1
|
Boyacıoğlu Ö, Varan C, Bilensoy E, Aykut ZG, Reçber T, Nemutlu E, Kılıç N, Korkusuz P. A novel injectable nanotherapeutic platform increasing the bioavailability and anti-tumor efficacy of Arachidonylcyclopropylamide on an ectopic non-small cell lung cancer xenograft model: A randomized controlled trial. Int J Pharm 2025; 670:125153. [PMID: 39746587 DOI: 10.1016/j.ijpharm.2024.125153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Rapid progressing non-small cell lung adenocarcinoma (NSCLC) decreases treatment success. Cannabinoids emerge as drug candidates for NSCLC due to their anti-tumoral capabilities. We previously reported the controlled release of Arachidonylcyclopropylamide (ACPA) selectively targeting cannabinoid 1 (CB1) receptor in NSCLC cells in vitro. Hydrophobic polymers like polycaprolactone (PCL) offer prolonged circulation time and slower drug clearance which is suitable for hydrophobic molecules like ACPA. Thus, the extended circulation time with enhanced bioavailability and half-life of nanoparticular ACPA is crucial for its therapeutic performance in the tumor area. We assumed that a novel high technology-controlled release system increasing the bioavailability of ACPA compared to free ACPA could be transferred to the clinic when validated in vivo. Plasma profile of ACPA and ACPA-loaded PCL-based nanomedicine by LC-MS/MS and complete blood count (CBC) was assessed in wild-type Balb/c mice. Tumor growth in nanomedicine-applied NSCLC-induced athymic nude mice was assessed using bioluminescence imaging (BLI) and caliper measurements, histomorphometry, immunohistochemistry, TUNEL assay, and Western blot on days 7-21. Injectable NanoACPA increased its systemic exposure to tissues 5.5 times and maximum plasma concentration 6 times higher than free ACPA by substantially improving bioavailability. The potent effect of NanoACPA lasted for at least two days on ectopic NSCLC model through Akt/PI3K, Ras/MEK/Erk, and JNK pathways that diminished Ki-67 proliferative and promoted TUNEL apoptotic cell scores on days 7-21. The output reveals that NanoACPA platform could be a chemotherapeutic for NSCLC in the clinic following scale-up GLP/GMP-based phase trials, owing to therapeutic efficacy at a safe low dose window.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Hacettepe University, Graduate School of Science and Engineering, Department of Bioengineering, 06800, Beytepe, Ankara, Turkey; Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Cem Varan
- Hacettepe University, Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, 06800, Beytepe, Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Zaliha Gamze Aykut
- Bilkent University, Faculty of Science, Department of Molecular Biology and Genetics, 06800, Cankaya, Ankara, Turkey
| | - Tuba Reçber
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Nedret Kılıç
- Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Petek Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey; METU MEMS Center, 06530, Ankara, Turkey.
| |
Collapse
|
2
|
Greenwood A, Yamamoto TM, Joshi M, Hutchison K, Bitler BG. Cannabidiol promotes apoptosis and downregulation of oncogenic factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626177. [PMID: 39677720 PMCID: PMC11642769 DOI: 10.1101/2024.11.30.626177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Patients with high-grade serous carcinoma of tubo-ovarian origin (HGSC) often experience significant side effects related to their disease and treatments, such as pain, discomfort, nausea, and vomiting. Over the last two decades, the use of cannabinoids (CBD) to manage pain and anxiety has become more mainstream. However, there is limited data on how CBD interacts with HGSC tumor cells or whether CBD impacts the effect of chemotherapy. Prior preclinical data has suggested the antitumor benefits of cannabinoids; however, the mechanism and data in ovarian cancer are limited. The objectives of this proposed research are to define the endocannabinoid system milieu in ovarian cancer, determine if CBD influences the growth of ovarian cancer cells, measure the cell viability when cannabinoids such as CBD are combined with standard-of-care therapies, and identify potential molecular pathways in which cannabinoids have a therapeutic effect. We conducted publicly available database searches, in vitro proliferation and apoptotic assays, functional protein signaling via reverse phase protein array analysis of CBD-treated cells using 2D cultured cells, and immunohistological analysis of ex vivo cultured patient-derived tumor slices treated with CBD. Our data suggests that CBD is unlikely to affect the growth of cancer cells at physiologic doses but promotes apoptosis and can have growth inhibitory effects at higher concentrations. The inhibitory effects seen at high dose concentrations are likely from the upregulation of apoptotic pathways and inhibition of oncogenic pathways. Overall, physiologic CBD levels have minimal impact on cancer cell growth or chemotherapy efficacy.
Collapse
Affiliation(s)
- Ashley Greenwood
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tomomi M. Yamamoto
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Functional Genomics Facility, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kent Hutchison
- Department of Psychiatry, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G. Bitler
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Li H, Zhou T, Zhang Q, Yao Y, Hua T, Zhang J, Wang H. Characterization and validation of fatty acid metabolism-related genes predicting prognosis, immune infiltration, and drug sensitivity in endometrial cancer. Biotechnol Appl Biochem 2024; 71:909-928. [PMID: 38616327 DOI: 10.1002/bab.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Endometrial cancer is considered to be the second most common tumor of the female reproductive system, and patients diagnosed with advanced endometrial cancer have a poor prognosis. The influence of fatty acid metabolism in the prognosis of patients with endometrial cancer remains unclear. We constructed a prognostic risk model using transcriptome sequencing data of endometrial cancer and clinical information of patients from The Cancer Genome Atlas (TCGA) database via least absolute shrinkage and selection operator regression analysis. The tumor immune microenvironment was analyzed using the CIBERSORT algorithm, followed by functional analysis and immunotherapy efficacy prediction by gene set variation analysis. The role of model genes in regulating endometrial cancer in vitro was verified by CCK-8, colony formation, wound healing, and transabdominal invasion assays, and verified in vivo by subcutaneous tumor transplantation in nude mice. A prognostic model containing 14 genes was constructed and validated in 3 cohorts and clinical samples. The results showed differences in the infiltration of immune cells between the high-risk and low-risk groups, and that the high-risk group may respond better to immunotherapy. Experiments in vitro confirmed that knockdown of epoxide hydrolase 2 (EPHX2) and acyl-CoA oxidase like (ACOXL) had an inhibitory effect on EC cells, as did overexpression of hematopoietic prostaglandin D synthase (HPGDS). The same results were obtained in experiments in vivo. Prognostic models related to fatty acid metabolism can be used for the risk assessment of endometrial cancer patients. Experiments in vitro and in vivo confirmed that the key genes HPGDS, EPHX2, and ACOXL in the prognostic model may affect the development of endometrial cancer.
Collapse
Affiliation(s)
- Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Teng Hua
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, China
| |
Collapse
|
4
|
Vijayaraghavan CS, Raman LS, Surenderan S, Kaur H, Chinambedu MD, Thyagarajan SP, Gnanambal Krishnan ME. A Novel Non-Psychoactive Fatty Acid from a Marine Snail, Conus inscriptus, Signals Cannabinoid Receptor 1 (CB1) to Accumulate Apoptotic C16:0 and C18:0 Ceramides in Teratocarcinoma Cell Line PA1. Molecules 2024; 29:1737. [PMID: 38675558 PMCID: PMC11052367 DOI: 10.3390/molecules29081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 04/28/2024] Open
Abstract
The cannabinoid-type I (CB1) receptor functions as a double-edged sword to decide cell fate: apoptosis/survival. Elevated CB1 receptor expression is shown to cause acute ceramide accumulation to meet the energy requirements of fast-growing cancers. However, the flip side of continual CB1 activation is the initiation of a second ceramide peak that leads to cell death. In this study, we used ovarian cancer cells, PA1, which expressed CB1, which increased threefold when treated with a natural compound, bis(palmitoleic acid) ester of a glycerol (C2). This novel compound is isolated from a marine snail, Conus inscriptus, using hexane and the structural details are available in the public domain PubChem database (ID: 14275348). The compound induced two acute ceramide pools to cause G0/G1 arrest and killed cells by apoptosis. The compound increased intracellular ceramides (C:16 to 7 times and C:18 to 10 times), both of which are apoptotic inducers in response to CB1 signaling and thus the compound is a potent CB1 agonist. The compound is not genotoxic because it did not induce micronuclei formation in non-cancerous Chinese hamster ovarian (CHO) cells. Since the compound induced the cannabinoid pathway, we tested if there was a psychotropic effect in zebrafish models, however, it was evident that there were no observable neurobehavioral changes in the treatment groups. With the available data, we propose that this marine compound is safe to be used in non-cancerous cells as well as zebrafish. Thus, this anticancer compound is non-toxic and triggers the CB1 pathway without causing psychotropic effects.
Collapse
Affiliation(s)
- Christina Sathyanathan Vijayaraghavan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | - Lakshmi Sundaram Raman
- Faculty of Pharmacy, SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | | | - Harpreet Kaur
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India; (H.K.); (M.D.C.)
| | - Mohanapriya Dandapani Chinambedu
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India; (H.K.); (M.D.C.)
| | - Sadras Panchatcharam Thyagarajan
- Distinguished Professor and Advisor to Chancellor, Vellore Institute of technology (VIT), Vellore Campus, Tiruvalam Rd, Katpadi, Vellore 632014, Tamil Nadu, India;
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai 600116, Tamil Nadu, India;
| |
Collapse
|
5
|
Zhao B, Jiang W, Wang J, Sheng G, Wang Y, Meng K, Yang T. A prognostic signature of fatty acid metabolism-related genes for predicting survival of gastric cancer patients. J Biochem Mol Toxicol 2024; 38:e23687. [PMID: 38515005 DOI: 10.1002/jbt.23687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
To analyze the expression profile of fatty acid metabolism (FAM)-related genes, identify a prognostic signature, and evaluate its clinical value for gastric cancer (GC) patients. The mRNA expression profiles of 493 FAM-related genes were obtained from TCGA database. Differentially expressed genes (DEGs) between cancer and non-cancer samples were identified, and their relationships with overall survival (OS) of GC patients were evaluated. A prognostic signature of FAM-related genes was identified by the LASSO regression model, and its predictive performance was tested by an independent external cohort. Ninety-three DEGs were identified, of which 44 were downregulated and 49 were upregulated. After optimizing risk characteristics, a prognostic signature of four FAM-related genes (ACBD5, AVPR1A, ELOVL4, and FAAH) were developed. All patients were divided into high-risk (>1.020) and low-risk groups (≤1.020) on the basis of the median risk score. Survival analysis indicated that high-risk patients had a shorter OS than low-risk patients (5-year OS rate, 26.3% vs. 45.0%, p < 0.001). The AUC values for the prediction of 3-year and 5-year OS were 0.664 and 0.624, respectively. In the GSE62254 data set, the 5-year OS rate of high-risk and low-risk patients were 44.7% versus 61.5%, respectively (p = 0.003). The AUC values were 0.632 and 0.627 at 3-year and 5-year prediction. The prognostic signature of FAM-related genes was an independent predictor of OS (hanzard ratio [HR] for TCGA cohort: 1.851, 95% confidence interval [CI]: 1.394-2.458, p < 0.001; HR for GSE62254: 1.549, 95% CI: 1.098-2.185, p = 0.013). The risk signature of four FAM-related genes was a valuable prognostic tool, and it might be helpful for clinical management and therapeutic decision of gastric cancer patients.
Collapse
Affiliation(s)
- Bochao Zhao
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Jingchao Wang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Guannan Sheng
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Yiming Wang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Kewei Meng
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Tao Yang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| |
Collapse
|
6
|
Darwish A, Pammer M, Gallyas F, Vígh L, Balogi Z, Juhász K. Emerging Lipid Targets in Glioblastoma. Cancers (Basel) 2024; 16:397. [PMID: 38254886 PMCID: PMC10814456 DOI: 10.3390/cancers16020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Milán Pammer
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Gallyas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Vígh
- Institute of Biochemistry, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
7
|
Shi Y, Wu S, Zhang X, Cao Y, Zhang L. Lipid metabolism-derived FAAH is a sensitive marker for the prognosis and immunotherapy of osteosarcoma patients. Heliyon 2024; 10:e23499. [PMID: 38169921 PMCID: PMC10758879 DOI: 10.1016/j.heliyon.2023.e23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Lipid metabolism in cancer refers to the alterations in how cancer cells process and utilize lipids, a type of fat molecule. It was investigated how lipid metabolism relates to osteosarcoma. Genes relevant to lipid metabolism were gathered to create lipid metabolism-associated clusters and locate the dangerous marker. We investigated FAAH's prognostic significance, route annotation, immunotherapy response, and medication prediction. Besides, FAAH is proven to be a potent, dangerous marker that may promote growth and migration and inhibit the apoptosis of osteosarcoma. FAAH exhibits higher expression levels in tumor tissues as compared to normal tissues. In conclusion, FAAH is identified in this work as a potentially dangerous gene and immunotherapy determinant. This study requires more investigation to determine how FAAH influences the immune response in osteosarcoma.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yangbo Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
8
|
Kovacs D, Flori E, Bastonini E, Mosca S, Migliano E, Cota C, Zaccarini M, Briganti S, Cardinali G. Targeting Fatty Acid Amide Hydrolase Counteracts the Epithelial-to-Mesenchymal Transition in Keratinocyte-Derived Tumors. Int J Mol Sci 2023; 24:17379. [PMID: 38139209 PMCID: PMC10743516 DOI: 10.3390/ijms242417379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| |
Collapse
|
9
|
Tripathy M, Bui A, Henderson J, Sun J, Woods CR, Somani S, Doan T, Louis Sam Titus ASC, Mohan C. FAAH inhibition ameliorates breast cancer in a murine model. Oncotarget 2023; 14:910-918. [PMID: 37921652 PMCID: PMC10624203 DOI: 10.18632/oncotarget.28534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Breast cancer is the leading cancer among females worldwide. Disease outcome depends on the hormonal status of the cancer and whether or not it is metastatic, but there is a need for more efficacious therapeutic strategies where first line treatment fails. In this study, Fatty Acid Amide Hydrolase (FAAH) inhibition and endocannabinoids were examined as therapeutic alternatives. FAAH is an integral membrane enzyme that hydrolyzes endocannabinoids, rendering them inactive, and FAAH inhibition is predicted to increase cancer cell death. To test this, breast cancer cells were probed for FAAH expression using Western blot analysis, treated with FAAH inhibitors, exogenous endocannabinoids, and combinations of the two treatments, and assessed for viability. High levels of FAAH were observed in different breast cancer cell lines. FAAH inhibition was more effective than exogenous endocannabinoid treatment, and the combination of FAAH inhibitors and endocannabinoids was the most effective in inducing apoptosis of breast cancer cells in vitro. In addition, in vivo FAAH inhibition reduced breast cancer growth in immunodeficient mice. FAAH inhibition is a promising approach, and tremendous progress has been made in the field to validate this mechanism as an alternative to chemotherapy. Further research exploring the therapeutic potential and impact of FAAH expression on cancer cells is warranted.
Collapse
Affiliation(s)
- Mallika Tripathy
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Amy Bui
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Jared Henderson
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Jeffrey Sun
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Soumya Somani
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Thao Doan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
10
|
Vecera L, Prasil P, Srovnal J, Berta E, Vidlarova M, Gabrhelik T, Kourilova P, Lovecek M, Skalicky P, Skarda J, Kala Z, Michalek P, Hajduch M. Morphine Analgesia, Cannabinoid Receptor 2, and Opioid Growth Factor Receptor Cancer Tissue Expression Improve Survival after Pancreatic Cancer Surgery. Cancers (Basel) 2023; 15:4038. [PMID: 37627066 PMCID: PMC10452720 DOI: 10.3390/cancers15164038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PDAC) has a poor prognosis despite surgical removal and adjuvant therapy. Additionally, the effects of postoperative analgesia with morphine and piritramide on survival among PDAC patients are unknown, as are their interactions with opioid/cannabinoid receptor gene expressions in PDAC tissue. Cancer-specific survival data for 71 PDAC patients who underwent radical surgery followed by postoperative analgesia with morphine (n = 48) or piritramide (n = 23) were therefore analyzed in conjunction with opioid/cannabinoid receptor gene expressions in the patients' tumors. Receptor gene expressions were determined using the quantitative real-time polymerase chain reaction. Patients receiving morphine had significantly longer cancer-specific survival (CSS) than those receiving piritramide postoperative analgesia (median 22.4 vs. 15 months; p = 0.038). This finding was supported by multivariate modelling (p < 0.001). The morphine and piritramide groups had similar morphine equipotent doses, receptor expression, and baseline characteristics. The opioid/cannabinoid receptor gene expression was analyzed in a group of 130 pancreatic cancer patients. Of the studied receptors, high cannabinoid receptor 2 (CB2) and opioid growth factor receptor (OGFR) gene expressions have a positive influence on the length of overall survival (OS; p = 0.029, resp. p = 0.01). Conversely, high delta opioid receptor gene expression shortened OS (p = 0.043). Multivariate modelling indicated that high CB2 and OGFR expression improved OS (HR = 0.538, p = 0.011, resp. HR = 0.435, p = 0.001), while high OPRD receptor expression shortened OS (HR = 2.264, p = 0.002). Morphine analgesia, CB2, and OGFR cancer tissue gene expression thus improved CSS resp. OS after radical PDAC surgery, whereas delta opioid receptor expression shortened OS.
Collapse
Affiliation(s)
- Lubomir Vecera
- Department of Emergency Medicine, The Tomas Bata Regional Hospital in Zlin, 762 75 Zlin, Czech Republic;
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Medical Faculty of Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Prasil
- Department of Anesthesiology and Intensive Medicine, Landesklinikum Amstetten, 3300 Amstetten, Austria;
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic; (M.V.); (P.K.); (M.H.)
- Laboratory of Experimental Medicine, Olomouc University Hospital, 779 00 Olomouc, Czech Republic
| | - Emil Berta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic; (M.V.); (P.K.); (M.H.)
- Department of Anaesthesia and Intensive Care, Ringerike Hospital, 3511 Hønefoss, Norway
| | - Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic; (M.V.); (P.K.); (M.H.)
- Laboratory of Experimental Medicine, Olomouc University Hospital, 779 00 Olomouc, Czech Republic
| | - Tomas Gabrhelik
- Department of Anaesthesiology, Resuscitation and Intensive Care, The Tomas Bata Regional Hospital in Zlin, 762 75 Zlin, Czech Republic;
| | - Pavla Kourilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic; (M.V.); (P.K.); (M.H.)
- Laboratory of Experimental Medicine, Olomouc University Hospital, 779 00 Olomouc, Czech Republic
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (M.L.); (P.S.)
| | - Pavel Skalicky
- Department of Surgery I, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (M.L.); (P.S.)
| | - Jozef Skarda
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University Hospital Ostrava, University of Ostrava, 703 00 Ostrava, Czech Republic;
| | - Zdenek Kala
- Department of Surgery, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic;
| | - Pavel Michalek
- Department of Anesthesiology and Intensive Medicine, General University Hospital, First Medical Faculty of the Charles University, 128 00 Prague, Czech Republic;
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic; (M.V.); (P.K.); (M.H.)
- Laboratory of Experimental Medicine, Olomouc University Hospital, 779 00 Olomouc, Czech Republic
- Cancer Research Czech Republic Foundation, 779 00 Olomouc, Czech Republic
| |
Collapse
|
11
|
Genovese T, Duranti A, Monaco F, Siracusa R, Fusco R, Impellizzeri D, D’Amico R, Cordaro M, Cuzzocrea S, Di Paola R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10125. [PMID: 37373275 PMCID: PMC10298572 DOI: 10.3390/ijms241210125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
12
|
Boyacıoğlu Ö, Korkusuz P. Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:145-169. [PMID: 36396926 DOI: 10.1007/5584_2022_748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors. Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades. In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
14
|
Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition. Int J Mol Sci 2022; 23:ijms232415502. [PMID: 36555144 PMCID: PMC9779292 DOI: 10.3390/ijms232415502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation.
Collapse
|
15
|
Vidlarova M, Berta E, Prasil P, Prokopova A, Gurska S, Khoylou M, Rehulkova A, Kourilova P, Chudacek J, Szkorupa M, Klein J, Skarda J, Srovnal J, Hajduch M. Cannabinoid receptor 2 expression in early-stage non-small cell lung cancers identifies patients with good prognosis and longer survival. Transl Lung Cancer Res 2022; 11:2040-2050. [PMID: 36386452 PMCID: PMC9641041 DOI: 10.21037/tlcr-22-247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death with a 5-year survival of only 21%. Reliable prognostic and/or predictive biomarkers are needed to improve NSCLC patient stratification, particularly in curative disease stages. Since the endogenous cannabinoid system is involved in both carcinogenesis and anticancer immune defense, we hypothesized that tumor tissue expression of cannabinoid 1 and 2 receptors (CB1 and CB2) may affect survival. METHODS Tumor tissue samples collected from 100 NSCLC patients undergoing radical surgery were analyzed for CB1 and CB2 gene and protein expression using the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The gene and protein expression data were correlated with disease stage, histology, tumor grading, application of chemotherapy, and survival. Additional paired tumor and normal tissue samples of 10 NSCLC patients were analyzed independently for comparative analysis of CB1 and CB2 gene expression. RESULTS Patients with tumors expressing the CB2 gene had significantly longer overall survival (OS) (P<0.001), cancer specific survival (CSS) (P=0.002), and disease-free survival (DFS) (P<0.001). They also presented with fewer lymph node metastases at the time of surgery (P=0.011). A multivariate analysis identified CB2 tumor tissue gene expression as a positive prognostic factor for CSS [hazard ratio (HR) =0.274; P=0.013] and DFS (HR =0.322; P=0.009), and increased CSS. High CB2 gene and protein expression were detected in 79.6% and 31.5% of the tested tumor tissue samples, respectively. Neither CB1 gene nor CB1 or CB2 protein expression affected survival. When comparing paired tumor and tumor-free lung tissue samples, we observed reduced CB1 (P=0.008) and CB1 (P=0.056) gene expression in tumor tissues. CONCLUSIONS In NSCLC patients undergoing radical surgery, expression of the CB1 and CB2 receptor genes is significantly decreased in neoplastic versus tumor-free lung tissue. CB2 tumor tissue gene expression is strongly associated with longer survival (OS, CSS, DFS) and fewer lymph node metastases at the time of surgery. More studies are needed to evaluate its role as a biomarker in NSCLC and to investigate the potential use of CB2 modulators to treat or prevent lung cancers.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Emil Berta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic;,Ringerike Hospital, Hønefoss, Norway
| | - Petr Prasil
- Department of Anesthesiology, Landesklinikum Amstetten, Amstetten, Austria
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Marta Khoylou
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Pavla Kourilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Josef Chudacek
- I. Department of Surgery, University Hospital Olomouc, Olomouc, Czech Republic
| | - Marek Szkorupa
- I. Department of Surgery, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jiri Klein
- Tomas Bata Regional Hospital in Zlin, Zlin, Czech Republic
| | - Jozef Skarda
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic;,Cancer Research Czech Republic, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic;,Cancer Research Czech Republic, Olomouc, Czech Republic
| |
Collapse
|
16
|
Fu J, Zhang K, Lu L, Li M, Han M, Guo Y, Wang X. Improved Therapeutic Efficacy of CBD with Good Tolerance in the Treatment of Breast Cancer through Nanoencapsulation and in Combination with 20(S)-Protopanaxadiol (PPD). Pharmaceutics 2022; 14:pharmaceutics14081533. [PMID: 35893789 PMCID: PMC9332327 DOI: 10.3390/pharmaceutics14081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect. The CBD-PPD co-loading liposomes (CP-liposomes) presented a mean particle size of 138.8 nm. Further glycosyl-modified CP-liposomes (GMCP-liposomes) were prepared by the incorporation of n-Dodecyl β-D-maltoside (Mal) into the liposomal bilayer with glucose residue anchored on the surface to act as a ligand targeting the GLUT1 receptor highly expressed on tumor cells. In vivo studies on murine breast tumor (4T1 cells)-bearing BALB/c mice demonstrated good dose dependent anti-tumor efficacy of CP-liposomes. A high tumor inhibition rate (TIR) of 82.2% was achieved with good tolerance. However, glycosylation modification failed to significantly enhance TIR of CP-liposomes. In summary, combined therapy with PPD proved to be a promising strategy for CBD to be developed into a novel antitumor drug, with characteristics of effectiveness, good tolerance, and the potential to overcome tumor cachexia.
Collapse
Affiliation(s)
- Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Kunfeng Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
- Correspondence:
| |
Collapse
|
17
|
Genovese T, Duranti A, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Crupi R, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Fatty Acid Amide Hydrolase (FAAH) Inhibition Plays a Key Role in Counteracting Acute Lung Injury. Int J Mol Sci 2022; 23:2781. [PMID: 35269926 PMCID: PMC8910911 DOI: 10.3390/ijms23052781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Acute lung injury (ALI) is a group of lung illnesses characterized by severe inflammation, with no treatment. The fatty acid amide hydrolase (FAAH) enzyme is an integral membrane protein responsible for the hydrolysis of the main endocannabinoids, such as anandamide (AEA). In pre-clinical pain and inflammation models, increasing the endogenous levels of AEA and other bioactive fatty acid amides (FAAs) via genetic deletion or the pharmacological inhibition of FAAH produces many analgesic benefits in several different experimental models. To date, nobody has investigated the role of FAAH inhibition on an ALI mouse model. Mice were subjected to a carrageenan injection and treated orally 1 h after with the FAAH inhibitor URB878 dissolved in a vehicle consisting of 10% PEG-400, 10% Tween-80 and 80% saline at different doses: The inhibition of FAAH activity was able to counteract not only the CAR-induced histological alteration, but also the cascade of related inflammatory events. URB878 clears the way for further studies based on FAAH inhibition in acute lung pathologies.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
18
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
19
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
20
|
Kicman A, Pędzińska-Betiuk A, Kozłowska H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur J Pharmacol 2021; 911:174560. [PMID: 34648805 DOI: 10.1016/j.ejphar.2021.174560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.
Collapse
Affiliation(s)
- Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| |
Collapse
|
21
|
Ramer R, Wittig F, Hinz B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers (Basel) 2021; 13:cancers13225701. [PMID: 34830856 PMCID: PMC8616499 DOI: 10.3390/cancers13225701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research. Abstract Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.
Collapse
|
22
|
Hosami F, Ghadimkhah MH, Salimi V, Ghorbanhosseini SS, Tavakoli-Yaraki M. The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomed Pharmacother 2021; 144:112279. [PMID: 34624678 DOI: 10.1016/j.biopha.2021.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer, as a mysterious and complex disease, has a multi-stage molecular process that uses the cellular molecular machine and multiple signaling pathways to its advantage. Cannabinoids, as terpenophenolic compounds and their derivatives, showed influences on immune system responses, inflammation, and cell growth that have sparked a growing interest in exploring their effects on cancer cell fate, as well. A large body of evidence in experimental models indicating the involvement of cannabinoids and their related receptors in cancer cell growth, development, and fate. In accordance, the present study provided insights regarding the strengths and limits of cannabinoids and their receptors in critical steps of tumorigenesis and its underlying molecular pathways such as; cancer cell proliferation, type of cell death pathway, angiogenesis, invasion, metastasis and, immune system response. Based on the results of the present study and due to the contribution of cannabinoids in various cancer cell growth control processes, these compounds cancer can be considered worthwhile in finding new alternatives for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Kienzl M, Hasenoehrl C, Maitz K, Sarsembayeva A, Taschler U, Valadez-Cosmes P, Kindler O, Ristic D, Raftopoulou S, Santiso A, Bärnthaler T, Brcic L, Hahnefeld L, Gurke R, Thomas D, Geisslinger G, Kargl J, Schicho R. Monoacylglycerol lipase deficiency in the tumor microenvironment slows tumor growth in non-small cell lung cancer. Oncoimmunology 2021; 10:1965319. [PMID: 34527428 PMCID: PMC8437460 DOI: 10.1080/2162402x.2021.1965319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. Naïve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-γ, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carina Hasenoehrl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Kathrin Maitz
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Arailym Sarsembayeva
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute Of Molecular Biosciences, University Of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Oliver Kindler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Dusica Ristic
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ana Santiso
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic And Research Institute Of Pathology, Medical University Of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Robert Gurke
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Dominique Thomas
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Julia Kargl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Rudolf Schicho
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
24
|
Molecular Mechanism of Cannabinoids in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073680. [PMID: 33916164 PMCID: PMC8037087 DOI: 10.3390/ijms22073680] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids are a family of heterogeneous compounds that mostly interact with receptors eliciting several physiological effects both in the central and peripheral nervous systems and in peripheral organs. They exert anticancer action by modulating signaling pathways involved in cancer progression; furthermore, the effects induced by their use depend on both the type of tumor and their action on the components of the endocannabinoid system. This review will explore the mechanism of action of the cannabinoids in signaling pathways involved in cancer proliferation, neovascularisation, migration, invasion, metastasis, and tumor angiogenesis.
Collapse
|
25
|
Sathynathan CV, Raman LS, Vajiravelu S, Kumar TD, Panchatcharam TS, Narasimhan G, Doss GCP, Krishnan MEG. 3-Hydroxypropane-1,2-Diyl Dipalmitoleate-A Natural Compound with Dual Roles (CB1 Agonist/FAAH1 Blocker) in Inhibiting Ovarian Cancer Cell Line. Pharmaceuticals (Basel) 2021; 14:ph14030255. [PMID: 33809034 PMCID: PMC7998876 DOI: 10.3390/ph14030255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Though it was once known that upregulated Cannabinoid Receptor (CB1) and downregulated Fatty Acid Amide Hydrolase (FAAH1) are associated with tumour aggressiveness and metastasis, it is now clear that upregulated CB1 levels more than a certain point cause accumulation of ceramide and directs cells to apoptosis. Hence, CB1 analogues/FAAH1 blockers are explored widely as anticancer drugs. There are reports on CB1-agonists and FAAH1-blockers separately, however, dual activities along with ovarian cancer-specific links are not established for any natural compound. With this setting, we describe for the first time the isolation of 3-hydroxypropane-1,2-diyl dipalmitoleate (564.48 Da) from a marine snail, Conus inscriptus, which binds to both CB1 and FAAH1 (glide energies: −70.61 and −30.52 kcal/mol, respectively). MD simulations indicate stable compound–target interaction for a minimum of 50 nanoseconds with relative invariabilities in Rg. The compound inhibited ovarian cancer cell line, PA1 at 1.7 μM. Structural and chemical interpretation of the compound (C2) was done using FT-IR, GC-MS, ESI-MS, 1H and 13C-NMR (1 and 2D). Furthermore, a probable route for gram-scale synthesis of C2 is hinted herein. With the available preliminary data, molecular mechanisms involving dual roles for this potent molecule must be elucidated to understand the possibilities of usage as an anticancer drug.
Collapse
Affiliation(s)
- Christina Vijayaraghavan Sathynathan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu 600 116, India;
| | - Lakshmi Sundaram Raman
- Central Research Facility (CRF), Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu 600 116, India;
| | - Sivamurugan Vajiravelu
- PG & Research Department of Chemistry, Pachaiyappa’s College, Chennai, Tamil Nadu 600 030, India;
| | - Thirumal D. Kumar
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India; (T.D.K.); (G.C.P.D.)
| | - Thyagarajan Sadras Panchatcharam
- Chancellor, Avinashilingam Institute for Home Science and Higher Education for Women (Deemed University), Coimbatore, Tamil Nadu 641 043, India;
| | - Gopinathan Narasimhan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu 600 116, India;
| | - George C. Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India; (T.D.K.); (G.C.P.D.)
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu 600 116, India;
- Correspondence:
| |
Collapse
|
26
|
The Endocannabinoid, Anandamide, Acts as a Novel Inhibitor of LPS-Induced Inflammasome Activation in Human Gastric Cancer AGS Cell Line: Involvement of CB1 and TRPV1 Receptors. Mediators Inflamm 2021. [DOI: 10.1155/2021/6698049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inflammasome activation is a pivotal step for the maturation of IL-1β, which is involved in the development and progression of gastric cancer (GC). Endocannabinoids, such as anandamide (AEA), are emerging as new anticancer therapeutic agents; however, their effects on inflammasome components and underlying mechanisms have not been well elucidated. This study was designed to investigate the effects of AEA on the expression of inflammasome components in lipopolysaccharide- (LPS-) stimulated AGS cells. Moreover, we explored the involvement of cannabinoid receptors (CRs), including CB1R and TRPV1R, in the observed effects of AEA. Our results showed that inflammation was induced by LPS (10 μg/ml) in AGS cells, and inflammasome components (NLRP3, MLRC4, ASC, IL-18, and IL-1β) were overexpressed. Exposure to AEA (10 μM, 24 h) before or after inflammation induction downregulated the expression of inflammasome components and attenuated inflammasome activation as demonstrated by cleavage of caspase 1 and matured IL-1β secretion, although AEA pretreatment showed more reducing effects on the inflammasome activation. In addition, blocking of CB1R and TRPV1R by application of AM-251 and AMG-9810 antagonists remarkably reversed the observed effects of AEA and revealed that NLRP3, NLRC4, and IL-1β genes were mainly regulated via CB1R, while TRPV1R could only regulate the expression of IL-1β and IL-18 genes. In conclusion, our results would indicate a novel anticancer effect of anandamide by attenuation of inflammasome activation and consequently reducing IL-1β production in human AGS cancer cell line via CB1R and TRPV1R.
Collapse
|
27
|
Boyacıoğlu Ö, Bilgiç E, Varan C, Bilensoy E, Nemutlu E, Sevim D, Kocaefe Ç, Korkusuz P. ACPA decreases non-small cell lung cancer line growth through Akt/PI3K and JNK pathways in vitro. Cell Death Dis 2021; 12:56. [PMID: 33431819 PMCID: PMC7801394 DOI: 10.1038/s41419-020-03274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Therapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39 × 10-12 M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24 hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Hacettepe University, Graduate School of Science and Engineering, Department of Bioengineering, 06800, Beytepe, Ankara, Turkey
- Atılım University, Faculty of Medicine, Department of Medical Biochemistry, 06830, Gölbaşı, Ankara, Turkey
| | - Elif Bilgiç
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey
| | - Cem Varan
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sıhhiye, Ankara, Turkey
| | - Duygu Sevim
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Çetin Kocaefe
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Petek Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Histology and Embryology, 06100, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
28
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
29
|
Tian X, Liu T, Li L, Shao B, Yao D, Feng L, Cui J, James TD, Ma X. Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe. Anal Chem 2020; 92:9493-9500. [DOI: 10.1021/acs.analchem.9b05826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangge Tian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lu Li
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bo Shao
- Zhendong Pharmaceutical Research Institute Co. Ltd., Changzhi, Shanxi 047100, China
| | - Dahong Yao
- Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaochi Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
30
|
Milian L, Mata M, Alcacer J, Oliver M, Sancho-Tello M, Martín de Llano JJ, Camps C, Galbis J, Carretero J, Carda C. Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro. PLoS One 2020; 15:e0228909. [PMID: 32049991 PMCID: PMC7015420 DOI: 10.1371/journal.pone.0228909] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background/Objective Patients with non-small cell lung cancer (NSCLC) develop resistance to antitumor agents by mechanisms that involve the epithelial-to-mesenchymal transition (EMT). This necessitates the development of new complementary drugs, e.g., cannabinoid receptors (CB1 and CB2) agonists including tetrahydrocannabinol (THC) and cannabidiol (CBD). The combined use of THC and CBD confers greater benefits, as CBD enhances the effects of THC and reduces its psychotropic activity. We assessed the relationship between the expression levels of CB1 and CB2 to the clinical features of a cohort of patients with NSCLC, and the effect of THC and CBD (individually and in combination) on proliferation, EMT and migration in vitro in A549, H460 and H1792 lung cancer cell lines. Methods Expression levels of CB1, CB2, EGFR, CDH1, CDH2 and VIM were evaluated by quantitative reverse transcription-polymerase chain reaction. THC and CBD (10–100 μM), individually or in combination (1:1 ratio), were used for in vitro assays. Cell proliferation was determined by BrdU incorporation assay. Morphological changes in the cells were visualized by phase-contrast and fluorescence microscopy. Migration was studied by scratch recolonization induced by 20 ng/ml epidermal growth factor (EGF). Results The tumor samples were classified according to the level of expression of CB1, CB2, or both. Patients with high expression levels of CB1, CB2, and CB1/CB2 showed increased survival reaching significance for CB1 and CB1/CB2 (p = 0.035 and 0.025, respectively). Both cannabinoid agonists inhibited the proliferation and expression of EGFR in lung cancer cells, and CBD potentiated the effect of THC. THC and CBD alone or in combination restored the epithelial phenotype, as evidenced by increased expression of CDH1 and reduced expression of CDH2 and VIM, as well as by fluorescence analysis of cellular cytoskeleton. Finally, both cannabinoids reduced the in vitro migration of the three lung cancer cells lines used. Conclusions The expression levels of CB1 and CB2 have a potential use as markers of survival in patients with NSCLC. THC and CBD inhibited the proliferation and expression of EGFR in the lung cancer cells studied. Finally, the THC/CBD combination restored the epithelial phenotype in vitro.
Collapse
Affiliation(s)
- Lara Milian
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain.,Networking Research Center on Respiratory Diseases (CIBERER), ISCIII, Carretera Soller Bunyola, Mallorca, Illes Balears, Spain
| | | | - María Oliver
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| | - José Javier Martín de Llano
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Carlos Camps
- University General Hospital of Valencia, Valencia, Spain
| | - José Galbis
- Alzira Hospital, Carretera de Corbera, Alzira, Valencia, Spain
| | - Julian Carretero
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| |
Collapse
|
31
|
Laezza C, Pagano C, Navarra G, Pastorino O, Proto MC, Fiore D, Piscopo C, Gazzerro P, Bifulco M. The Endocannabinoid System: A Target for Cancer Treatment. Int J Mol Sci 2020; 21:ijms21030747. [PMID: 31979368 PMCID: PMC7037210 DOI: 10.3390/ijms21030747] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, the endocannabinoid system has received great interest as a potential therapeutic target in numerous pathological conditions. Cannabinoids have shown an anticancer potential by modulating several pathways involved in cell growth, differentiation, migration, and angiogenesis. However, the therapeutic efficacy of cannabinoids is limited to the treatment of chemotherapy-induced symptoms or cancer pain, but their use as anticancer drugs in chemotherapeutic protocols requires further investigation. In this paper, we reviewed the role of cannabinoids in the modulation of signaling mechanisms implicated in tumor progression.
Collapse
Affiliation(s)
- Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
- Correspondence: (C.L.); (M.B.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Olga Pastorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
- Correspondence: (C.L.); (M.B.)
| |
Collapse
|
32
|
Brunetti L, Loiodice F, Piemontese L, Tortorella P, Laghezza A. New Approaches to Cancer Therapy: Combining Fatty Acid Amide Hydrolase (FAAH) Inhibition with Peroxisome Proliferator-Activated Receptors (PPARs) Activation. J Med Chem 2019; 62:10995-11003. [PMID: 31407888 DOI: 10.1021/acs.jmedchem.9b00885] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the course of the past decade, peroxisome proliferator-activated receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and other N-acylethanolamines. These substances have been shown to have numerous anticancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this Miniperspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anticancer compounds.
Collapse
Affiliation(s)
- Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
33
|
Yang J, Tian Y, Zheng R, Li L, Qiu F. Endocannabinoid system and the expression of endogenous ceramides in human hepatocellular carcinoma. Oncol Lett 2019; 18:1530-1538. [PMID: 31423220 DOI: 10.3892/ol.2019.10399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
The endogenous lipid metabolism network is associated with the occurrence and progression of malignancies. Endocannabinoids and ceramides have demonstrated their anti-proliferative and pro-apoptotic properties in a series of cancer studies. The aim of the present study was to evaluate the expression patterns of endocannabinoids and endogenous ceramides in 67 pairs of human hepatocellular carcinoma (HCC) tissues and non-cancerous counterpart controls. Anandamide (AEA), the major endocannabinoid, was reduced in tumor tissues, probably due to the high expression and activity of fatty acid amide hydrolase. Another important endocannabinoid, 2-arachidonylglycerol (2-AG), was elevated in tumor tissues compared with non-tumor controls, indicating that the biosynthesis of 2-AG is faster than the degradation of 2-AG in tumor cells. Furthermore, western blot analysis demonstrated that cannabinoid receptor 1 was downregulated, while cannabinoid receptor 2 was elevated in HCC tissues, in accordance with the alterations in the levels of AEA and 2-AG, respectively. For HCC tissues, the expression levels of C18:0, 20:0 and 24:0-ceramides decreased significantly, whereas C12:0, 16:0, 18:1 and 24:1-ceramides were upregulated, which may be associated with cannabinoid receptor activation and stearoyl-CoA desaturase protein downregulation. The exact role of endocannabinoids and ceramides in regulating the fate of HCC cells requires further investigation.
Collapse
Affiliation(s)
- Jiayong Yang
- Department of Pharmacy, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China.,Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yifeng Tian
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ruihe Zheng
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Funan Qiu
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
34
|
Dariš B, Tancer Verboten M, Knez Ž, Ferk P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn J Basic Med Sci 2019; 19:14-23. [PMID: 30172249 DOI: 10.17305/bjbms.2018.3532] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids. The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes. Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer. In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite. In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types. Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries. In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration. Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients. The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.
Collapse
Affiliation(s)
- Barbara Dariš
- Department of Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
35
|
Turgeman I, Bar-Sela G. Cannabis for cancer - illusion or the tip of an iceberg: a review of the evidence for the use of Cannabis and synthetic cannabinoids in oncology. Expert Opin Investig Drugs 2018; 28:285-296. [PMID: 30572744 DOI: 10.1080/13543784.2019.1561859] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A flowering plant of variegated ingredients and psychoactive qualities, Cannabis has long been used for medicinal and recreational purposes. Regulatory approvals have been gained across a broad range of palliative and therapeutic indications, and in some cases, included in standard treatment guidelines. AREAS COVERED The use of Cannabis and cannabinoid-based-medicines in oncology is summarized in this article. Cannabinoids are classified according to natural and synthetic subtypes and their mechanisms of action expounded. The variability of available products is discussed in the clinical context and data regarding chemotherapy-induced nausea and vomiting, cancer-related pain, anorexia, insomnia, and anxiety are presented. Moreover, immunological and antineoplastic effects in preclinical and clinical trials are addressed. Concepts such as synergism or opposition with conventional treatment modalities, the sequence of administration and dosage, molecular cross-talk and malignancy-cannabinoid congruence, are explored. Finally, side-effects, limitations in trial design and legislation barriers are related. EXPERT OPINION Sufficient evidence supports the use of Cannabis for palliative indications in oncology; however, patients should be carefully selected, guided and followed. Promising research suggests the potent antineoplastic activity, but more data must be accrued before conclusions can be drawn.
Collapse
Affiliation(s)
- Ilit Turgeman
- a Division of Oncology , Rambam Health Care Campus , Haifa , Israel
| | - Gil Bar-Sela
- b Center for Malignant Diseases , Emek Medical Center , Afula , Israel.,c Faculty of Medicine , Technion-Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
36
|
Wu XY, Yu XY. Overexpression of KCNJ4 correlates with cancer progression and unfavorable prognosis in lung adenocarcinoma. J Biochem Mol Toxicol 2018; 33:e22270. [PMID: 30512237 DOI: 10.1002/jbt.22270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022]
Abstract
KCNJ4 (potassium voltage-gated channel subfamily J member 4) belongs to the inward rectifier potassium channel family, which is inhibited by novel anticancer agents. However, the biologic significance of KCNJ4 in lung adenocarcinoma (LADC) is largely unknown. Therefore, in this study, we evaluated the expression, clinical correlation, and prognostic value of KCNJ4 in LADC and normal lung tissues according to data from The Cancer Genome Atlas datasets. A small interfering RNA (siRNA)-mediated technology was used to inhibit the expression level of KCNJ4. Cell counting kit-8 and plate colony formation assays were used to measure cell proliferation. Wound-healing and transwell assays were applied to detect cell mobility and metastasis. Quantitative real-time polymerase chain reaction and western blot analysis were used to examine messenger RNA and protein expressions, respectively. It was found that KCNJ4 was significantly upregulated in LADC tissues and cells. The high level of KCNJ4 predicted shorter overall survival and was identified as an independent prognostic factor in patients with LADC. siRNA-mediated KCNJ4 silencing impeded LADC cell proliferation, migration, and invasion. Knockdown of KCNJ4 suppressed the expression of phosphorylated mitogen-activated protein kinase/extracellular signal regulated kinase (p-MEK) and phosphorylated extracellular signal-regulated kinase (p-ERK). Collectively, these results shed some light on the contribution of KCNJ4 functioning as a significant player in LADC, implying that KCNJ4 might be a valuable prognostic biomarker and a potential therapeutic target for LADC treatment.
Collapse
Affiliation(s)
- Xiao-Yan Wu
- Department of Respiratory Medicine, Shandong Chest Hospital, Jinan, Shandong, China
| | - Xue-Yan Yu
- Department of Respiratory Medicine, Shandong Chest Hospital, Jinan, Shandong, China
| |
Collapse
|
37
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
38
|
The Fatty Acid Amide Hydrolase Inhibitor URB937 Ameliorates Radiation-Induced Lung Injury in a Mouse Model. Inflammation 2018; 40:1254-1263. [PMID: 28478515 DOI: 10.1007/s10753-017-0568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation-induced lung injury (RILI) is a potentially life-threatening complication of radiotherapy. In the current study, we examined the potential protective effects of URB937, an inhibitor of fatty acid amide hydrolase using a mouse model of RILI. Briefly, male C57BL/6 mice received 16Gy irradiation to the thoracic region and then intraperitoneal injection of either URB937 (1 mg/kg) or vehicle every 2 days for 30 days. The extent of the lung injury was evaluated histologically at the end of the drug treatment as well as 3 months after the cessation of the treatment. The data showed URB937 attenuated radiation-induced lung injury and increased endocannabinoid concentration in lung tissue. Treatment with URB937 decreased leukocyte migration and inflammatory cytokines in bronchoalveolar lavage fluid and plasma at day 30. Histopathological examination revealed URB937 could restore lung structure and restrain inflammatory cell and fibroblast accumulation caused by irradiation in lung tissue. URB937 also decreased radiation-induced pro-inflammatory (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α) and pro-fibrotic cytokines (e.g., transforming growth factor-β1) level in lung tissue, as well as lipid peroxidation in the lungs. Mouse survival examined in a separate group of experimental subjects indicated that URB937 could prolong animal survival. Experiments using a mouse bearing Lewis lung carcinoma cells showed that URB937 does not affect irradiation-induced inhibition of tumor growth. These results suggest that inhibiting fatty acid amide hydrolase could ameliorate RILI without compromising the efficacy of irradiation on tumor control.
Collapse
|
39
|
Elbaz M, Ahirwar D, Ravi J, Nasser MW, Ganju RK. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget 2018; 8:29668-29678. [PMID: 27213582 PMCID: PMC5444694 DOI: 10.18632/oncotarget.9408] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/10/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.
Collapse
Affiliation(s)
- Mohamad Elbaz
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.,Department of Pharmacology, Pharmacy School, Helwan University, Helwan, Egypt
| | - Dinesh Ahirwar
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Janani Ravi
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Mohd W Nasser
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
40
|
Winkler K, Ramer R, Dithmer S, Ivanov I, Merkord J, Hinz B. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget 2017; 7:15047-64. [PMID: 26930716 PMCID: PMC4924770 DOI: 10.18632/oncotarget.7592] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/25/2016] [Indexed: 11/25/2022] Open
Abstract
Inhibition of endocannabinoid degradation has been suggested as tool for activation of endogenous tumor defense. One of these strategies lies in blockade of fatty acid amide hydrolase (FAAH) which catalyzes the degradation of endocannabinoids (anandamide [AEA], 2-arachidonoylglycerol [2-AG]) and endocannabinoid-like substances (N-oleoylethanolamine [OEA], N-palmitoylethanolamine [PEA]). This study addressed the impact of two FAAH inhibitors (arachidonoyl serotonin [AA-5HT], URB597) on A549 lung cancer cell metastasis and invasion. LC-MS analyses revealed increased levels of FAAH substrates (AEA, 2-AG, OEA, PEA) in cells incubated with either FAAH inhibitor. In athymic nude mice FAAH inhibitors were shown to elicit a dose-dependent antimetastatic action yielding a 67% and 62% inhibition of metastatic lung nodules following repeated administration of 15 mg/kg AA-5HT and 5 mg/kg URB597, respectively. In vitro, a concentration-dependent anti-invasive action of either FAAH inhibitor was demonstrated, accompanied with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Using siRNA approaches, a causal link between the TIMP-1-upregulating and anti-invasive action of FAAH inhibitors was confirmed. Moreover, knockdown of FAAH by siRNA was shown to confer decreased cancer cell invasiveness and increased TIMP-1 expression. Inhibitor experiments point toward a role of CB2 and transient receptor potential vanilloid 1 in conferring anti-invasive effects of FAAH inhibitors and FAAH siRNA. Finally, antimetastatic and anti-invasive effects were confirmed for all FAAH substrates with AEA and OEA causing a TIMP-1-dependent anti-invasive action. Collectively, the present study provides first-time proof for an antimetastatic action of FAAH inhibitors. As mechanism of its anti-invasive properties an upregulation of TIMP-1 was identified.
Collapse
Affiliation(s)
- Katrin Winkler
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Robert Ramer
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Sophie Dithmer
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Igor Ivanov
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Jutta Merkord
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
41
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
42
|
Fiore D, Proto MC, Pisanti S, Picardi P, Pagano Zottola AC, Butini S, Gemma S, Casagni A, Laezza C, Vitale M, Ligresti A, Di Marzo V, Zisterer DM, Nathwani S, Williams DC, Campiani G, Gazzerro P, Bifulco M. Antitumor effect of pyrrolo-1,5-benzoxazepine-15 and its synergistic effect with Oxaliplatin and 5-FU in colorectal cancer cells. Cancer Biol Ther 2017; 17:849-58. [PMID: 26392056 DOI: 10.1080/15384047.2015.1078028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Some compounds of a series of novel pyrrolo-1,5-benzoxa(thia)zepine, a well-known group of tubulin targeting agents, display anti-tumor effects mainly inducing cell cycle arrest and apoptosis in several human cancer models. A member of this family, pyrrolo-1,5-benzoxazepine-15 (PBOX-15), has previously shown potent pro-apoptotic activity in a variety of human tumor cell types, with minimal toxicity toward normal blood and bone marrow cells. In this study, we evaluated the PBOX-15-mediated effects in human colorectal cancer cell (CRC) lines, DLD-1 and HT-29. The compound, used at concentrations equal to or greater than 1 μM, inhibited the proliferation of human CRC cells, inducing a significant cell cycle arrest in the G2/M phase. In DLD-1 cells, treatments prolonged over 48 h triggered a strong activation of the intrinsic apoptotic pathway as indicated by activation of caspase-9, caspase-3 and PARP cleavage. Moreover, nanomolar concentrations of PBOX-15, significantly improved the oxaliplatin and 5-fluouracil-induced anti-proliferative effects in DLD1 cell line. The observed synergistic interaction of both PBOX-15/Oxaliplatin and PBOX-15/5FU may involve activation of p38 MAPK and JNK pathway, which in turn significantly increased caspase-3 cleavage in DLD-1 cells, treated with PBOX-5/Oxaliplatin but not with PBOX-15/5FU. Moreover, PBOX-15/5FU-treated cells showed an increase in expression of the pro-apoptotic protein Bax. Taken together, these results show that PBOX-15 could represent a promising compound for the treatment of human CRC and a strong candidate for novel therapeutic options.
Collapse
Affiliation(s)
- Donatella Fiore
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Maria Chiara Proto
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Simona Pisanti
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Paola Picardi
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | | | - Stefania Butini
- b European Research Center for Drug Discovery and Development (NatSynDrugs) and Dip. di Biotecnologie , Chimica e Farmacia, University of Siena , Siena , Italy
| | - Sandra Gemma
- b European Research Center for Drug Discovery and Development (NatSynDrugs) and Dip. di Biotecnologie , Chimica e Farmacia, University of Siena , Siena , Italy
| | - Alice Casagni
- b European Research Center for Drug Discovery and Development (NatSynDrugs) and Dip. di Biotecnologie , Chimica e Farmacia, University of Siena , Siena , Italy
| | - Chiara Laezza
- c Institute of Endocrinology and Experimental Oncology, IEOS CNR , Naples , Italy
| | - Mario Vitale
- d Department of Medicine and Surgery , University of Salerno , Baronissi (SA) , Italy
| | - Alessia Ligresti
- e Institute of Biomolecular Chemistry, C.N.R. , Pozzuoli (Naples) , Italy
| | - Vincenzo Di Marzo
- e Institute of Biomolecular Chemistry, C.N.R. , Pozzuoli (Naples) , Italy
| | - Daniela M Zisterer
- f School of Biochemistry and Immunology , Trinity College Dublin , Dublin , Ireland
| | - Seema Nathwani
- f School of Biochemistry and Immunology , Trinity College Dublin , Dublin , Ireland
| | - D Clive Williams
- f School of Biochemistry and Immunology , Trinity College Dublin , Dublin , Ireland
| | - Giuseppe Campiani
- b European Research Center for Drug Discovery and Development (NatSynDrugs) and Dip. di Biotecnologie , Chimica e Farmacia, University of Siena , Siena , Italy
| | - Patrizia Gazzerro
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Maurizio Bifulco
- d Department of Medicine and Surgery , University of Salerno , Baronissi (SA) , Italy
| |
Collapse
|
43
|
Ramer R, Hinz B. Cannabinoids as Anticancer Drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:397-436. [PMID: 28826542 DOI: 10.1016/bs.apha.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics' effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
44
|
Wang DP, Liu KJ, Kasper G, Lin Q, Hai J. Inhibition of SENP3 by URB597 ameliorates neurovascular unit dysfunction in rats with chronic cerebral hypoperfusion. Biomed Pharmacother 2017; 91:872-879. [PMID: 28501776 DOI: 10.1016/j.biopha.2017.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
Disruption of the neurovascular unit (NVU), induced by chronic cerebral hypoperfusion (CCH), has been broadly found in various neurological disorders. SUMO-specific protease 3 (SENP3) is expressed in neurons, astrocytes, and microglia, and regulates a variety of cell events. However, whether SENP3 is involved in neurovascular injury under the condition of CCH is still elusive. To address this issue, we investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on NVU and the role of SENP3 in this process, as well as the underling mechanisms. The expression of SENP3 was detected by immunochemistry. The function and structure of the NVU was assessed by Western blot analysis and transmission electron microscopy. CCH caused the upregulation of SENP3, the disruption of cell and non-cell components at the protein level within the NVU, and ultrastructural deterioration. The NVU impairment as well as overexpression of SENP3 were reversed by treatment with URB597. These results reveal a novel neuroprotective role in URB597, which implicates URB597 in the amelioration of CCH-induced NVU impairment by inhibiting SENP3.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ke-Jia Liu
- Department of Cell Biology, Key Laboratory of Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Graham Kasper
- McGill Neuroscience, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
45
|
Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis. Pharmacol Res 2017; 119:227-236. [PMID: 28193521 DOI: 10.1016/j.phrs.2017.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is a major health problem in Western countries. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) exerts antiproliferative actions in a number of tumoral cell lines, including CRC cells. Monoacylglycerol lipase (MAGL), a serine hydrolase that inactivates 2-AG, is highly expressed in aggressive human cancer cells. Here, we investigated the role of MAGL in experimental colon carcinogenesis. The role of MAGL was assessed in vivo by using the xenograft and the azoxymethane models of colon carcinogenesis; MAGL expression was evaluated by RT-PCR and immunohistochemistry; 2-AG levels were measured by liquid chromatography mass spectrometry; angiogenesis was evaluated in tumor tissues [by microvessel counting and by investigating the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) proteins] as well as in human umbilical vein endothelial cells (HUVEC); cyclin D1 was evaluated by RT-PCR. MAGL and 2-AG were strongly expressed in tumor tissues. The MAGL inhibitor URB602 reduced xenograft tumor volume, this effect being associated to down-regulation of VEGF and FGF-2, reduction in the number of vessels and down-regulation of cyclin D1. In HUVEC, URB602 exerted a direct antiangiogenic effect by inhibiting FGF-2 induced proliferation and migration, and by modulating pro/anti-angiogenic agents. In experiments aiming at investigating the role of MAGL in chemoprevention, URB602 attenuated azoxymethane-induced preneoplastic lesions, polyps and tumors. MAGL, possibly through modulation of angiogenesis, plays a pivotal role in experimental colon carcinogenesis. Pharmacological inhibition of MAGL could represent an innovative therapeutic approach to reduce colorectal tumor progression.
Collapse
|
46
|
Gęgotek A, Nikliński J, Žarković N, Žarković K, Waeg G, Łuczaj W, Charkiewicz R, Skrzydlewska E. Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells. Redox Biol 2016; 9:210-219. [PMID: 27567474 PMCID: PMC5007445 DOI: 10.1016/j.redox.2016.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/22/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Background The oxidative modifications of bioactive macromolecules have important roles in carcinogenesis. Of particular interest are lipid peroxidation products, which are involved in the activation of Nrf2 and endocannabinoids that affect cancer progression. Methods In lung cancer tissues (squamous cell lung carcinoma - SCC and adenocarcinoma - AC), the glutathione peroxidase and catalase activity and glutathione level, together with the expression of Nrf2 and its activators/inhibitors were estimated. The oxidative modifications of DNA (8-hydroxy-2′-deoxyguanosine and N7-methylguanine), endocannabinoids (anandamide and 2- arachidonylglyceriol), their receptors (CB1/2, TRV1, GPR55), phospholipid fatty acids (arachidonic, linoleic and docosahexaenoic), and reactive aldehydes (4-hydroxynonenal, 4-oxononenal and malondialdehyde) were determined. Results Tumour tissues showed lower antioxidant capacity than healthy tissues, which was accompanied by lower levels of fatty acids and higher levels of reactive aldehydes. Disturbances in antioxidant capacity and enhanced DNA oxidative modifications were observed in 88% of AC patients and 81% of SCC patients. The 4-hydroxynonenal-Histidine adducts were detected in the necrotic and stromal cells in all tumours. These findings were associated with the enhanced Nrf2 activity, especially in AC. The strong difference between the cancer subtypes was evident in the levels of endocannabinoids, with an increase in 89% of SCC and a decrease in 85% of AC patients being observed. Additionally, the increase in the expression of CB1/2 receptors was observed only in 82% of AC, while the expression of VR1 and GPR55 was enhanced in 79% of SCC and 82% of AC patients. Conclusions This study shows significant differences in the redox status, Nrf2 pathway and endocannabinoid system between SCC and AC tissues. Understanding the relation between the various lipid mediators and antioxidants in different lung cancer subtypes may be beginning for further research on the effective anticancer therapy. AC tissues show lower antioxidant capacity than SCC. Nrf2/ARE pathway is activated stronger in AC than in SCC. AC exhibits more lipid oxidative modifications than SCC. HNE-protein adducts are detected in the necrotic and stromal cells in SCC and AC. SCC exhibits increase in endocannabinoids level while in AC reverse effect is observed.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Departments of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Jacek Nikliński
- Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | | | - Kamelija Žarković
- University of Zagreb School of Medicine, Clinical Hospital Centre Division of Pathology, Zagreb, Croatia
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University in Graz, Austria
| | - Wojciech Łuczaj
- Departments of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | | | - Elżbieta Skrzydlewska
- Departments of Analytical Chemistry, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
47
|
Pyszniak M, Tabarkiewicz J, Łuszczki JJ. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance. Onco Targets Ther 2016; 9:4323-36. [PMID: 27486335 PMCID: PMC4958360 DOI: 10.2147/ott.s106944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy.
Collapse
Affiliation(s)
- Maria Pyszniak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin; Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|
48
|
Ramer R, Hinz B. Antitumorigenic targets of cannabinoids - current status and implications. Expert Opin Ther Targets 2016; 20:1219-35. [PMID: 27070944 DOI: 10.1080/14728222.2016.1177512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. AREAS COVERED The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. EXPERT OPINION The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.
Collapse
Affiliation(s)
- Robert Ramer
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
49
|
Powell CA, Nasser MW, Zhao H, Wochna JC, Zhang X, Shapiro C, Shilo K, Ganju RK. Fatty acid binding protein 5 promotes metastatic potential of triple negative breast cancer cells through enhancing epidermal growth factor receptor stability. Oncotarget 2016; 6:6373-85. [PMID: 25779666 PMCID: PMC4467443 DOI: 10.18632/oncotarget.3442] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022] Open
Abstract
Fatty acid binding protein 5 (FABP5), an intracellular lipid binding protein, has been shown to play a role in various cancers, including breast cancer. However, FABP5 and its role in triple negative breast cancer (TNBC) have not been studied. We show FABP5 protein expression correlates with TNBC, high grade tumors, and worse disease-free survival in a tissue microarray containing 423 breast cancer patient samples. High FABP5 expression significantly correlates with epidermal growth factor receptor (EGFR) expression in these samples. Decreased tumor growth and lung metastasis were observed in FABP5-/- mice othotopically injected with murine breast cancer cells. FABP5 loss in TNBC tumor cells inhibited motility and invasion. Mechanistic studies revealed that FABP5 knockdown in TNBC cells results in decreased EGFR expression and FABP5 is important for EGF-induced metastatic signaling. Loss of FABP5 leads to proteasomal targeting of EGFR. Our studies show that FABP5 has a role in both host and tumor cell during breast cancer progression. These findings suggest that FABP5 mediates its enhanced effect on TNBC metastasis, in part, through EGFR, by inhibiting EGFR proteasomal degradation. These studies show, for the first time, a correlation between FABP5 and EGFR in enhancing TNBC metastasis through a novel mechanism.
Collapse
Affiliation(s)
| | - Mohd W Nasser
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Helong Zhao
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Jacob C Wochna
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Charles Shapiro
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
50
|
Xie M, He J, He C, Wei S. γ Secretase inhibitor BMS-708163 reverses resistance to EGFR inhibitor via the PI3K/Akt pathway in lung cancer. J Cell Biochem 2016; 116:1019-27. [PMID: 25561332 DOI: 10.1002/jcb.25056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/18/2014] [Indexed: 11/11/2022]
Abstract
Lung adenocarcinoma cells harboring epidermal growth factor receptor (EGFR) mutations are sensitive to EGFR tyrosine kinase inhibitor (TKI). Acquired resistance to EGFR TKI develops after prolonged treatment. The aim of this study was to investigate the effect of the novel γ secretase inhibitor BMS-708163 on acquired resistance to the EGFR TKI gefitinib. We did not observe known mechanisms of acquired resistance to EGFR TKI, including the EGFR T790M mutation and MET gene amplification in the gefitinib-resistant PC9/AB2 cells. BMS-708163 inhibited PI3K/Akt expression and sensitized PC9/AB2 cells to gefitinib-induced cytotoxicity. In contrast, BMS-708163 had no significant effect on gefitinib sensitivity in PC9 parental cells. Combined treatment with BMS-708163 and gefitinib induced high levels of apoptosis. Our in vivo studies showed that combined treatment of gefitinib and BMS-708163 inhibited the growth of PC9/AB2 xenografts. In conclusion, our data show that combined treatment of gefitinib and γ secretase inhibitors may be useful for treating lung adenocarcinomas harboring EGFR mutations with acquired gefitinib resistance.
Collapse
Affiliation(s)
- Mian Xie
- China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Road, Guangzhou, 510120, China
| | | | | | | |
Collapse
|