1
|
Tran MT. Identification of TIMP1-induced dysregulation of epithelial-mesenchymal transition as a key pathway in inflammatory bowel disease and small intestinal neuroendocrine tumors shared pathogenesis. Front Genet 2024; 15:1376123. [PMID: 39233736 PMCID: PMC11371700 DOI: 10.3389/fgene.2024.1376123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Inflammatory Bowel Disease (IBD) is believed to be a risk factor for Small Intestinal Neuroendocrine Tumors (SI-NET) development; however, the molecular relationship between IBD and SI-NET has yet to be elucidated. In this study, we use a systems biology approach to uncover such relationships. We identified a more similar transcriptomic-wide expression pattern between Crohn's Disease (CD) and SI-NET whereas a higher proportion of overlapping dysregulated genes between Ulcerative Colitis (UC) and SI-NET. Enrichment analysis indicates that extracellular matrix remodeling, particularly in epithelial-mesenchymal transition and intestinal fibrosis mediated by TIMP1, is the most significantly dysregulated pathway among upregulated genes shared between both IBD subtypes and SI-NET. However, this remodeling occurs through distinct regulatory molecular mechanisms unique to each IBD subtype. Specifically, myofibroblast activation in CD and SI-NET is mediated through IL-6 and ciliary-dependent signaling pathways. Contrarily, in UC and SI-NET, this phenomenon is mainly regulated through immune cells like macrophages and the NCAM signaling pathway, a potential gut-brain axis in the context of these two diseases. In both IBD and SI-NET, intestinal fibrosis resulted in significant metabolic reprogramming of fatty acid and glucose to an inflammatory- and cancer-inducing state. This altered metabolic state, revealed through enrichment analysis of downregulated genes, showed dysfunctions in oxidative phosphorylation, gluconeogenesis, and glycogenesis, indicating a shift towards glycolysis. Also known as the Warburg effect, this glycolytic switch, in return, exacerbates fibrosis. Corresponding to enrichment analysis results, network construction and subsequent topological analysis pinpointed 7 protein complexes, 17 hub genes, 11 microRNA, and 1 transcription factor related to extracellular matrix accumulation and metabolic reprogramming that are candidate biomarkers in both IBD and SI-NET. Together, these biological pathways and candidate biomarkers may serve as potential therapeutic targets for these diseases.
Collapse
|
2
|
Franchina M, Cavalcoli F, Falco O, La Milia M, Elvevi A, Massironi S. Biochemical Markers for Neuroendocrine Tumors: Traditional Circulating Markers and Recent Development-A Comprehensive Review. Diagnostics (Basel) 2024; 14:1289. [PMID: 38928704 PMCID: PMC11203125 DOI: 10.3390/diagnostics14121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms presenting unique challenges in diagnosis and management. Traditional markers such as chromogranin A (CgA), pancreatic polypeptide (PP), and neuron-specific enolase (NSE) have limitations in terms of specificity and sensitivity. Specific circulating markers such as serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and various gastrointestinal hormones such as gastrin, glucagon, somatostatin, and vasoactive intestinal peptide (VIP) have a role in identifying functional NENs. Recent advances in molecular and biochemical markers, also accounting for novel genomic and proteomic markers, have significantly improved the landscape for the diagnosis and monitoring of NENs. This review discusses these developments, focusing on both traditional markers such as CgA and NSE, as well as specific hormones like gastrin, insulin, somatostatin, glucagon, and VIP. Additionally, it covers emerging genomic and proteomic markers that are shaping current research. The clinical applicability of these markers is highlighted, and their role in improving diagnostic accuracy, predicting surgical outcomes, and monitoring response to treatment is demonstrated. The review also highlights the need for further research, including validation of these markers in larger studies, development of standardized assays, and integration with imaging techniques. The evolving field of biochemical markers holds promise for improving patient outcomes in the treatment of NENs, although challenges in standardization and validation remain.
Collapse
Affiliation(s)
- Marianna Franchina
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Federica Cavalcoli
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Olga Falco
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marta La Milia
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
3
|
Mariën L, Islam O, Chhajlani S, Lybaert W, Peeters M, Van Camp G, Op de Beeck K, Vandamme T. The Quest for Circulating Biomarkers in Neuroendocrine Neoplasms: a Clinical Perspective. Curr Treat Options Oncol 2023; 24:1833-1851. [PMID: 37989978 DOI: 10.1007/s11864-023-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
OPINION STATEMENT Given the considerable heterogeneity in neuroendocrine neoplasms (NENs), it appears unlikely that a sole biomarker exists capable of fully capturing all useful clinical aspects of these tumors. This is reflected in the abundant number of biomarkers presently available for the diagnosis, prognosis, and monitoring of NEN patients. Although assessment of immunohistochemical and radiological markers remains paramount and often obligatory, there has been a notable surge of interest in circulating biomarkers over the years given the numerous benefits associated with liquid biopsies. Currently, the clinic primarily relies on single-analyte assays such as the chromogranin A assay, but these are far from ideal because of limitations such as compromised sensitivity and specificity as well as a lack of standardization. Consequently, the quest for NEN biomarkers continued with the exploration of multianalyte markers, exemplified by the development of the NETest and ctDNA-based analysis. Here, an extensive panel of markers is simultaneously evaluated to identify distinct signatures that could enhance the accuracy of patient diagnosis, prognosis determination, and response to therapy prediction and monitoring. Given the promising results, the development and implementation of these multianalyte markers are expected to usher in a new era of NEN biomarkers in the clinic. In this review, we will outline both clinically implemented and more experimental circulating markers to provide an update on developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Mariën
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Odeta Islam
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Siddharth Chhajlani
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Willem Lybaert
- NETwerk and Department of Oncology, VITAZ, Lodewijk de Meesterstraat 5, 9100, Sint-Niklaas, Belgium
| | - Marc Peeters
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Timon Vandamme
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| |
Collapse
|
4
|
Bevere M, Masetto F, Carazzolo ME, Bettega A, Gkountakos A, Scarpa A, Simbolo M. An Overview of Circulating Biomarkers in Neuroendocrine Neoplasms: A Clinical Guide. Diagnostics (Basel) 2023; 13:2820. [PMID: 37685358 PMCID: PMC10486716 DOI: 10.3390/diagnostics13172820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of diseases that are characterized by different behavior and clinical manifestations. The diagnosis and management of this group of tumors are challenging due to tumor complexity and lack of precise and widely validated biomarkers. Indeed, the current circulating mono-analyte biomarkers (such as chromogranin A) are ineffective in describing such complex tumors due to their poor sensitivity and specificity. In contrast, multi-analytical circulating biomarkers (including NETest) are emerging as more effective tools to determine the real-time profile of the disease, both in terms of accurate diagnosis and effective treatment. In this review, we will analyze the capabilities and limitations of different circulating biomarkers focusing on three relevant questions: (1) accurate and early diagnosis; (2) monitoring of disease progression and response to therapy; and (3) detection of early relapse.
Collapse
Affiliation(s)
- Michele Bevere
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
| | - Francesca Masetto
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
| | - Maria Elena Carazzolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| | - Alice Bettega
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| | - Anastasios Gkountakos
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
| | - Aldo Scarpa
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| |
Collapse
|
5
|
Prisciandaro M, Antista M, Raimondi A, Corti F, Morano F, Centonze G, Sabella G, Mangogna A, Randon G, Pagani F, Prinzi N, Niger M, Corallo S, Castiglioni di Caronno E, Massafra M, Bartolomeo MD, de Braud F, Milione M, Pusceddu S. Biomarker Landscape in Neuroendocrine Tumors With High-Grade Features: Current Knowledge and Future Perspective. Front Oncol 2022; 12:780716. [PMID: 35186729 PMCID: PMC8856722 DOI: 10.3389/fonc.2022.780716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroendocrine tumors (NETs) are classified based on morphology and are graded based on their proliferation rate as either well-differentiated low-grade (G1) to intermediate (G2–G3) or poorly differentiated high-grade neuroendocrine carcinomas (NEC G3). Recently, in gastroenteropancreatic (GEP) NETs, a new subgroup of well-differentiated high-grade tumors (NET G3) has been divided from NEC by WHO due to its different clinical–pathologic features. Although several mutational analyses have been performed, a molecular classification of NET is an unmet need in particular for G3, which tends to be more aggressive and have less benefit to the available therapies. Specifically, new possible prognostic and, above all, predictive factors are highly awaited, giving the basis for new treatments. Alteration of KRAS, TP53, and RB1 is mainly reported, but also druggable alterations, including BRAF and high microsatellite instability (MSI-H), have been documented in subsets of patients. In addition, PD-L1 demonstrated to be highly expressed in G3 NETs, probably becoming a new biomarker for G3 neuroendocrine neoplasm (NEN) discrimination and a predictive one for immunotherapy response. In this review, we describe the current knowledge available on a high-grade NET molecular landscape with a specific focus on those harboring potentially therapeutic targets in the advanced setting.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Michele Prisciandaro,
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Marco Massafra
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
6
|
Perez K, Kulke MH, Chittenden A, Ukaegbu C, Astone K, Alexander H, Brais L, Zhang J, Garcia J, Esplin ED, Yang S, Da Silva A, Nowak JA, Yurgelun MB, Garber J, Syngal S, Chan J. Clinical Implications of Pathogenic Germline Variants in Small Intestine Neuroendocrine Tumors (SI-NETs). JCO Precis Oncol 2022; 5:808-816. [PMID: 34994613 DOI: 10.1200/po.21.00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE An inherited basis for presumed sporadic neuroendocrine tumor (NET) has been suggested by evidence of familial clustering of NET and a higher incidence of second malignancies in patients and families with NET. To further investigate a potential heritable basis for sporadic neuroendocrine tumors, we performed multigene platform germline analysis to determine the frequency of hereditary susceptibility gene variants in a cohort of patients with sporadic small intestine NET (SI-NET). METHODS We performed a multigene platform germline analysis with Invitae's 83-gene, next-generation sequencing panel using DNA from 88 individuals with SI-NET from a clinically annotated database of patients with NET evaluated at Dana-Farber Cancer Institute (DFCI) who are considered high risk for inherited variants. Additionally, we evaluated the prevalence of pathogenic variants in an unselected cohort of patients with SI-NET who underwent testing with Invitae. RESULTS Of the 88 patients in the DFCI cohort, a pathogenic germline variant was identified in eight (9%) patients. In an independent cohort of 120 patients with SI-NET, a pathogenic germline variant was identified in 13 (11%) patients. Pathogenic variants were identified in more than one patient in the following genes: ATM, RAD51C, MUTYH, and BLM. Somatic testing of tumors from the DFCI cohort was suboptimal because of insufficient coverage of all targeted exons, and therefore, analysis was limited. CONCLUSION We demonstrate a 9%-11% incidence of pathogenic germline variants in genes associated with inherited susceptibility for malignancy not previously described in association with SI-NET. The association of these germline variants with neuroendocrine carcinogenesis and risk is uncertain but warrants further characterization.
Collapse
Affiliation(s)
- Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| | - Matthew H Kulke
- Section of Hematology and Oncology, Boston University and Boston Medical Center, Boston, MA
| | - Anu Chittenden
- Population Sciences Division, Dana-Farber Cancer Institute, Boston, MA
| | - Chinedu Ukaegbu
- Population Sciences Division, Dana-Farber Cancer Institute, Boston, MA
| | - Kristina Astone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Holly Alexander
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | - Annacarolina Da Silva
- Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Jonathan A Nowak
- Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| | - Judy Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA.,Population Sciences Division, Dana-Farber Cancer Institute, Boston, MA
| | - Sapna Syngal
- Harvard Medical School, Boston, MA.,Population Sciences Division, Dana-Farber Cancer Institute, Boston, MA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA
| | - Jennifer Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Kalligeros M, Diamantopoulos L, Toumpanakis C. Biomarkers in Small Intestine NETs and Carcinoid Heart Disease: A Comprehensive Review. BIOLOGY 2021; 10:biology10100950. [PMID: 34681049 PMCID: PMC8533230 DOI: 10.3390/biology10100950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Neuroendocrine tumors (NET), a heterogeneous group of tumors arising from neuroendocrine cells, often pose a diagnostic and therapeutic challenge for the clinician. Biomarkers can serve as a useful diagnostic, prognostic, and predictive tool in the management of these rare tumors. For years the field of NET biomarkers was mainly based on products se-creted by neuroendocrine tumor cells, however, during the last decade the development of nov-el multianalyte biomarkers has rapidly evolved the field. The aim of this review is to summa-rize the literature on the use and limitations of available NET biomarkers for the diagnosis and management of small intestine neuroendocrine tumors (SI-NETs) and carcinoid heart disease. Abstract Biomarkers remain a valuable tool for the diagnosis and management of Neuroendocrine tumors (NETs). Traditional monoanalyte biomarkers such as Chromogranin A (CgA) and 5-Hydrocyondoleacetic acid (5-HIAA) have been widely used for many years as diagnostic, predictive and prognostic biomarkers in the field of NETs. However, the clinical utility of these molecules often has limitations, mainly inherent to the heterogeneity of NETs and the fact that these tumors can often be non-secretory. The development of new molecular multianalyte biomarkers, especially the mRNA transcript based “NETest”, has rapidly evolve the field and gives the ability for a “liquid biopsy” which can reliably assess disease status in real time. In this review we discuss the use of established and novel biomarkers in the diagnosis and management of small intestine NETs and carcinoid heart disease.
Collapse
Affiliation(s)
- Markos Kalligeros
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | | | - Christos Toumpanakis
- Neuroendocrine Tumor Unit, Centre for Gastroenterology, ENETS Centre of Excellence, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Correspondence:
| |
Collapse
|
8
|
Sharma R, Lythgoe MP, Slaich B, Patel N. Exploring the Epigenome in Gastroenteropancreatic Neuroendocrine Neoplasias. Cancers (Basel) 2021; 13:4181. [PMID: 34439335 PMCID: PMC8394968 DOI: 10.3390/cancers13164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasias are a diverse group of neoplasms with different characteristics in terms of site, biological behaviour and metastatic potential. In comparison to other cancers, they are genetically quiet, harbouring relatively few somatic mutations. It is increasingly becoming evident that epigenetic changes are as relevant, if not more so, as somatic mutations in promoting oncogenesis. Despite significant tumour heterogeneity, it is obvious that DNA methylation, histone and chromatin modifications and microRNA expression profiles are distinctive for GEP-NEN subtypes and may correlate with clinical outcome. This review summarises existing knowledge on epigenetic changes, identifying potential contributions to pathogenesis and oncogenesis. In particular, we focus on epigenetic changes pertaining to well-differentiated neuroendocrine tumours, which make up the bulk of NENs. We also highlight both similarities and differences within the subtypes of GEP-NETs and how these relate and compare to other types of cancers. We relate epigenetic understanding to existing treatments and explore how this knowledge may be exploited in the development of novel treatment approaches, such as in theranostics and combining conventional treatment modalities. We consider potential barriers to epigenetic research in GEP-NENs and discuss strategies to optimise research and development of new therapies.
Collapse
Affiliation(s)
- Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London W12 ONN, UK;
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College London, London W12 ONN, UK;
| | - Bhavandeep Slaich
- Department of Medicine, University of Leicester, Leicester LE1 7RH, UK; (B.S.); (N.P.)
| | - Nishil Patel
- Department of Medicine, University of Leicester, Leicester LE1 7RH, UK; (B.S.); (N.P.)
| |
Collapse
|
9
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
10
|
Malczewska A, Frampton AE, Mato Prado M, Ameri S, Dabrowska AF, Zagorac S, Clift AK, Kos-Kudła B, Faiz O, Stebbing J, Castellano L, Frilling A. Circulating MicroRNAs in Small-bowel Neuroendocrine Tumors: A Potential Tool for Diagnosis and Assessment of Effectiveness of Surgical Resection. Ann Surg 2021; 274:e1-e9. [PMID: 31373926 DOI: 10.1097/sla.0000000000003502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To discover serum-based microRNA (miRNA) biomarkers for small-bowel neuroendocrine tumors (SBNET) to help guide clinical decisions. BACKGROUND MiRNAs are small noncoding RNA molecules implicated in the initiation and progression of many cancers. MiRNAs are remarkably stable in bodily fluids, and can potentially be translated into clinically useful biomarkers. Novel biomarkers are needed in SBNET to determine disease aggressiveness, select patients for treatment, detect early recurrence, and monitor response. METHODS This study was performed in 3 stages (discovery, validation, and a prospective, longitudinal assessment). Discovery comprised of global profiling of 376 miRNA in sera from SBNET patients (n = 11) versus healthy controls (HCs; n = 3). Up-regulated miRNAs were subsequently validated in additional SBNET (n = 33) and HC sera (n = 14); and then longitudinally after SBNET resection (n = 12), with serial serum sampling (preoperatively day 0; postoperatively at 1 week, 1 month, and 12 months). RESULTS Four serum miRNAs (miR-125b-5p, -362-5p, -425-5p and -500a-5p) were significantly up-regulated in SBNET (P < 0.05; fold-change >2) based on multiple normalization strategies, and were validated by RT-qPCR. This combination was able to differentiate SBNET from HC with an area under the curve of 0.951. Longitudinal assessment revealed that miR-125b-5p returned towards HC levels at 1 month postoperatively in patients without disease, whereas remaining up-regulated in those with residual disease (RSD). This was also true at 12 months postoperatively. In addition, miR-362-5p appeared up-regulated at 12 months in RSD and recurrent disease (RCD). CONCLUSIONS Our study represents the largest global profiling of serum miRNAs in SBNET patients, and the first to evaluate ongoing serum miRNA expression changes after surgical resection. Serum miR-125b-5p and miR-362-5p have potential to be used to detect RSD/RCD.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Shima Ameri
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Aleksandra F Dabrowska
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Sladjana Zagorac
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Ashley K Clift
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Omar Faiz
- St. Mark's Hospital, Harrow, Middlesex, UK
| | - Justin Stebbing
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Leandro Castellano
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
- University of Sussex, School of Life Sciences, John Maynard Smith Building, Falmer, Brighton, UK
| | - Andrea Frilling
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| |
Collapse
|
11
|
MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations. Noncoding RNA 2021; 7:ncrna7030038. [PMID: 34202122 PMCID: PMC8293323 DOI: 10.3390/ncrna7030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine neoplasms (NEN) are infrequent malignant tumors of a neuroendocrine nature that arise in various organs. They occur most frequently in the lungs, intestines, stomach and pancreas. Molecular diagnostics and prognosis of NEN development are highly relevant. The role of clinical biomarkers can be played by microRNAs (miRNAs). This work is devoted to the analysis of data on miRNA expression in NENs. For the first time, a search for specificity or a community of their functional characteristics in different types of NEN was carried out. Their properties as biomarkers were also analyzed. To date, more than 100 miRNAs have been characterized as differentially expressed and significant for the development of NEN tumors. Only about 10% of the studied miRNAs are expressed in several types of NEN; differential expression of the remaining 90% was found only in tumors of specific localizations. A significant number of miRNAs have been identified as potential biomarkers. However, only a few miRNAs have values that characterized their quality as markers. The analysis demonstrates the predominant specific expression of miRNA in each studied type of NEN. This indicates that miRNA’s functional features are predominantly influenced by the tissue in which they are formed.
Collapse
|
12
|
Dou D, Li XK, Xia QS, Chen YY, Li YL, Wang C, Qi ZR, Tan HY. Circulating miRNA-202-3p is a potential novel biomarker for diagnosis of type 1 gastric neuroendocrine neoplasms. BMC Gastroenterol 2021; 21:188. [PMID: 33892648 PMCID: PMC8066967 DOI: 10.1186/s12876-021-01769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background Currently, there are no circulating diagnostic biomarkers for gastric neuroendocrine neoplasms (g-NENs). In previous studies, we found that miRNA-202-3p is overexpressed in the tumour tissue of type 1 g-NEN. We speculated that miRNA-202-3p is also likely to be highly expressed in circulating blood. Methods A total of 27 patients with type 1 g-NEN and 27 age- and sex-matched control participants were enrolled in this study. The miRNA-202-3p levels in serum obtained from the participants were measured by qRT‐PCR. The expression level of miRNA-202-3p in the samples was calculated by comparison with a standard curve. Results The clinical characteristics of the patients were similar to those of the patient samples in previous reports. Expression of miRNA-202-3p was significantly higher in the patient group (3.84 × 107 copies/nl) than in the control group (0.635 × 107 copies/nl). The area under the ROC curve (AUC) was 0.878 (95% CI: 0.788–0.968), and the optimal cut-off point was approximately 1.12 × 107 copies/nl. The sensitivity and specificity were 88.9% and 77.8%, respectively. Conclusion This study suggests that miRNA-202-3p is potentially useful as a biomarker of type 1 g-NEN; further investigation and verification should be performed in future research.
Collapse
Affiliation(s)
- Dou Dou
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Kou Li
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Qi-Sheng Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ying-Ying Chen
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan-Liang Li
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Zhi-Rong Qi
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Huang-Ying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
13
|
Mandair D, Khan MS, Lopes A, Furtado O'Mahony L, Ensell L, Lowe H, Hartley JA, Toumpanakis C, Caplin M, Meyer T. Prognostic Threshold for Circulating Tumor Cells in Patients With Pancreatic and Midgut Neuroendocrine Tumors. J Clin Endocrinol Metab 2021; 106:872-882. [PMID: 33180939 DOI: 10.1210/clinem/dgaa822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 02/13/2023]
Abstract
BACKGROUND Circulating tumor cells (CTCs) are detectable in patients with neuroendocrine tumors (NETs) and are accurate prognostic markers although the optimum threshold has not been defined. OBJECTIVE This work aims to define optimal prognostic CTC thresholds in PanNET and midgut NETs. PATIENTS AND METHODS CellSearch was used to enumerate CTCs in 199 patients with metastatic pancreatic (PanNET) (90) or midgut NETs (109). Patients were followed for progression-free survival (PFS) and overall survival (OS) for a minimum of 3 years or until death. RESULTS The area under the receiver operating characteristic curve (AUROC) for progression at 12 months in PanNETs and midgut NETs identified the optimal CTC threshold as 1 or greater and 2 or greater, respectively. In multivariate logistic regression analysis, these thresholds were predictive for 12-month progression with an odds ratio (OR) of 6.69 (P < .01) for PanNETs and 5.88 (P < .003) for midgut NETs. The same thresholds were found to be optimal for predicting death at 36 months, with an OR of 2.87 (P < .03) and 5.09 (P < .005) for PanNETs and midgut NETs, respectively. In multivariate Cox hazard regression analysis for PFS in PanNETs, 1 or greater CTC had a hazard ratio (HR) of 2.6 (P < .01), whereas 2 or greater CTCs had an HR of 2.25 (P < .01) in midgut NETs. In multivariate analysis OS in PanNETs, 1 or greater CTCs had an HR of 3.16 (P < .01) and in midgut NETs, 2 or greater CTCs had an HR of 1.73 (P < .06). CONCLUSIONS The optimal CTC threshold to predict PFS and OS in metastatic PanNETs and midgut NETs is 1 and 2, respectively. These thresholds can be used to stratify patients in clinical practice and clinical trials.
Collapse
Affiliation(s)
- Dalvinder Mandair
- Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Mohid S Khan
- Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
- Department of Gastroenterology, University Hospital of Wales, Cardiff, Wales, UK
| | - Andre Lopes
- Cancer Research UK & UCL Cancer Trials Centre, University College London, London
| | | | - Leah Ensell
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Helen Lowe
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - John A Hartley
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | | | - Martyn Caplin
- Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
| | - Tim Meyer
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
- Department of Oncology, Royal Free Hospital, London, UK
| |
Collapse
|
14
|
Kjellman M, Knigge U, Welin S, Thiis-Evensen E, Gronbaek H, Schalin-Jäntti C, Sorbye H, Joergensen MT, Johanson V, Metso S, Waldum H, Søreide JA, Ebeling T, Lindberg F, Landerholm K, Wallin G, Salem F, Schneider MDP, Belusa R. A Plasma Protein Biomarker Strategy for Detection of Small Intestinal Neuroendocrine Tumors. Neuroendocrinology 2021; 111:840-849. [PMID: 32721955 PMCID: PMC8686712 DOI: 10.1159/000510483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Small intestinal neuroendocrine tumors (SI-NETs) are difficult to diagnose in the early stage of disease. Current blood biomarkers such as chromogranin A (CgA) and 5-hydroxyindolacetic acid have low sensitivity (SEN) and specificity (SPE). This is a first preplanned interim analysis (Nordic non-interventional, prospective, exploratory, EXPLAIN study [NCT02630654]). Its objective is to investigate if a plasma protein multi-biomarker strategy can improve diagnostic accuracy (ACC) in SI-NETs. METHODS At the time of diagnosis, before any disease-specific treatment was initiated, blood was collected from patients with advanced SI-NETs and 92 putative cancer-related plasma proteins from 135 patients were analyzed and compared with the results of age- and sex-matched controls (n = 143), using multiplex proximity extension assay and machine learning techniques. RESULTS Using a random forest model including 12 top ranked plasma proteins in patients with SI-NETs, the multi-biomarker strategy showed SEN and SPE of 89 and 91%, respectively, with negative predictive value (NPV) and positive predictive value (PPV) of 90 and 91%, respectively, to identify patients with regional or metastatic disease with an area under the receiver operator characteristic curve (AUROC) of 99%. In 30 patients with normal CgA concentrations, the model provided a diagnostic SPE of 98%, SEN of 56%, and NPV 90%, PPV of 90%, and AUROC 97%, regardless of proton pump inhibitor intake. CONCLUSION This interim analysis demonstrates that a multi-biomarker/machine learning strategy improves diagnostic ACC of patients with SI-NET at the time of diagnosis, especially in patients with normal CgA levels. The results indicate that this multi-biomarker strategy can be useful for early detection of SI-NETs at presentation and conceivably detect recurrence after radical primary resection.
Collapse
Affiliation(s)
- Magnus Kjellman
- Endocrine Surgery Unit, Karolinska Hospital, Stockholm, Sweden,
| | - Ulrich Knigge
- Department of Endocrinology and Gastrointestinal Surgery, ENETS Neuroendocrine Tumor Centre of Excellence, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Staffan Welin
- Department of Endocrine Oncology, ENETS Neuroendocrine Tumor Centre of Excellence, Uppsala University Hospital, Uppsala, Sweden
| | - Espen Thiis-Evensen
- Department of Gastroenterology, ENETS Neuroendocrine Tumor Centre of Excellence, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Henning Gronbaek
- Department of Hepatology and Gastroenterology, ENETS Neuroendocrine Tumor Centre of Excellence, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Schalin-Jäntti
- Department of Endocrinology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Halfdan Sorbye
- Department of Oncology and Department of Clinical Science, Haukeland University Hospital, Bergen, Norway
| | | | - Viktor Johanson
- Department of Surgery, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Saara Metso
- Unit of Endocrinology, Department of Internal Medicine, Tampere University Hospital, Teiskontie Tampere, Tampere, Finland
| | | | - Jon Arne Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Tapani Ebeling
- Faculty of Medicine, University of Oulu, Finland and Division of Endocrinology, Oulu University Hospital, Oulu, Finland
| | - Fredrik Lindberg
- Department of Surgery, Norrland University Hospital, Umeå, Sweden
| | - Kalle Landerholm
- Department of Clinical and Experimental Medicine, Linköping University and Department of Surgery, Ryhov County Hospital, Jönköping, Sweden
| | - Goran Wallin
- Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
| | - Farhad Salem
- Skånes University Hospital, Unit for Endocrine and Sarcoma Surgery, Lund, Sweden
| | | | | |
Collapse
|
15
|
Analysis of miR-29 Serum Levels in Patients with Neuroendocrine Tumors-Results from an Exploratory Study. J Clin Med 2020; 9:jcm9092881. [PMID: 32899973 PMCID: PMC7565987 DOI: 10.3390/jcm9092881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Due to its involvement in tumor biology as well as tumor-associated stroma cell responses, recent data suggested a potential role of miR-29 as a biomarker for different malignancies. However, its role in neuroendocrine tumors (NETs) is only poorly understood. METHODS We measured circulating levels of miR-29b in 45 patients with NET and compared them to 19 healthy controls. Results were correlated with clinical records. RESULTS In our cohort of NET patients treated between 2010 and 2019 at our department, miR-29b serum levels were significantly downregulated when compared to healthy control samples. Further, a significant correlation between chromogranin A (CgA) and relative miR-29b levels was noted. However, serum levels of miR-29b were independent of tumor-related factors such as proliferation activity according to Ki-67 index, tumor grading, the TMN stage of malignant tumors, somatostatin receptor expression or clinical features such as functional or non-functional disease and presence of tumor relapse. Finally, in contrast to previous results from other malignancies, miR-29b serum levels were not a significant predictor of overall survival in NET patients. CONCLUSION Our data suggest a role for miR-29b serum levels as a previously unrecognized biomarker for diagnosis of NET. However, miR-29 does not allow for predicting tumor stage or patients' outcome.
Collapse
|
16
|
Cavalcanti E, Galleggiante V, Coletta S, Stasi E, Chieppa M, Armentano R, Serino G. Altered miRNAs Expression Correlates With Gastroenteropancreatic Neuroendocrine Tumors Grades. Front Oncol 2020; 10:1187. [PMID: 32766159 PMCID: PMC7379872 DOI: 10.3389/fonc.2020.01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous tumors that present a wide spectrum of different clinical and biological characteristics. Currently, tumor grading, determined by Ki-67 staining and mitotic counts, represents the most reliable predictor of prognosis. This time-consuming approach fails to reach high reproducibility standards thus requiring novel approaches to support histological evaluation and prognosis. In this study, starting from a microarray analysis of paraffin-embedded tissue specimens, we defined the miRNAs signature for poorly differentiated NETs (G3) compared to well-differentiated NETs (G1 and G2) consisting of 56 deregulated miRNAs. We identified 8 miRNAs that were expressed in all GEP-NETs grades but at different level. Among these miRNAs, miR-96-5p expression level was progressively higher from grade 1 to grade 3; inversely, its target FoxO1 expression decreased from grade 1 to grade 3. Our results reveal that the miRNAs expression profile of GEP-NET is correlated with the tumor grade, showing a potential advantage of miRNA quantification that could aid clinicians in the classification of common GEP-NETs subtypes. These findings could reliably support the histological evaluation of GEP-NETs paving the way toward personalized treatment approaches.
Collapse
Affiliation(s)
- Elisabetta Cavalcanti
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Vanessa Galleggiante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Sergio Coletta
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Elisa Stasi
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| |
Collapse
|
17
|
Belaya Z, Khandaeva P, Nonn L, Nikitin A, Solodovnikov A, Sitkin I, Grigoriev A, Pikunov M, Lapshina A, Rozhinskaya L, Melnichenko G, Dedov I. Circulating Plasma microRNA to Differentiate Cushing's Disease From Ectopic ACTH Syndrome. Front Endocrinol (Lausanne) 2020; 11:331. [PMID: 32582027 PMCID: PMC7291947 DOI: 10.3389/fendo.2020.00331] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Corticotropinomas and adrenocorticotropic hormone (ACTH)-secreting neuroendocrine tumors exhibit differential levels of some microRNAs (miRs) compared to normal tissue. Because miRs can be released from tissues into circulation, they offer promise as novel disease biomarkers. Objective: To evaluate whether miRs are differentially detected in plasma samples of patients with ACTH-dependent Cushing's syndrome (CS). Design: Case-control study. Methods: Morning fasting plasma samples were collected from 41 consecutive patients with confirmed ACTH-dependent CS and 11 healthy subjects and stored at -80°C. Twenty-one miRs previously reported to be differentially expressed in ACTH-secreting tumors vs. healthy tissue samples were quantified in plasma by qPCR. Results: Among enrolled subjects, 28 were confirmed to have Cushing's disease (CD), 13 had ectopic ACTH secretion (EAS) and 11 were healthy controls. We found statistically significant differences in the circulating levels of miR-16-5p [45.04 (95% CI 28.77-61.31) in CD vs. 5.26 (2.65-7.87) in EAS, P < 0.001; q = 0.001], miR-145-5p [0.097 (0.027-0.167) in CD vs. undetectable levels in EAS, P = 0.008; q = 0.087] and differences in miR-7g-5p [1.842 (1.283-2.400) in CD vs. 0.847 (0.187-1.507) in EAS, P = 0.02; q = 0.14]. The area under the receiver-operator (ROC) curve was 0.879 (95% CI 0.770-0.987), p < 0.001, when using miR-16-5p to distinguish between CD and EAS. Circulating levels of miR-16-5p in the healthy control group differed from that of both the CD and EAS groups. Conclusions: Plasma miR levels differ in patients with CD and EAS. In particular, miR-16-5p, miR-145-5p and miR-7g-5p are promising biomarkers for further research to differentiate ACTH-dependent CS.
Collapse
Affiliation(s)
- Zhanna Belaya
- The National Medical Research Centre for Endocrinology, Moscow, Russia
- *Correspondence: Zhanna Belaya
| | - Patimat Khandaeva
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Larisa Nonn
- Department Pathology College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Alexey Nikitin
- Federal Research and Clinical Center FMBA of Russia, Moscow, Russia
| | | | - Ivan Sitkin
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Andrey Grigoriev
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Mikhail Pikunov
- National Medical Research Center of Surgery Named After A.V. Vishnevsky, Moscow, Russia
| | | | | | | | - Ivan Dedov
- The National Medical Research Centre for Endocrinology, Moscow, Russia
| |
Collapse
|
18
|
Malczewska A, Kidd M, Matar S, Kos-Kudła B, Bodei L, Oberg K, Modlin IM. An Assessment of Circulating Chromogranin A as a Biomarker of Bronchopulmonary Neuroendocrine Neoplasia: A Systematic Review and Meta-Analysis. Neuroendocrinology 2020; 110:198-216. [PMID: 31266019 DOI: 10.1159/000500525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Management of bronchopulmonary neuroendocrine neoplasia (NEN; pulmonary carcinoids [PCs], small-cell lung cancer [SCLC], and large cell neuroendocrine carcinoma) is hampered by the paucity of biomarkers. Chromogranin A (CgA), the default neuroendocrine tumor biomarker, has undergone wide assessment in gastroenteropancreatic neuroendocrine tumors. OBJECTIVES To evaluate CgA in lung NEN, define its clinical utility as a biomarker, assess its diagnostic, prognostic, and predictive efficacy, as well as its accuracy in the identification of disease recurrence. METHODS A systematic review of PubMed was undertaken using the preferred reporting items for systematic reviews and meta-analyses guidelines. No language restrictions were applied. Overall, 33 original scientific papers and 3 case reports, which met inclusion criteria, were included in qualitative analysis, and meta-analysis thereafter. All studies, except 2, were retrospective. Meta-analysis statistical assessment by generic inverse variance methodology. RESULTS Ten different CgA assay types were reported, without consistency in the upper limit of normal (ULN). For PCs (n = 16 studies; median patient inclusion 21 [range 1-200, total: 591 patients]), the CgA diagnostic sensitivity was 34.5 ± 2.7% with a specificity of 93.8 ± 4.7. CgA metrics were not available separately for typical or atypical carcinoids. CgA >100 ng/mL (2.7 × ULN) and >600 ng/mL (ULN unspecified) were anecdotally prognostic for overall survival (n = 2 retrospective studies). No evidence was presented for predicting treatment response or identifying post-surgery residual disease. For SCLC (n = 19 studies; median patient inclusion 23 [range 5-251, total: 1,241 patients]), the mean diagnostic sensitivity was 59.9 ± 6.8% and specificity 79.4 ± 3.1. Extensive disease typically exhibited higher CgA levels (diagnostic accuracy: 61 ± 2.5%). An elevated CgA was prognostic for overall survival (n = 4 retrospective studies). No prospective studies evaluating predictive benefit or prognostic utility were identified. CONCLUSION The available data are scarce. An assessment of all published data showed that CgA exhibits major limitations as an effective and accurate biomarker for either PC or SCLC. Its utility especially for localized PC/limited SCLC (when surgery is potentially curative), is limited. The clinical value of CgA remains to be determined. This requires validated, well-constructed, multicenter, prospective, randomized studies. An assessment of all published data indicates that CgA does not exhibit the minimum required metrics to function as a clinically useful biomarker for lung NENs.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Somer Matar
- Wren Laboratories, Branford, Connecticut, USA
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Irvin M Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
19
|
Colao A, de Nigris F, Modica R, Napoli C. Clinical Epigenetics of Neuroendocrine Tumors: The Road Ahead. Front Endocrinol (Lausanne) 2020; 11:604341. [PMID: 33384663 PMCID: PMC7770585 DOI: 10.3389/fendo.2020.604341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors, or NETs, are cancer originating in neuroendocrine cells. They are mostly found in the gastrointestinal tract or lungs. Functional NETs are characterized by signs and symptoms caused by the oversecretion of hormones and other substances, but most NETs are non-functioning and diagnosis in advanced stages is common. Thus, novel diagnostic and therapeutic strategies are warranted. Epigenetics may contribute to refining the diagnosis, as well as to identify targeted therapy interfering with epigenetic-sensitive pathways. The goal of this review was to discuss the recent advancement in the epigenetic characterization of NETs highlighting their role in clinical findings.
Collapse
Affiliation(s)
- Annamaria Colao
- Department of Clinical Medicine and Surgery, Unesco Chair Health Education and Sustainable Development, Federico II University of Naples, Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- *Correspondence: Roberta Modica,
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
20
|
Phylogenetic Analysis to Explore the Association Between Anti-NMDA Receptor Encephalitis and Tumors Based on microRNA Biomarkers. Biomolecules 2019; 9:biom9100572. [PMID: 31590348 PMCID: PMC6843259 DOI: 10.3390/biom9100572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) is a small non-coding RNA that functions in the epigenetics control of gene expression, which can be used as a useful biomarker for diseases. Anti-NMDA receptor (anti-NMDAR) encephalitis is an acute autoimmune disorder. Some patients have been found to have tumors, specifically teratomas. This disease occurs more often in females than in males. Most of them have a significant recovery after tumor resection, which shows that the tumor may induce anti-NMDAR encephalitis. In this study, I review microRNA (miRNA) biomarkers that are associated with anti-NMDAR encephalitis and related tumors, respectively. To the best of my knowledge, there has not been any research in the literature investigating the relationship between anti-NMDAR encephalitis and tumors through their miRNA biomarkers. I adopt a phylogenetic analysis to plot the phylogenetic trees of their miRNA biomarkers. From the analyzed results, it may be concluded that (i) there is a relationship between these tumors and anti-NMDAR encephalitis, and (ii) this disease occurs more often in females than in males. This sheds light on this issue through miRNA intervention.
Collapse
|
21
|
Boons G, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Rev Endocr Metab Disord 2019; 20:333-351. [PMID: 31368038 DOI: 10.1007/s11154-019-09508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput analysis, including next-generation sequencing and microarrays, have strongly improved our understanding of cancer biology. However, genomic data on rare cancer types, such as neuroendocrine neoplasms, has been lagging behind. Neuroendocrine neoplasms (NENs) develop from endocrine cells spread throughout the body and are highly heterogeneous in biological behavior. In this challenging disease, there is an urgent need for new therapies and new diagnostic, prognostic, follow-up and predictive biomarkers to aid patient management. The last decade, molecular data on neuroendocrine neoplasms of the gastrointestinal tract and pancreas, termed gastroenteropancreatic NENs (GEP-NENs), has strongly expanded. The aim of this review is to give an overview of the recent advances on (epi)genetic level and highlight their clinical applications to address the current needs in GEP-NENs. We illustrate how molecular alterations can be and are being used as therapeutic targets, how mutations in DAXX/ATRX and copy number variations could be used as prognostic biomarkers, how far we are in identifying predictive biomarkers and how genetics can contribute to GEP-NEN classification. Finally, we discuss recent studies on liquid biopsies in the field of GEP-NENs and illustrate how liquid biopsies can play a role in patient management. In conclusion, molecular studies have suggested multiple potential biomarkers, but further validation is ongoing.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE, Rotterdam, The Netherlands
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| |
Collapse
|
22
|
Butz H, Patócs A. MicroRNAs in endocrine tumors. EJIFCC 2019; 30:146-164. [PMID: 31263390 PMCID: PMC6599198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are small, protein noncoding RNAs that regulate gene expression post-transcriptionally. Their role is considered to set the gene expression to the optimal level, or in other words to provide "fine tuning" of gene expression. They regulate essential physiological processes such as differentiation, cell growth, apoptosis and their role is known in tumor development too. At tissue level differential miRNA expression in endocrine disorders including endocrine malignancies has also been reported. A new era of miRNAs-related research started when miRNAs were successfully detected outside of cells, in biofluids, in cell-free environments. Their significant role has been demonstrated in cell-cell communication in tumor biology. Due to their stability circulating miRNAs can serve as potential biomarkers. In common diseases circulating miRNAs can be potentially proposed as screening biomarkers and they are also useful to detect tumor recurrence hence they can be applied in post-surgery follow-up too. MiRNAs as diagnostic markers can also be helpful at tissue level when certain histology diagnosis is challenging. Beside diagnosis, tissue miRNAs have the potential to predict prognosis. Intensive research is carried out regarding endocrine tumors as well in terms of miRNAs. However, until now miRNAs as biomarkers do not applied in routine diagnostics, probably due to the challenging preanalytics. In this review we summarized tissue and circulating miRNAs found in thyroid, adrenal, pituitary and neuroendocrine tumors. We aimed to highlight the most important, selected miRNAs with potential diagnostic and prognostic value both in tissue and circulation. Common miRNAs across different endocrine neoplasms are summarized and miRNAs enriched at 14q31 locus are also highlighted suggesting their general role in tumorigenesis of endocrine glands.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary, „Lendulet˝ Hereditary Endocrine Tumors Research Group, Semmelweis University, Budapest, Hungary, Deparment of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary, „Lendulet˝ Hereditary Endocrine Tumors Research Group, Semmelweis University, Budapest, Hungary, Deparment of Molecular Genetics, National Institute of Oncology, Budapest, Hungary,Corresponding author: Attila Patocs Semmelweis University Department of Laboratory Medicine Szentkiralyi Street 46 Budapest, H-1088 Hungary E-mail:
| |
Collapse
|
23
|
Bösch F, Bazhin AV, Heublein S, Brüwer K, Knösel T, Reiter FP, Auernhammer CJ, Guba MO, Spitzweg C, Werner J, Angele MK. Treatment with somatostatin analogs induces differentially expressed let-7c-5p and mir-3137 in small intestine neuroendocrine tumors. BMC Cancer 2019; 19:575. [PMID: 31196127 PMCID: PMC6567424 DOI: 10.1186/s12885-019-5794-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Distant metastases frequently occur in gastroenteropancreatic neuroendocrine tumors. If hepatic surgery is not feasible, patients are treated with somatostatin analogs. However, the underlying mechanisms of action of this treatment remain to be defined. The aim of the present study was to analyze the micro-RNA expression profile inter-individually before and after the treatment with somatostatin analogs. MATERIAL AND METHODS Tumor specimens of all included patients (n = 8) before and after the onset of a therapy with somatostatin analogs were analyzed and a micro-RNA expression profile (754 micro-RNAs) of each probe was generated. This analysis in an intra-individual setting was selected to avoid bias from inter-individual differences. The micro-RNA expression profiles were validated by qPCR. Patients with any other systemic treatment were excluded from the present study. RESULTS Eight patients were included in the present study of which all had neuroendocrine tumors of the small intestine with diffuse hepatic metastases. Grouped analyses revealed that 15 micro-RNAs were differentially expressed (3 up- and 12 downregulated) after the exposure to somatostatin analogs. Additionally, let-7c-5p and mir-3137 are concordantly regulated in the inter-individually analysis. CONCLUSIONS This is the first study analyzing the individual micro-RNA expression profile before and after a therapy with somatostatin analogs. Data from this study reveal that somatostatin analogs may in part exert their beneficial effects through an alteration in the micro-RNA expression profile.
Collapse
Affiliation(s)
- Florian Bösch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sabine Heublein
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Brüwer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian P Reiter
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine 4, Ludwig-Maximilians-University Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus O Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine 4, Ludwig-Maximilians-University Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
24
|
Abstract
Neuroendocrine tumours (NETs) are neoplasms that arise from neuroendocrine cells. Neuroendocrine cells and their tumours can secrete a wide range of amines and polypeptide hormones into the systemic circulation. This feature has triggered widespread investigation into circulating biomarkers for the diagnosis of NETs as well as for the prediction of the biological behaviour of tumour cells. Classic examples of circulating biomarkers for gastroenteropancreatic NETs include chromogranin A, neuron-specific enolase and pancreatic polypeptide as well as hormones that elicit clinical syndromes, such as serotonin and its metabolites, insulin, glucagon and gastrin. Biomarker metrics of general markers for diagnosing all gastroenteropancreatic NET subtypes are limited, but specific hormonal measurements can be of diagnostic value in select cases. In the past decade, methods for detecting circulating transcripts and tumour cells have been developed to improve the diagnosis of patients with NETs. Concurrently, modern scanning techniques and superior radiotracers for functional imaging have markedly expanded the options for clinicians dealing with NETs. Here, we review the latest research on biomarkers in the NET field to provide clinicians with a comprehensive overview of relevant diagnostic biomarkers that can be implemented in dedicated situations.
Collapse
Affiliation(s)
- Johannes Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.
| | - Wouter T Zandee
- ENETS Center of Excellence, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wouter W de Herder
- ENETS Center of Excellence, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
25
|
Grolmusz VK, Kövesdi A, Borks K, Igaz P, Patócs A. Prognostic relevance of proliferation-related miRNAs in pancreatic neuroendocrine neoplasms. Eur J Endocrinol 2018; 179:219-228. [PMID: 30299890 DOI: 10.1530/eje-18-0305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Pancreatic neuroendocrine neoplasms (PanNENs) are rare tumors arising from the endocrine pancreas; however, their prognosis differs significantly upon their proliferative state, which is characterized by histopathological grading. MiRNAs are small, noncoding RNAs posttranscriptionally regulating gene expression. Our aim was to identify miRNAs with altered expression upon proliferation which can be used as prognostic biomarkers in PanNENs. METHODS MiRNA expression profiles of 40 PanNENs were downloaded from Gene Expression Omnibus and were reanalyzed upon tumor grades (discovery cohort). Results of the reanalysis were confirmed by qRT-PCR analysis of five miRNAs on an independent validation cohort of 63 primary PanNEN samples. Cox proportional hazards survival regression models were fit for both univariate and multivariate analysis to determine the miRNAs’ effect on progression-free and overall survival. RESULTS Nineteen miRNAs displayed differential expression between tumor grades. The altered expression of three out of five chosen miRNAs was successfully validated; hsa-miR-21, hsa-miR-10a and hsa-miR-106b were upregulated in more proliferative PanNENs compared to Grade 1 tumors. In univariate analysis, higher expression of tissue hsa-miR-21, hsa-miR-10a and hsa-miR-106b of primary PanNENs predicted worse progression-free and overall survival; however, multivariate analysis only confirmed the expression of hsa-miR-21 as an independent prognostic factor. CONCLUSIONS The expression of hsa-miR-106b, hsa-miR-10a and especially hsa-miR-21 has prognostic relevance regarding progression-free and overall survival in patients with PanNENs.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- ‘Lendület’ Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
- Department of Medical Oncology and Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Monrovia, California, USA
| | - Annamária Kövesdi
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- ‘Lendület’ Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
| | - Katalin Borks
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- ‘Lendület’ Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Rizzo FM, Meyer T. Liquid Biopsies for Neuroendocrine Tumors: Circulating Tumor Cells, DNA, and MicroRNAs. Endocrinol Metab Clin North Am 2018; 47:471-483. [PMID: 30098711 DOI: 10.1016/j.ecl.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective management of neuroendocrine tumors depends on early diagnosis, personalized risk stratification, and monitoring response to therapy. During cancer progression, tumors shed circulating tumor cells, circulating tumor DNA, and microRNAs into the bloodstream. Analysis of these biomarkers offers the prospect of a liquid biopsy to predict/monitor therapeutic responses, assess drug resistance, and quantify residual disease. Compared with single-site biopsies, these entities have the potential to inform intratumor heterogeneity and tumor evolution in a reproducible and less invasive way. This article summarizes the state-of-the-art on the potential role of these markers as prognostic and predictive factors in neuroendocrine tumors.
Collapse
Affiliation(s)
- Francesca Maria Rizzo
- Department of Oncology, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Tim Meyer
- Department of Oncology, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
27
|
MicroRNA analysis of gastroenteropancreatic neuroendocrine tumors and metastases. Oncotarget 2018; 9:28379-28390. [PMID: 29983867 PMCID: PMC6033345 DOI: 10.18632/oncotarget.25357] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
The incidence of neuroendocrine neoplasias (NEN) continues to increase. Since the primary tumor cannot be diagnosed in some cases of metastatic disease, new biomarkers are clearly needed to find the most probable site of origin. Tissue samples from 79 patients were analyzed and microRNA profiles were generated from a total of 76 primary tumors, 31 lymph node and 14 solid organ metastases. NEN metastases were associated with elevated levels of miR-30a-5p, miR-210, miR-339-3p, miR-345 and miR-660. Three microRNAs showed a strong correlation between proliferation index and metastatic disease in general (miR-150, miR-21 and miR-660). Further, each anatomic location (primary or metastatic) had one or more site-specific microRNAs more highly expressed in these tissues. Comparison between primary tumors and metastases revealed an overlap only in pancreatic (miR-127) and ileal tumors (let-7g, miR-200a and miR-331). This thorough analysis of gastroenteropancreatic neuroendocrine tumors demonstrates site-specific microRNA profiles, correlation with proliferation indices as well as corresponding nodal and distant metastases. Using microRNA profiling might improve NEN diagnostics by linking metastases to a most probable site of origin.
Collapse
|
28
|
Pedraza-Arévalo S, Gahete MD, Alors-Pérez E, Luque RM, Castaño JP. Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors. Rev Endocr Metab Disord 2018; 19:179-192. [PMID: 30293213 DOI: 10.1007/s11154-018-9465-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroendocrine tumors (NETs) comprise a complex and highly heterogeneous group of neoplasms that can arise all over the body, originating from neuroendocrine cells. NETs are characterized by a general lack of symptoms until they are in advanced phase, and early biomarkers are not as available and useful as required. Heterogeneity is an intrinsic, pivotal feature of NETs that derives from diverse causes and ultimately shapes tumor fate. The different layers that conform NET heterogeneity include a wide range of distinct characteristics, from the mere location of the tumor to its clinical and functional features, and from its cellular properties, to the core signaling and (epi)genetic components defining the molecular signature of the tumor. The importance of this heterogeneity resides in that it translates into a high variability among tumors and, hence, patients, which hinders a more precise diagnosis and prognosis and more efficacious treatment of these diseases. In this review, we highlight the significance of this heterogeneity as an intrinsic hallmark of NETs, its repercussion on clinical approaches and tumor management, and some of the possible factors associated to such heterogeneity, including epigenetic and genetic elements, post-transcriptional regulation, or splicing alterations. Notwithstanding, heterogeneity can also represent a valuable and actionable feature, towards improving medical approaches based on personalized medicine. We conclude that NETs can no longer be viewed as a single disease entity and that their diagnosis, prognosis and treatment must reflect and incorporate this heterogeneity.
Collapse
Affiliation(s)
- Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain.
| |
Collapse
|
29
|
Malczewska A, Kidd M, Matar S, Kos-Kudla B, Modlin IM. A Comprehensive Assessment of the Role of miRNAs as Biomarkers in Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology 2018; 107:73-90. [PMID: 29566385 DOI: 10.1159/000487326] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS A key issue in neuroendocrine neoplasia management is the identification of blood signatures that specifically define the activity of a cancer or local tumor microenvironment. MicroRNAs (miRNAs) may represent such a candidate. To evaluate their clinical utility as biomarkers in gastroenteropancreatic neuroendocrine tumors (GEP-NETs), we assessed their expression in tissue and blood. METHODS A systematic review of PubMed was undertaken to identify studies investigating miRNAs in GEP-NETs and their utility as blood or tissue biomarkers. RESULTS Twenty-two studies using a range of methodologies with different normalization protocols were identified: tumor - gastric NET type 1 (n = 1 study: MiR-222, regulates p27KIP1), pancreatic (n = 6: MiR-21 [inflammatory marker, oncogene] and MiR-144 [PI3K/AKT signaling], both up- and downregulated depending on the method), small intestinal (n = 7: no consistent signature), and colorectal (n = 3: no consistent signature); blood - gastric NET type 1 (n = 1: MiR-222), pancreatic (n = 3: MiR-21), and small intestinal (n = 3: no consistent signature). The studies all included heterogeneous cohorts, were insufficiently powered, and utilized different methodologies, and age- and gender-matched controls were not used. Different miRNA isolation methods and detection protocols resulted in inconsistent expression comparing tumor and blood. A scientific discrepancy was the downregulated expression of some circulating candidates compared to tissue levels, suggesting methodological issues or physiological responses to the tumor. Both are of concern in defining the biometrics of a marker. CONCLUSIONS A potential biomarker for GEP-NETs included MiR-21 (small bowel and pancreas), but this epithelial tumor marker requires prospective validation. Overall, significant scientific investigation remains to identify and demonstrate neuroendocrine specificity and to validate candidate miRNA biomarkers.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Somer Matar
- Wren Laboratories, Branford, Connecticut, USA
| | - Beata Kos-Kudla
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Irvin M Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|