1
|
Taguchi H, Sumi D, Uemura A, Matsumoto K, Fujishiro H. Cisplatin caused highly delayed cytotoxicity in the immortalized cells derived from S3 segment of mouse kidney proximal tubules. Toxicol Appl Pharmacol 2025; 494:117171. [PMID: 39592085 DOI: 10.1016/j.taap.2024.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Anti-cancer drug cisplatin (CDDP) causes severe acute kidney injury (AKI). CDDP-induced AKI does not occur immediately after administration, but rather 6 to 10 days after administration. However, the mechanism underling the delayed renal injury by CDDP is not well understood. In a previous investigation using immortalized cells derived from the S1, S2, and S3 segments of the proximal tubules, we found that S3 cells were more sensitive to CDDP than S1 and S2 cells. In this study, we examined whether S1, S2, and S3 cells would be useful in elucidating the mechanism of CDDP-induced delayed renal injury and whether the high sensitivity of S3 cells contributes to CDDP-induced delayed renal injury. Measurement of platinum (Pt) content by ICP-MS showed that Pt accumulation peaked at 15 min after CDDP exposure in each cell type. Even when the medium was replaced with CDDP-free medium after the 15-min CDDP exposure and the cells were further incubated, delayed cytotoxicity was still observed. The S3 cells exhibited greater sensitivity to CCDP than the S1 and S2 cells at all time points after the medium change. To investigate the mechanism of the CDDP-induced delayed cytotoxicity, we examined the cell cycle distribution of cells after CDDP exposure. The results showed that CDDP-induced perturbation of cell cycle was greater in S3 than in S1 and S2 cells. These results suggest that perturbation of the cell cycle in S3 cells due to enhanced CDDP-DNA adduct formation contributes to the high susceptibility of S3 cells to CDDP-induced delayed cytotoxicity.
Collapse
Affiliation(s)
- Hiroki Taguchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Daigo Sumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Ayumi Uemura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kanako Matsumoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
2
|
Troisi R, Galardo F, Ferraro G, Lucignano R, Picone D, Marano A, Trifuoggi M, Sica F, Merlino A. Cisplatin/Apo-Transferrin Adduct: X-ray Structure and Binding to the Transferrin Receptor 1. Inorg Chem 2024. [PMID: 39711171 DOI: 10.1021/acs.inorgchem.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here, we report the X-ray structure of the adduct formed upon reaction of cisplatin, one of the most prescribed anticancer agents for the clinic treatment of solid tumors, with the apo-form of human serum transferrin (hTF). Two Pt binding sites were identified in both molecules of the adduct present in the crystal asymmetric unit: Pt binds close to the side chains of Met256 and Met499 at the N- and C-lobe, respectively. In the crystal structure, the cisplatin moiety bound to Met256 also interacts with Ser616 from a symmetry related molecule. Structural analyses, together with in solution data, demonstrate that the presence of iron does not affect the ability of hTF to bind cisplatin and that the cisplatin binding does not significantly alter the overall conformation of the different forms of the protein that remain able to form a complex with the transferrin receptor 1 (TfR1). These data suggest that the different hTF forms can be used as nanocarriers for targeted (combined) metallodrug delivery.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Francesco Galardo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| |
Collapse
|
3
|
Taguchi H, Sumi D, Himeno S, Fujishiro H. Ferroptosis is involved in cisplatin sensitivity of the S3 segment of immortalized proximal tubule cells. Toxicology 2024; 506:153840. [PMID: 38830481 DOI: 10.1016/j.tox.2024.153840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Cisplatin (CDDP) is administered as an anticancer drug across a broad spectrum of cancer treatments, but it causes severe renal damage. Several studies have attempted to elucidate the cause of CDDP-induced renal injury, but the detailed mechanism remains unclear. We previously found that S3 cells are more sensitive to CDDP than S1 and S2 cells by using immortalized cells derived from S1, S2, and S3 segments of proximal tubules. In this study, we investigated the potential contribution of reactive oxygen species (ROS) to the sensitivity of S3 cells to CDDP. The results showed that S3 cells have high sensitivity to CDDP, paraquat (PQ) and three ROS substances. To examine the mechanisms underlying the sensitivity to ROS in S3 cells, we compared the cellular responses of CDDP- and PQ-exposed S3 cells. The results indicated that the levels of intracellular ROS and lipid peroxides were increased in S3 cells after CDDP and PQ exposure. The intracellular levels of antioxidant proteins such as thioredoxin, thioredoxin reductase 1 and glutathione peroxidase 4 were also increased by exposure to PQ, but these proteins were decreased by CDDP exposure in S3 cells. Furthermore, the levels of intracellular free Fe2+ were increased by CDDP exposure only in S3 cells but not S1 or S2 cells, and cytotoxicity by exposure to CDDP in S3 cells was suppressed by ferroptosis inhibitors. These results suggested that the induction of ferroptosis due to the ROS production through attenuation of the antioxidant system and elevated free Fe2+ is partly responsible for the sensitivity of S3 cells to CDDP.
Collapse
Affiliation(s)
- Hiroki Taguchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Daigo Sumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Seiichiro Himeno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
4
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
5
|
Jiang Y, Xiao L, Wang J, Tian T, Liu G, Zhao Y, Guo J, Zhang W, Wang J, Chen C, Gao W, Yang B. Carbon nanodots constructed by ginsenosides and their high inhibitory effect on neuroblastoma. J Nanobiotechnology 2023; 21:244. [PMID: 37507785 PMCID: PMC10386222 DOI: 10.1186/s12951-023-02023-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Neuroblastoma is one of the common extracranial tumors in children (infants to 2 years), accounting for 8 ~ 10% of all malignant tumors. Few special drugs have been used for clinical treatment currently. RESULTS In this work, herbal extract ginsenosides were used to synthesize fluorescent ginsenosides carbon nanodots via a one-step hydrothermal method. At a low cocultured concentration (50 µg·mL- 1) of ginsenosides carbon nanodots, the inhibition rate and apoptosis rate of SH-SY5Y cells reached ~ 45.00% and ~ 59.66%. The in vivo experiments showed tumor volume and weight of mice in ginsenosides carbon nanodots group were ~ 49.81% and ~ 34.14% to mice in model group. Since ginsenosides were used as sole reactant, ginsenosides carbon nanodots showed low toxicity and good animal response. CONCLUSION Low-cost ginsenosides carbon nanodots as a new type of nanomedicine with good curative effect and little toxicity show application prospects for clinical treatment of neuroblastoma. It is proposed a new design for nanomedicine based on bioactive carbon nanodots, which used natural bioactive molecules as sole source.
Collapse
Affiliation(s)
- Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jifeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Tenghui Tian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Guancheng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China.
| | - Jiajuan Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Wei Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China.
| | - Wenyi Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Troisi R, Galardo F, Ferraro G, Sica F, Merlino A. Cisplatin Binding to Human Serum Transferrin: A Crystallographic Study. Inorg Chem 2023; 62:675-678. [PMID: 36602395 PMCID: PMC9846693 DOI: 10.1021/acs.inorgchem.2c04206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular mechanism of how human serum transferrin (hTF) recognizes cisplatin at the atomic level is still unclear. Here, we report the molecular structure of the adduct formed upon the reaction of hTF with cisplatin. Pt binds the side chain of Met256 (at the N-lobe), without altering the protein overall conformation.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Francesco Galardo
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Filomena Sica
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy,
| |
Collapse
|
8
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
9
|
Ali MS, El-Saied FA, Shakdofa MME, Karnik S, Jaragh-Alhadad LA. Synthesis and characterization of thiosemicarbazone metal complexes: crystal structure, and antiproliferation activity against breast (MCF7) and lung (A549) cancers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Guo Y, Jin S, Song D, Yang T, Hu J, Hu X, Han Q, Zhao J, Guo Z, Wang X. Amlexanox-modified platinum(IV) complex triggers apoptotic and autophagic bimodal death of cancer cells. Eur J Med Chem 2022; 242:114691. [PMID: 36029563 DOI: 10.1016/j.ejmech.2022.114691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/09/2022]
Abstract
Platinum(IV) prodrugs c,c,t-[PtCl2(NH3)2(OH)(amlexanox)] (MAP) and c,c,t-[PtCl2(NH3)2(amlexanox)2] (DAP) were synthesized by reacting amlexanox with oxoplatin and characterized by NMR, HR-MS, HPLC, and elemental analysis. The complexes could be reduced to platinum(II) species and amlexanox to exert antitumor activity. Generally, MAP was more potent than DAP and cisplatin towards various human cancer cell lines; particularly, it was active in cisplatin-resistant Caov-3 ovarian cancer and A549/DDP lung cancer cells. MAP induced serious damage to DNA, remarkable change in mitochondrial morphology, decrease in mitochondrial membrane potential, release of cytochrome c from mitochondria, and up-regulation of pro-apoptotic protein Bax in Caov-3 cells, thereby leading to evident apoptosis. Meanwhile, MAP markedly promoted the autophagic flux, including affecting the expression of microtubule-associated protein light chain 3 (LC3) and autophagy adaptor protein p62 in Caov-3 cells, with an increase in the ratio of LC3-II/LC3-I and a decrease in p62, thus trigging the occurrence of autophagy. The MAP-induced bimodal cell death mode is uncommon for platinum complexes, which presents a new possibility to invent anticancer drugs with unique mechanism of action.
Collapse
Affiliation(s)
- Yan Guo
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jiyong Hu
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China
| | - Xiaowei Hu
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China
| | - Qingqing Han
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China
| | - Jin'an Zhao
- College of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450001, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
11
|
Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv 2022; 19:685-705. [PMID: 35698794 DOI: 10.1080/17425247.2022.2083106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Compared to normal cells, malignant cancer cells require more iron for their growth and rapid proliferation, which can be supplied by a high expression level of transferrin receptor (TfR). It is well known that the expression of TfR on the tumor cells is considerably higher than that of normal cells, which makes TfR an attractive target in cancer therapy. AREAS COVERED In this review, the primary focus is on the role of TfR as a valuable tool for cancer-targeted drug delivery, followed by the full coverage of available TfR ligands and their conjugation chemistry to the surface of liposomes. Finally, the most recent studies investigating the potential of TfR-targeted liposomes as promising drug delivery vehicles to different cancer cells are highlighted with emphasis on their improvement possibilities to become a part of future cancer medicines. EXPERT OPINION Liposomes as a valuable class of nanocarriers have gained much attention toward cancer therapy. From all the studies that have exploited the therapeutic and diagnostic potential of TfR on cancer cells, it can be realized that the systematic assessment of TfR ligands applied for liposomal targeted delivery has yet to be entirely accomplished.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Mahdinloo
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Li S, Guo J, Tian Z, Chen J, Gou G, Niu Y, Li L, Yang J. Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles Modified with Transferrin for Antitumor : Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles. AAPS PharmSciTech 2021; 22:239. [PMID: 34590204 DOI: 10.1208/s12249-021-02123-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to enhance the antitumor effect of piperine by constructing the nanoparticles modified with transferrin (Tf-PIP-NPs) and evaluating their efficacy in vitro and in vivo. The Tf-PIP-NPs were prepared by the solvent evaporation method, and their properties were characterized. The effects of Tf-PIP-NPs on cytotoxicity, cell uptake, apoptosis, and mitochondrial membrane potential were evaluated in HepG2 cells, MDA-MB-231 cells, and 4T1 cells. In a 4T1 tumor-bearing mouse model, the antitumor efficacy of Tf-PIP-NPs was assessed in terms of tumor volumes, changes in body weight, HE staining, and immunohistochemical analysis. With a mean particle size of 112.2 ± 1.27 nm, the zeta potential of (- 28.0 ± 1.6 mV) Tf-PIP-NPs were rapidly internalized by tumor cells after 1 h through the transferrin receptor (TfR)-mediated endocytosis pathway, significantly inducing cellular apoptosis and mitochondrial membrane potential loss. Although Tf-PIP-NPs had no significant difference with PIP-NPs in tumor volume inhibition due to the presence of tumor microenvironment, it could significantly upregulate the expression of related pro-apoptotic proteins and induce tumor necrosis. We used the self-assembly properties of glycyrrhizic acid (GL) and polymer-PLGA to encapsulate piperine and modified with the transferrin, which provided a promising approach to improve the antitumor efficacy for anticarcinogen.
Collapse
|
13
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Mittal D, Biswas L, Verma AK. Redox resetting of cisplatin-resistant ovarian cancer cells by cisplatin-encapsulated nanostructured lipid carriers. Nanomedicine (Lond) 2021; 16:979-995. [PMID: 33970681 DOI: 10.2217/nnm-2020-0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To sensitize cisplatin (Cis)-resistant ovarian cancer cells toward Cis using Cis-loaded nanostructured lipid carriers (CisNLCs). Materials & methods: CisNLCs were synthesized and characterized using dynamic light scattering, Fourier transform IR and x-ray diffraction (XRD). Sensitivity of PA-1 and CaOV3 cells to Cis and its biotoxicity were assessed. Further, expression of the Cis-resistance markers GSTPi and ATP7B, and apoptotic markers Bax, Bcl2 and Cas9 were quantified by real-time PCR. Results: The size of synthesized CisNLCs was approximately 179.3 ± 2.32 nm and surface charge was -33.9 ± 1.47 mV. IC50 was 210 μg/ml in PA-1 and 500 μg/ml in CaOV3. CisNLCs modulated reactive oxygen species levels in CaOV3 cells. Reduced GSTPi and decreased Cis efflux via ATP7B sequestration caused Cis to accumulate in cytoplasm, thereby augmenting apoptosis in cells. Conclusion: CisNLCs sensitize CaOV3 by redox resetting, indicating their immense therapeutic potential.
Collapse
Affiliation(s)
- Disha Mittal
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Largee Biswas
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Anita Kamra Verma
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
15
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, Zarrabi A, Ahn KS. Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules 2021; 26:2382. [PMID: 33921908 PMCID: PMC8073650 DOI: 10.3390/molecules26082382] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Mohammad Reza Torabi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - SeyedHesam SeyedSaleh
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
16
|
FAM83B inhibits ovarian cancer cisplatin resistance through inhibiting Wnt pathway. Oncogenesis 2021; 10:6. [PMID: 33423038 PMCID: PMC7797002 DOI: 10.1038/s41389-020-00301-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cisplatin resistance is frequently occurred in ovarian cancer therapy, understanding its regulatory mechanisms is critical for developing novel treatment methods and drugs. Here, we found ovarian cancer patients with low FAM83B levels had shorter survival time, tissues with cisplatin resistance also had low FAM83B levels, suggesting FAM83B might inhibit cisplatin resistance. FAM83B overexpression inhibits cisplatin resistance showed in increased ovarian cancer cell proliferation and growth rate, and reduced apoptosis rate, while FAM83B knockdown promotes cisplatin resistance. Mechanism analysis showed FAM83B interacted with APC to inhibit Wnt pathway activity, causing ovarian cancer cisplatin resistance. We also found FAM83B levels were negative with Wnt pathway activity in clinic samples, confirming FAM83B inhibited Wnt pathway activity. In summary, we found FAM83B inhibits ovarian cancer cisplatin resistance through inhibiting Wnt pathway, providing a new target for ovarian cancer therapy.
Collapse
|
17
|
Abstract
Recent advances in structural studies unveiling the basis of the metal compounds/protein recognition process are discussed.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’Angelo
- Napoli
- Italy
| |
Collapse
|
18
|
Teixeira RG, Belisario DC, Fontrodona X, Romero I, Tomaz AI, Garcia MH, Riganti C, Valente A. Unprecedented collateral sensitivity for cisplatin-resistant lung cancer cells presented by new ruthenium organometallic compounds. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01344g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ru compounds exhibit collateral sensitivity in cisplatin-resistant NSCLC and increase cisplatin activity by inhibiting efflux pumps.
Collapse
Affiliation(s)
- Ricardo G. Teixeira
- Centro de Química Estrutural and Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- E-17003 Girona
- Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca
- Universitat de Girona
- E-17003 Girona
- Spain
| | - Ana Isabel Tomaz
- Centro de Química Estrutural and Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - M. Helena Garcia
- Centro de Química Estrutural and Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| |
Collapse
|
19
|
Hamano H, Ikeda Y, Goda M, Fukushima K, Kishi S, Chuma M, Yamashita M, Niimura T, Takechi K, Imanishi M, Zamami Y, Horinouchi Y, Izawa-Ishizawa Y, Miyamoto L, Ishizawa K, Fujino H, Tamaki T, Aihara KI, Tsuchiya K. Diphenhydramine may be a preventive medicine against cisplatin-induced kidney toxicity. Kidney Int 2020; 99:885-899. [PMID: 33307103 DOI: 10.1016/j.kint.2020.10.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Cisplatin is widely used as an anti-tumor drug for the treatment of solid tumors. Unfortunately, it causes kidney toxicity as a critical side effect, limiting its use, given that no preventive drug against cisplatin-induced kidney toxicity is currently available. Here, based on a repositioning analysis of the Food and Drug Administration Adverse Events Reporting System, we found that a previously developed drug, diphenhydramine, may provide a novel treatment for cisplatin-induced kidney toxicity. To confirm this, the actual efficacy of diphenhydramine was evaluated in in vitro and in vivo experiments. Diphenhydramine inhibited cisplatin-induced cell death in kidney proximal tubular cells. Mice administered cisplatin developed kidney injury with significant dysfunction (mean plasma creatinine: 0.43 vs 0.15 mg/dl) and showed augmented oxidative stress, increased apoptosis, elevated inflammatory cytokines, and MAPKs activation. However, most of these symptoms were suppressed by treatment with diphenhydramine. Furthermore, the concentration of cisplatin in the kidney was significantly attenuated in diphenhydramine-treated mice (mean platinum content: 70.0 vs 53.4 μg/g dry kidney weight). Importantly, diphenhydramine did not influence or interfere with the anti-tumor effect of cisplatin in any of the in vitro or in vivo experiments. In a selected cohort of 98 1:1 matched patients from a retrospective database of 1467 patients showed that patients with malignant cancer who had used diphenhydramine before cisplatin treatment exhibited significantly less acute kidney injury compared to ones who did not (6.1 % vs 22.4 %, respectively). Thus, diphenhydramine demonstrated efficacy as a novel preventive medicine against cisplatin-induced kidney toxicity.
Collapse
Affiliation(s)
- Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Seiji Kishi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of General Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Masayuki Chuma
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Michiko Yamashita
- Department of Pathological Science and Technology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Anan Medical Center, Anan, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
20
|
Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020; 9:E1456. [PMID: 32545424 PMCID: PMC7349684 DOI: 10.3390/cells9061456] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world's population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
Collapse
Affiliation(s)
- George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus;
| | | |
Collapse
|
21
|
Zackova Suchanova J, Hejtmankova A, Neburkova J, Cigler P, Forstova J, Spanielova H. The Protein Corona Does Not Influence Receptor-Mediated Targeting of Virus-like Particles. Bioconjug Chem 2020; 31:1575-1585. [DOI: 10.1021/acs.bioconjchem.0c00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Alzbeta Hejtmankova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Hana Spanielova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
22
|
Yan XY, Qu XZ, Xu L, Yu SH, Tian R, Zhong XR, Sun LK, Su J. Insight into the role of p62 in the cisplatin resistant mechanisms of ovarian cancer. Cancer Cell Int 2020; 20:128. [PMID: 32322174 PMCID: PMC7164250 DOI: 10.1186/s12935-020-01196-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a platinum-based first-line drug for treating ovarian cancer. However, chemotherapy tolerance has limited the efficacy of cisplatin for ovarian cancer patients. Research has demonstrated that cisplatin causes changes in cell survival and death signaling pathways through its interaction with macromolecules and organelles, which indicates that investigation into the DNA off-target effects of cisplatin may provide critical insights into the mechanisms underlying drug resistance. The multifunctional protein p62 works as a signaling hub in the regulation of pro-survival transcriptional factors NF-κB and Nrf2 and connects autophagy and apoptotic signals, which play important roles in maintaining cell homeostasis. In this review, we discuss the role of p62 in cisplatin resistance by exploring p62-associated signaling pathways based on current studies and our work. Insights into these resistance mechanisms may lead to more effective therapeutic strategies for ovarian cancer by targeting p62.
Collapse
Affiliation(s)
- Xiao-Yu Yan
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Xian-Zhi Qu
- 2Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Long Xu
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Si-Hang Yu
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Rui Tian
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Xin-Ru Zhong
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Lian-Kun Sun
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Jing Su
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| |
Collapse
|
23
|
Gokduman K. Sensitization of cisplatin-resistant ovarian cancer cells by magnetite iron oxide nanoparticles: an in vitro study. Nanomedicine (Lond) 2019; 14:3177-3191. [PMID: 31724481 DOI: 10.2217/nnm-2019-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To investigate potential of magnetite iron oxide nanoparticles (MION) to sensitize cisplatin-resistant ovarian cancer cells to cisplatin, which to the best of found knowledge has not been reported previously. Materials & methods: MION with a diameter of approximately 20 nm were synthesized, and characterized using Fourier transform infrared spectroscopy, powder x-ray diffraction and particle size analyzer. Results: The synthesized MION have increased reactive oxygen species levels and decreased glutathione levels in cisplatin-resistant ovarian cancer cells (OVCAR-3 and SKOV-3). Using MTT, capsase-3 activity and live/dead assays, capability of the synthesized MION to sensitize cisplatin-resistant ovarian cancer cells has been illustrated. Conclusion: Thus, for further investigations, the synthesized MION can be considered as a potent agent enabling much more effective cisplatin-based therapies for ovarian cancer.
Collapse
Affiliation(s)
- Kurtulus Gokduman
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| |
Collapse
|
24
|
Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Zhao Z, Zhang P, Lin Q, Feng C, Zhang Y, Liu P, Tu Z, Liu H. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets 2018; 19:449-467. [PMID: 30306870 DOI: 10.2174/1568009618666181010091246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.
Collapse
Affiliation(s)
- Zhiquan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
25
|
Chen YL, Ge GJ, Qi C, Wang H, Wang HL, Li LY, Li GH, Xia LQ. A five-gene signature may predict sunitinib sensitivity and serve as prognostic biomarkers for renal cell carcinoma. J Cell Physiol 2018; 233:6649-6660. [PMID: 29327492 DOI: 10.1002/jcp.26441] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Sunitinib resistance is, nowadays, the major challenge for advanced renal cell carcinoma patients. Illuminating the potential mechanisms and exploring effective strategies to overcome sunitinib resistance are highly desired. We constructed a reliable gene signature which may function as biomarkers for prediction of sunitinib sensitivity and clinical prognosis. The gene expression profiles were obtained from The Cancer Genome Atlas database. By performing GEO2R analysis, numerous differentially expressed genes (DEGs) were found to be associated with sunitinib resistance. To acquire more precise DEGs, we integrated three different microarray datasets. Functional analysis revealed that these DEGs were mainly involved in Rap1 signaling pathway, p53 signaling pathway and Ras signaling pathway. Then, top five hub genes, BIRC5, CD44, MUC1, TF, CCL5, were identified from protein-protein interaction (PPI) network. Sub-network analysis carried out by MCODE plugin revealed that key DEGs were related with PI3K-Akt signaling pathway, Rap1 signaling pathway and VEGF signaling pathway. Next, we established sunitinib-resistant OS-RC-2 and 786-O cell lines and validated the expression of five hub genes in cell lines. To further evaluate the potentials of five-gene signature for predicting clinical prognosis, we analyzed RCC patients with gene expressions and overall survival information from two independent patient datasets. The Kaplan-Meier estimated the OS of RCC patients in the low- and high-risk groups according to gene expression signature. Multivariate Cox regression analysis indicated that the prognostic power of five-gene signature was independent of clinical features. In conclusion, we developed a five-gene signature which can predict sunitinib sensitivity and OS for advanced RCC patients, providing novel insights into understanding of sunitinib-resistant mechanisms and identification of RCC patients with poor prognosis.
Collapse
Affiliation(s)
- Yuan-Lei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang-Ju Ge
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Qi
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huai-Lan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Yang Li
- Department of Mathematics and Statistics Science, University College of London, London, England
| | - Gong-Hui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Qun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget 2018; 9:16847-16860. [PMID: 29682189 PMCID: PMC5908290 DOI: 10.18632/oncotarget.24708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
Ovarian cancer is an aggressive and lethal cancer usually treated by cytoreductive surgery followed by chemotherapy. Unfortunately, after an initial response, many patients relapse owing mainly to the development of resistance against the standard chemotherapy regime, carboplatin/paclitaxel, which is also affected by heavy side effects. In view to addressing such issues here, an association of liposomal cisplatin with 6-amino nicotinamide is investigated. It is known that resistant cells increase their demand for glucose, which is partially redirected toward the pentose phosphate pathway (PPP). Interestingly, we have found that also a cisplatin-resistant subclone of the ovarian cancer cells IGROV1 switch their metabolism toward the glycolytic pathway and rely on PPP to elude cisplatin cytotoxicity. The drug 6-amino nicotinamide, an inhibitor of the enzyme glucose-6-phosphate dehydrogenase (the rate-limiting step of the PPP) can restore the sensitivity of resistant cells to cisplatin. Then, to reduce the toxicity of cisplatin and prolong its action, a lyophilized stealth liposomal formulation of cisplatin was developed. The combination treatment of liposomal cisplatin and 6-amino nicotinamide showed promising cytotoxic activities in drug-resistant cells and a prolonged pharmacokinetics in rats, thus opening the way for a new therapeutic option against ovarian cancer.
Collapse
|