ligue 2013 Centre Méditerranéen de Médecine Moléculaire, Nice, France Université de Nice Sophia-Antipolis UFR Médecine, Nice, France CHU Nice Service de Dermatologie, Nice, France
| | - Robert Ballotti
- INSERM U1065 Equipe 1 Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome Equipe labellisée Ligue 2013 Centre Méditerranéen de Médecine Moléculaire, Nice, France Université de Nice Sophia-Antipolis UFR Médecine, Nice, France CHU Nice Service de Dermatologie, Nice, France
| | - Samia Mourah
- APHP INSERM U976 Saint Louis Hospital Pharmacology-Genetic Laboratory Paris, Paris, France
| | - Maxime Battistella
- Department of Pathology, INSERM U1165 Université Paris Diderot AP-HP Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbé
- Department of Dermatology, APHP Saint Louis Hospital, Paris, France INSERM U976 University Paris 7 Diderot, Paris, France
| | - Luc Thomas
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Alain Puisieux
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Institut Universitaire de France, Paris, France
| | - Julie Caramel
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| |
Collapse
|
20
|
Ramsdale R, Jorissen RN, Li FZ, Al-Obaidi S, Ward T, Sheppard KE, Bukczynska PE, Young RJ, Boyle SE, Shackleton M, Bollag G, Long GV, Tulchinsky E, Rizos H, Pearson RB, McArthur GA, Dhillon AS, Ferrao PT. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal 2015; 8:ra82. [PMID: 26286024 DOI: 10.1126/scisignal.aab1111] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients with BRAF-mutant metastatic melanoma display remarkable but incomplete and short-lived responses to inhibitors of the BRAF kinase or the mitogen-activated protein kinase kinase (MEK), collectively BRAF/MEK inhibitors. We found that inherent resistance to these agents in BRAF(V600)-mutant melanoma cell lines was associated with high abundance of c-JUN and characteristics of a mesenchymal-like phenotype. Early drug adaptation in drug-sensitive cell lines grown in culture or as xenografts, and in patient samples during therapy, was consistently characterized by down-regulation of SPROUTY4 (a negative feedback regulator of receptor tyrosine kinases and the BRAF-MEK signaling pathway), increased expression of JUN and reduced expression of LEF1. This coincided with a switch in phenotype that resembled an epithelial-mesenchymal transition (EMT). In cultured cells, these BRAF inhibitor-induced changes were reversed upon removal of the drug. Knockdown of SPROUTY4 was sufficient to increase the abundance of c-JUN in the absence of drug treatment. Overexpressing c-JUN in drug-naïve melanoma cells induced similar EMT-like phenotypic changes to BRAF inhibitor treatment, whereas knocking down JUN abrogated the BRAF inhibitor-induced early adaptive changes associated with resistance and enhanced cell death. Combining the BRAF inhibitor with an inhibitor of c-JUN amino-terminal kinase (JNK) reduced c-JUN phosphorylation, decreased cell migration, and increased cell death in melanoma cells. Gene expression data from a panel of melanoma cell lines and a patient cohort showed that JUN expression correlated with a mesenchymal gene signature, implicating c-JUN as a key mediator of the mesenchymal-like phenotype associated with drug resistance.
Collapse
Affiliation(s)
- Rachel Ramsdale
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Robert N Jorissen
- Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Frederic Z Li
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Sheren Al-Obaidi
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Teresa Ward
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Karen E Sheppard
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Patricia E Bukczynska
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Richard J Young
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Samantha E Boyle
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Mark Shackleton
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Gideon Bollag
- Plexxikon Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | - Georgina V Long
- Melanoma Institute Australia, Sydney, New South Wales 2060, Australia. University of Sydney, Sydney, New South Wales 2006, Australia
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Helen Rizos
- Melanoma Institute Australia, Sydney, New South Wales 2060, Australia. Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Grant A McArthur
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Amardeep S Dhillon
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Petranel T Ferrao
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
21
|
Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo PH, Vella LJ, Goding CR, Cebon J, Behren A. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 2015; 5:5782-97. [PMID: 25051363 PMCID: PMC4170613 DOI: 10.18632/oncotarget.2164] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance.
Collapse
Affiliation(s)
- Aparna Jayachandran
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Prashanth Prithviraj
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Christopher Hudson
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Pu-Han Lo
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia
| | - Laura J Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Andreas Behren
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
22
|
Ansieau S, Collin G, Hill L. EMT or EMT-Promoting Transcription Factors, Where to Focus the Light? Front Oncol 2014; 4:353. [PMID: 25566496 PMCID: PMC4267187 DOI: 10.3389/fonc.2014.00353] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/26/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
- Stéphane Ansieau
- INSERM UMR-S1052, Centre de Recherche en Cancérologie de Lyon , Lyon , France ; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon , Lyon , France ; LabEX DEVweCAN , Lyon , France ; UNIV UMR1052 , Lyon , France ; Centre Léon Bérard , Lyon , France
| | - Guillaume Collin
- INSERM UMR-S1052, Centre de Recherche en Cancérologie de Lyon , Lyon , France ; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon , Lyon , France ; LabEX DEVweCAN , Lyon , France ; UNIV UMR1052 , Lyon , France ; Centre Léon Bérard , Lyon , France
| | - Louise Hill
- INSERM UMR-S1052, Centre de Recherche en Cancérologie de Lyon , Lyon , France ; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon , Lyon , France ; LabEX DEVweCAN , Lyon , France ; UNIV UMR1052 , Lyon , France ; Centre Léon Bérard , Lyon , France
| |
Collapse
|