1
|
Shi X, Zheng W, He B, Huang L, Zhong Q, Yang Y, Zhou T, Huang Y. UPLC-Q-TOF/MS-based urine metabolomics for the diagnosis and staging of bladder cancer. Clin Chim Acta 2024; 565:120022. [PMID: 39471892 DOI: 10.1016/j.cca.2024.120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Bladder cancer (BC) is a common malignant tumour of the urinary system. Currently, the gold standard for diagnosing BC is cystoscopy, but it is an invasive examination that can lead to a certain psychological burden on the patient. In this study, we aimed to identify non-invasive potential metabolic biomarkers that could improve the diagnostic accuracy of bladder cancer. METHODS Urine from 30 healthy people and 50 BC patients, including 40 non-muscle-invasive bladder cancer (NMIBC) patients and 10 muscle-invasive bladder cancer (MIBC) patients, were analyzed by liquid chromatography coupled with mass spectrometry to identify potential diagnostic metabolites. Binary Logistic regression was used to construct biomarker panels. Correlation analysis and construction of compound-reaction-enzyme-gene network were also performed to explore the possible mechanisms of BC development. RESULTS Twenty-six metabolites were identified for differentiating BC patients from healthy controls, and eight metabolites were identified for differentiating NMIBC patients form MIBC patients. The biomarker panel consisting of urate, 4-Androstene-3α, 17β-diol and 3-Indoxyl sulfate can distinguish well between BC patients and healthy controls, with an area under the ROC curve (AUC) value of 0.983. And the biomarker panel consisting of L-Octanoylcarnitine, γ-Glutamylleucine, and heptanoylcarnitine for distinguishing NMIBC patients from MIBC patients had an AUC value of 0.941. CONCLUSIONS The diagnostic capability of the biomarker panels are superior to that of any single potential biomarker. This panel significantly benefits bladder cancer diagnostics and reveals insight into bladder cancer pathogenesis.
Collapse
Affiliation(s)
- Xingyu Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenbin Zheng
- Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Binhong He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Longhui Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qisheng Zhong
- Guangzhou Analytical Applications Center, Shimadzu (China) Co., LTD, Guangdong 510010, China
| | - Yunfan Yang
- Guangzhou Analytical Applications Center, Shimadzu (China) Co., LTD, Guangdong 510010, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yong Huang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530000, China; Department of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
López-López Á, López-Gonzálvez Á, Barbas C. Metabolomics for searching validated biomarkers in cancer studies: a decade in review. Expert Rev Mol Diagn 2024; 24:601-626. [PMID: 38904089 DOI: 10.1080/14737159.2024.2368603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION In the dynamic landscape of modern healthcare, the ability to anticipate and diagnose diseases, particularly in cases where early treatment significantly impacts outcomes, is paramount. Cancer, a complex and heterogeneous disease, underscores the critical importance of early diagnosis for patient survival. The integration of metabolomics information has emerged as a crucial tool, complementing the genotype-phenotype landscape and providing insights into active metabolic mechanisms and disease-induced dysregulated pathways. AREAS COVERED This review explores a decade of developments in the search for biomarkers validated within the realm of cancer studies. By critically assessing a diverse array of research articles, clinical trials, and studies, this review aims to present an overview of the methodologies employed and the progress achieved in identifying and validating biomarkers in metabolomics results for various cancer types. EXPERT OPINION Through an exploration of more than 800 studies, this review has allowed to establish a general idea about state-of-art in the search of biomarkers in metabolomics studies involving cancer which include certain level of results validation. The potential for metabolites as diagnostic markers to reach the clinic and make a real difference in patient health is substantial, but challenges remain to be explored.
Collapse
Affiliation(s)
- Ángeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
3
|
García-Perdomo HA, Dávila-Raigoza AM, Korkes F. Metabolomics for the diagnosis of bladder cancer: A systematic review. Asian J Urol 2024; 11:221-241. [PMID: 38680576 PMCID: PMC11053311 DOI: 10.1016/j.ajur.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/29/2022] [Indexed: 05/01/2024] Open
Abstract
Objective Metabolomics has been extensively utilized in bladder cancer (BCa) research, employing mass spectrometry and nuclear magnetic resonance spectroscopy to compare various variables (tissues, serum, blood, and urine). This study aimed to identify potential biomarkers for early BCa diagnosis. Methods A search strategy was designed to identify clinical trials, descriptive and analytical observational studies from databases such as Medline, Embase, Cochrane Central Register of Controlled Trials, and Latin American and Caribbean Literature in Health Sciences. Inclusion criteria comprised studies involving BCa tissue, serum, blood, or urine profiling using widely adopted metabolomics techniques like mass spectrometry and nuclear magnetic resonance. Primary outcomes included description of metabolites and metabolomics profiling in BCa patients and the association of metabolites and metabolomics profiling with BCa diagnosis compared to control patients. The risk of bias was assessed using the Quality Assessment of Studies of Diagnostic Accuracy. Results The search strategy yielded 2832 studies, of which 30 case-control studies were included. Urine was predominantly used as the primary sample for metabolite identification. Risk of bias was often unclear inpatient selection, blinding of the index test, and reference standard assessment, but no applicability concerns were observed. Metabolites and metabolomics profiles associated with BCa diagnosis were identified in glucose, amino acids, nucleotides, lipids, and aldehydes metabolism. Conclusion The identified metabolites in urine included citric acid, valine, tryptophan, taurine, aspartic acid, uridine, ribose, phosphocholine, and carnitine. Tissue samples exhibited elevated levels of lactic acid, amino acids, and lipids. Consistent findings across tissue, urine, and serum samples revealed downregulation of citric acid and upregulation of lactic acid, valine, tryptophan, taurine, glutamine, aspartic acid, uridine, ribose, and phosphocholine.
Collapse
Affiliation(s)
- Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| | | | - Fernando Korkes
- Urologic Oncology, Division of Urology, ABC Medical School, Sao Paulo, Brazil
| |
Collapse
|
4
|
Nizioł J, Ossoliński K, Płaza-Altamer A, Kołodziej A, Ossolińska A, Ossoliński T, Krupa Z, Ruman T. Untargeted metabolomics of bladder tissue using liquid chromatography and quadrupole time-of-flight mass spectrometry for cancer biomarker detection. J Pharm Biomed Anal 2024; 240:115966. [PMID: 38217999 DOI: 10.1016/j.jpba.2024.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Bladder cancer (BC) ranks among the most common cancers globally, with an increasing occurrence, particularly in developed nations. Utilizing tissue metabolomics presents a promising strategy for identifying potential biomarkers for cancer detection. In this study, we utilized ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry (UHPLC-UHRMS), incorporating both C18-silica and HILIC columns, to comprehensively analyze both polar and non-polar metabolite profiles in tissue samples from 99 patients with bladder cancer. By utilizing an untargeted approach with external validation, we identified twenty-five tissue metabolites that hold promise as potential indicators of BC. Furthermore, twenty-five characteristic tissue metabolites that exhibit discriminatory potential across bladder cancer tumor grades, as well as thirty-nine metabolites that display correlations with tumor stages were presented. Receiver operating characteristics analysis demonstrated high predictive power for all types of metabolomics data, with area under the curve (AUC) values exceeding 0.966. Notably, this study represents the first report in which human bladder normal tissues adjacent to cancerous tissues were analyzed using UHPLC-UHRMS. These findings suggest that the metabolite markers identified in this investigation could serve as valuable tools for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Aneta Płaza-Altamer
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Artur Kołodziej
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|
5
|
Ossoliński K, Ruman T, Copié V, Tripet BP, Kołodziej A, Płaza-Altamer A, Ossolińska A, Ossoliński T, Krupa Z, Nizioł J. Metabolomic profiling of human bladder tissue extracts. Metabolomics 2024; 20:14. [PMID: 38267657 DOI: 10.1007/s11306-023-02076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Bladder cancer is a common malignancy affecting the urinary tract and effective biomarkers and for which monitoring therapeutic interventions have yet to be identified. OBJECTIVES Major aim of this work was to perform metabolomic profiling of human bladder cancer and adjacent normal tissue and to evaluate cancer biomarkers. METHODS This study utilized nuclear magnetic resonance (NMR) and high-resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS) methods to investigate polar metabolite profiles in tissue samples from 99 bladder cancer patients. RESULTS Through NMR spectroscopy, six tissue metabolites were identified and quantified as potential indicators of bladder cancer, while LDI-MS allowed detection of 34 compounds which distinguished cancer tissue samples from adjacent normal tissue. Thirteen characteristic tissue metabolites were also found to differentiate bladder cancer tumor grades and thirteen metabolites were correlated with tumor stages. Receiver-operating characteristics analysis showed high predictive power for all three types of metabolomics data, with area under the curve (AUC) values greater than 0.853. CONCLUSION To date, this is the first study in which bladder human normal tissues adjacent to cancerous tissues are analyzed using both NMR and MS method. These findings suggest that the metabolite markers identified in this study may be useful for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Artur Kołodziej
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Aneta Płaza-Altamer
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences, Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| |
Collapse
|
6
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
7
|
Nizioł J, Ossoliński K, Płaza-Altamer A, Kołodziej A, Ossolińska A, Ossoliński T, Nieczaj A, Ruman T. Untargeted urinary metabolomics for bladder cancer biomarker screening with ultrahigh-resolution mass spectrometry. Sci Rep 2023; 13:9802. [PMID: 37328580 PMCID: PMC10275937 DOI: 10.1038/s41598-023-36874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Bladder cancer (BC) is a common urological malignancy with a high probability of death and recurrence. Cystoscopy is used as a routine examination for diagnosis and following patient monitoring for recurrence. Repeated costly and intrusive treatments may discourage patients from having frequent follow-up screenings. Hence, exploring novel non-invasive ways to help identify recurrent and/or primary BC is critical. In this work, 200 human urine samples were profiled using ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) to uncover molecular markers differentiating BC from non-cancer controls (NCs). Univariate and multivariate statistical analyses with external validation identified metabolites that distinguish BC patients from NCs disease. More detailed divisions for the stage, grade, age, and gender are also discussed. Findings indicate that monitoring urine metabolites may provide a non-invasive and more straightforward diagnostic method for identifying BC and treating recurrent diseases.
Collapse
Affiliation(s)
- Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Aneta Płaza-Altamer
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Artur Kołodziej
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Anna Nieczaj
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| |
Collapse
|
8
|
Sequeira-Antunes B, Ferreira HA. Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines 2023; 11:biomedicines11041051. [PMID: 37189669 DOI: 10.3390/biomedicines11041051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biosensing and microfluidics technologies are transforming diagnostic medicine by accurately detecting biomolecules in biological samples. Urine is a promising biological fluid for diagnostics due to its noninvasive collection and wide range of diagnostic biomarkers. Point-of-care urinalysis, which integrates biosensing and microfluidics, has the potential to bring affordable and rapid diagnostics into the home to continuing monitoring, but challenges still remain. As such, this review aims to provide an overview of biomarkers that are or could be used to diagnose and monitor diseases, including cancer, cardiovascular diseases, kidney diseases, and neurodegenerative disorders, such as Alzheimer’s disease. Additionally, the different materials and techniques for the fabrication of microfluidic structures along with the biosensing technologies often used to detect and quantify biological molecules and organisms are reviewed. Ultimately, this review discusses the current state of point-of-care urinalysis devices and highlights the potential of these technologies to improve patient outcomes. Traditional point-of-care urinalysis devices require the manual collection of urine, which may be unpleasant, cumbersome, or prone to errors. To overcome this issue, the toilet itself can be used as an alternative specimen collection and urinalysis device. This review then presents several smart toilet systems and incorporated sanitary devices for this purpose.
Collapse
|
9
|
Nakayama K, Li X, Shimizu K, Akamatsu S, Inoue T, Kobayashi T, Ogawa O, Goto T. qShot MALDI analysis: A rapid, simple, convenient, and reliable quantitative phospholipidomics approach using MALDI-TOF/MS. Talanta 2023; 254:124099. [PMID: 36502612 DOI: 10.1016/j.talanta.2022.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) has potential applications in the qualitative analysis of phospholipids (PLs). However, its capability for quantitative analysis is limited by the unavailability and/or high cost of isotope-labeled internal standards (interSTDs, e.g., 1-oleoyl (d7)-2-hydroxy-sn-glycero-3-phosphocholine, 1-pentadecanoyl-2-oleoyl (d7)-sn-glycero-3-phosphocholine). This study investigated and validated whether only two PL interSTDs could be used to normalize the entire PL species in a complex bio-lipid background (i.e., urinary lipid extracts). The normalized intensities of PL ionization standards (ionSTDs) were found to have better linear regressions (R2 > 0.984 for all PL subcategories) than those of traditional methods, such as total ion current and matrix-peak normalization methods. Furthermore, the intra-day precision of all the analyte concentrations after normalizing using our ionSTD method was superior to those of traditional methods. The inter-day precision of all the negatively charged analytes also differed statistically between our ionSTD and the two traditional methods. Meanwhile, a comparison of the three normalization methods revealed that the precision of all the positive analytes using the ionSTD method was comparable. Consequently, a cost-effective, fast, simple, convenient, and reliable quantitative method, defined as "qShot MALDI analysis," was developed to analyze PLs that could potentially be applied in clinical biomarker screening, especially in a negative mode.
Collapse
Affiliation(s)
- Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Nizioł J, Ossoliński K, Płaza-Altamer A, Kołodziej A, Ossolińska A, Ossoliński T, Ruman T. Untargeted ultra-high-resolution mass spectrometry metabolomic profiling of blood serum in bladder cancer. Sci Rep 2022; 12:15156. [PMID: 36071106 PMCID: PMC9452537 DOI: 10.1038/s41598-022-19576-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bladder cancer (BC) is a common urological cancer of high mortality and recurrence rates. Currently, cystoscopy is performed as standard examination for the diagnosis and subsequent monitoring for recurrence of the patients. Frequent expensive and invasive procedures may deterrent patients from regular follow-up screening, therefore it is important to look for new non-invasive methods to aid in the detection of recurrent and/or primary BC. In this study, ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry was employed for non-targeted metabolomic profiling of 200 human serum samples to identify biochemical signatures that differentiate BC from non-cancer controls (NCs). Univariate and multivariate statistical analyses with external validation revealed twenty-seven metabolites that differentiate between BC patients from NCs. Abundances of these metabolites displayed statistically significant differences in two independent training and validation sets. Twenty-three serum metabolites were also found to be distinguishing between low- and high-grade of BC patients and controls. Thirty-seven serum metabolites were found to differentiate between different stages of BC. The results suggest that measurement of serum metabolites may provide more facile and less invasive diagnostic methodology for detection of bladder cancer and recurrent disease management.
Collapse
Affiliation(s)
- Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszow, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Aneta Płaza-Altamer
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszow, Poland
| | - Artur Kołodziej
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszow, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszow, Poland
| |
Collapse
|
12
|
Miller HA, Rai SN, Yin X, Zhang X, Chesney JA, van Berkel VH, Frieboes HB. Lung cancer metabolomic data from tumor core biopsies enables risk-score calculation for progression-free and overall survival. Metabolomics 2022; 18:31. [PMID: 35567637 PMCID: PMC9724684 DOI: 10.1007/s11306-022-01891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Metabolomics has emerged as a powerful method to provide insight into cancer progression, including separating patients into low- and high-risk groups for overall (OS) and progression-free survival (PFS). However, survival prediction based mainly on metabolites obtained from biofluids remains elusive. OBJECTIVES This proof-of-concept study evaluates metabolites as biomarkers obtained directly from tumor core biopsies along with covariates age, sex, pathological stage at diagnosis (I/II vs. III/VI), histological subtype, and treatment vs. no treatment to risk stratify lung cancer patients in terms of OS and PFS. METHODS Tumor core biopsy samples obtained during routine lung cancer patient care at the University of Louisville Hospital and Norton Hospital were evaluated with high-resolution 2DLC-MS/MS, and the data were analyzed by Kaplan-Meier survival analysis and Cox proportional hazards regression. A linear equation was developed to stratify patients into low and high risk groups based on log-transformed intensities of key metabolites. Sparse partial least squares discriminant analysis (SPLS-DA) was performed to predict OS and PFS events. RESULTS Univariable Cox proportional hazards regression model coefficients divided by the standard errors were used as weight coefficients multiplied by log-transformed metabolite intensity, then summed to generate a risk score for each patient. Risk scores based on 10 metabolites for OS and 5 metabolites for PFS were significant predictors of survival. Risk scores were validated with SPLS-DA classification model (AUROC 0.868 for OS and AUROC 0.755 for PFS, when combined with covariates). CONCLUSION Metabolomic analysis of lung tumor core biopsies has the potential to differentiate patients into low- and high-risk groups based on OS and PFS events and probability.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
| | - Shesh N Rai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, USA
| | - Jason A Chesney
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, USA
| | - Victor H van Berkel
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, USA
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA.
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, USA.
| |
Collapse
|
13
|
di Meo NA, Loizzo D, Pandolfo SD, Autorino R, Ferro M, Porta C, Stella A, Bizzoca C, Vincenti L, Crocetto F, Tataru OS, Rutigliano M, Battaglia M, Ditonno P, Lucarelli G. Metabolomic Approaches for Detection and Identification of Biomarkers and Altered Pathways in Bladder Cancer. Int J Mol Sci 2022; 23:ijms23084173. [PMID: 35456991 PMCID: PMC9030452 DOI: 10.3390/ijms23084173] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolomic analysis has proven to be a useful tool in biomarker discovery and the molecular classification of cancers. In order to find new biomarkers, and to better understand its pathological behavior, bladder cancer also has been studied using a metabolomics approach. In this article, we review the literature on metabolomic studies of bladder cancer, focusing on the different available samples (urine, blood, tissue samples) used to perform the studies and their relative findings. Moreover, the multi-omic approach in bladder cancer research has found novel insights into its metabolic behavior, providing excellent start-points for new diagnostic and therapeutic strategies. Metabolomics data analysis can lead to the discovery of a “signature pathway” associated with the progression of bladder cancer; this aspect could be potentially valuable in predictions of clinical outcomes and the introduction of new treatments. However, further studies are needed to give stronger evidence and to make these tools feasible for use in clinical practice.
Collapse
Affiliation(s)
- Nicola Antonio di Meo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Davide Loizzo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
- Division of Urology, Virginia Commonwealth University (VCU) Health, Richmond, VA 23298, USA; (S.D.P.); (R.A.)
| | - Savio Domenico Pandolfo
- Division of Urology, Virginia Commonwealth University (VCU) Health, Richmond, VA 23298, USA; (S.D.P.); (R.A.)
- Division of Urology, University of Naples “Federico II”, 80100 Naples, Italy
| | - Riccardo Autorino
- Division of Urology, Virginia Commonwealth University (VCU) Health, Richmond, VA 23298, USA; (S.D.P.); (R.A.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Alessandro Stella
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Cinzia Bizzoca
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Leonardo Vincenti
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Octavian Sabin Tataru
- I.O.S.U.D., George Emil Palade University of Medicine and Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Monica Rutigliano
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
- Correspondence:
| |
Collapse
|
14
|
Zambonin C, Aresta A. MALDI-TOF/MS Analysis of Non-Invasive Human Urine and Saliva Samples for the Identification of New Cancer Biomarkers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061925. [PMID: 35335287 PMCID: PMC8951187 DOI: 10.3390/molecules27061925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023]
Abstract
Cancer represents a group of heterogeneous diseases that are a leading global cause of death. Even though mortality has decreased in the past thirty years for different reasons, most patients are still diagnosed at the advanced stage, with limited therapeutic choices and poor outcomes. Moreover, the majority of cancers are detected using invasive painful methods, such as endoscopic biopsy, making the development of non-invasive or minimally invasive methods for the discovery and fast detection of specific biomarkers a crucial need. Among body fluids, a valuable non-invasive alternative to tissue biopsy, the most accessible and least invasive are undoubtedly urine and saliva. They are easily retrievable complex fluids containing a large variety of endogenous compounds that may provide information on the physiological condition of the body. The combined analysis of these fluids with matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF/MS), a reliable and easy-to-use instrumentation that provides information with relatively simple sample pretreatments, could represent the ideal option to rapidly achieve fast early stage diagnosis of tumors and their real-time monitoring. On this basis, the present review summarizes the recently reported applications relevant to the MALDI analysis of human urine and saliva samples.
Collapse
|
15
|
Eray A, Erkek-Özhan S. Classification of bladder cancer cell lines according to regulon activity. Turk J Biol 2022; 45:656-666. [PMID: 35068946 PMCID: PMC8733949 DOI: 10.3906/biy-2107-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022] Open
Abstract
Bladder cancer is one of the most frequent cancers and causes more than 150.000 deaths each year. During the last decade, several studies provided important aspects about genomic characterization, consensus subgroup definition, and transcriptional regulation of bladder cancer. Still, much more research needs to be done to characterize molecular signatures of this cancer in depth. At this point, the use of bladder cancer cell lines is quite useful for the identification and test of new signatures. In this study, we classified the bladder cancer cell lines according to the activities of regulons implicated in the regulation of primary bladder tumors. Our regulon gene expression-based classification revealed three groups, neuronal-basal (NB), luminal-papillary (LP), and basal-squamous (BS). These regulon gene expression-based classifications showed a quite good concordance with the consensus subgroups assigned by the primary bladder cancer classifier. Importantly, we identified FGFR1 regulon to be involved in the characterization of the NB group, where neuroendocrine signature genes were significantly upregulated, and further β-catenin was shown to have significantly higher nuclear localization. LP groups were mainly driven by the regulons ERBB2, FOXA1, GATA3, and PPARG, and they showed upregulation of the genes involved in epithelial differentiation and urogenital development, while the activity of EGFR, FOXM1, STAT3, and HIF1A was implicated for the regulation of BS group. Collectively, our results and classifications may serve as an important guide for the selection and use of bladder cancer cell lines for experimental strategies, which aim to manipulate regulons critical for bladder cancer development.
Collapse
Affiliation(s)
- Aleyna Eray
- İzmir Biomedicine and Genome Center, İzmir Turkey.,Dokuz Eylül University İzmir International Biomedicine and Genome Institute, İzmir Turkey
| | | |
Collapse
|
16
|
Wang X, Li Y, Fan J, He L, Chen J, Liu H, Nie Z. Rapid screening for genitourinary cancers: mass spectrometry-based metabolic fingerprinting of urine. Chem Commun (Camb) 2022; 58:9433-9436. [DOI: 10.1039/d2cc02329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genitourinary (GU) cancers are among the most common malignant diseases in men. Rapid screening is the key to GU cancers management for early diagnosis and treatment. Urine is a highly...
Collapse
|
17
|
Castelli S, De Falco P, Ciccarone F, Desideri E, Ciriolo MR. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel) 2021; 13:cancers13215484. [PMID: 34771647 PMCID: PMC8583096 DOI: 10.3390/cancers13215484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Although cancer cell metabolism was mainly considered to rely on glycolysis, with the concomitant impairment of mitochondrial metabolism, it has recently been demonstrated that several tumor types are sustained by oxidative phosphorylation (OXPHOS). In this context, endogenous fatty acids (FAs) deriving from lipolysis or lipophagy are oxidised into the mitochondrion, and are used as a source of energy through OXPHOS. Because the electron transport chain is the main source of ROS, cancer cells relying on fatty acid oxidation (FAO) need to be equipped with antioxidant systems that maintain the ROS levels under the death threshold. In those conditions, ROS can act as second messengers, favouring proliferation and survival. Herein, we highlight the different responses that tumor cells adopt when lipid catabolism is augmented, taking into account the different ROS fates. Many papers have demonstrated that the pro- or anti-tumoral roles of endogenous FA usage are hugely dependent on the tumor type, and on the capacity of cancer cells to maintain redox homeostasis. In light of this, clinical studies have taken advantage of the boosting of lipid catabolism to increase the efficacy of tumor therapy, whereas, in other contexts, antioxidant compounds are useful to reduce the pro-survival effects of ROS deriving from FAO.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Pamela De Falco
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Enrico Desideri
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
- IRCCS San Raffaele Pisana, Via Della Pisana 235, 00163 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
Urinary Metabolic Markers of Bladder Cancer: A Reflection of the Tumor or the Response of the Body? Metabolites 2021; 11:metabo11110756. [PMID: 34822414 PMCID: PMC8621503 DOI: 10.3390/metabo11110756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
This work will review the metabolic information that various studies have obtained in recent years on bladder cancer, with particular attention to discovering biomarkers in urine for the diagnosis and prognosis of this disease. In principle, they would be capable of complementing cystoscopy, an invasive but nowadays irreplaceable technique or, in the best case, of replacing it. We will evaluate the degree of reproducibility that the different experiments have shown in the indication of biomarkers, and a synthesis will be attempted to obtain a consensus list that is more likely to become a guideline for clinical practice. In further analysis, we will inquire into the origin of these dysregulated metabolites in patients with bladder cancer. For this purpose, it will be helpful to compare the imbalances measured in urine with those known inside tumor cells or tissues. Although the urine analysis is sometimes considered a liquid biopsy because of its direct contact with the tumor in the bladder wall, it contains metabolites from all organs and tissues of the body, and the tumor is separated from urine by the most impermeable barrier found in mammals. The distinction between the specific and systemic responses can help understand the disease and its consequences in more depth.
Collapse
|
20
|
Džubinská D, Zvarík M, Kollárik B, Šikurová L. Multiple Chromatographic Analysis of Urine in the Detection of Bladder Cancer. Diagnostics (Basel) 2021; 11:diagnostics11101793. [PMID: 34679490 PMCID: PMC8534525 DOI: 10.3390/diagnostics11101793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer (BC) is the most common type of carcinoma of the urological system. Recently, there has been an increasing interest in non-invasive diagnostic tumor markers due to the invasive attribute of cystoscopy, which is still considered the gold standard diagnostic method. However, markers published in the literature so far do not meet expectations for replacing cystoscopy due to their low specificity and excessively high false-positive results, which can be mainly caused by frequently occurring hematuria also in benign cases. No reliable non-invasive method has yet been identified that can distinguish patients with bladder cancer and non-malignant hematuria patients. Our work examined the possibilities of non-targeted biomarkers of urine to distinguish patients with malignant and non-malignant diseases of the bladder using 3D HPLC in combination with computer processing of multiple datasets. Urine samples from 47 patients, 23 patients with bladder cancer (BC) and 24 patients with non-malignant hematuria (NMHU), were enrolled in clinical trials. For the separation and subsequent analysis of a large number of urine components, 3D HPLC (high-performance liquid chromatography) with an absorption and fluorescence detector was used. The obtained dataset was further subjected to various uni- and multi-dimensional statistical analyses and mathematical modeling. We found 334 chromatographic peaks, of which 18 peaks were identified as significantly different for BC and NMHU patients. Using receiver operating characteristic (ROC) analysis, we assessed the informative ability of significant chromatographic peaks (90% sensitivity and 74% specificity). By logistic regression, we identified the optimal and simplified set of seven chromatographic peaks (5 absorptions plus 2 fluorescence) with strong classification power (100% sensitivity and 100% specificity) for distinguishing patients with bladder cancer and those with non-malignant hematuria. Partial least square discriminant analysis (PLS-DA) model and orthogonal projection to latent structure discriminant analysis (OPLS-DA) with 100% sensitivity and 96% specificity were used to distinguish BC and NMHU patients. Multivariate statistical analysis of urinary metabolomic profiles of patients revealed that BC patients can be discriminated from NMHU patients and the results can likely contribute to an early and non-invasive diagnosis of BC.
Collapse
Affiliation(s)
- Daniela Džubinská
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (D.D.); (L.Š.)
| | - Milan Zvarík
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (D.D.); (L.Š.)
- Correspondence:
| | - Boris Kollárik
- Department of Urology, University Hospital of Bratislava, Antolská 11, 851 07 Bratislava, Slovakia;
| | - Libuša Šikurová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (D.D.); (L.Š.)
| |
Collapse
|
21
|
Plyushchenko IV, Fedorova ES, Potoldykova NV, Polyakovskiy KA, Glukhov AI, Rodin IA. Omics Untargeted Key Script: R-Based Software Toolbox for Untargeted Metabolomics with Bladder Cancer Biomarkers Discovery Case Study. J Proteome Res 2021; 21:833-847. [PMID: 34161108 DOI: 10.1021/acs.jproteome.1c00392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large-scale untargeted LC-MS-based metabolomic profiling is a valuable source for systems biology and biomarker discovery. Data analysis and processing are major tasks due to the high complexity of generated signals and the presence of unwanted variations. In the present study, we introduce an R-based open-source collection of scripts called OUKS (Omics Untargeted Key Script), which provides comprehensive data processing. OUKS is developed by integrating various R packages and metabolomics software tools and can be easily set up and prepared to create a custom pipeline. Novel computational features are related to quality control samples-based signal processing and are implemented by gradient boosting, tree-based, and other nonlinear regression algorithms. Bladder cancer biomarkers discovery study which is based on untargeted LC-MS profiling of urine samples is performed to demonstrate exhaustive functionality of the developed software tool. Unique examination among dozens of metabolomics-specific data curation methods was carried out at each processing step. As a result, potential biomarkers were identified, statistically validated, and described by metabolism disorders. Our study demonstrates that OUKS helps to make untargeted LC-MS metabolomic profiling with the latest computational features readily accessible in a ready-to-use unified manner to a research community.
Collapse
Affiliation(s)
- Ivan V Plyushchenko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elizaveta S Fedorova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia V Potoldykova
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Konstantin A Polyakovskiy
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Alexander I Glukhov
- Biology Department, Lomonosov Moscow State University, 119991 Moscow, Russia.,Department of Biochemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Igor A Rodin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.,Department of Epidemiology and Evidence-Based Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
22
|
Loras A, Segovia C, Ruiz-Cerdá JL. Epigenomic and Metabolomic Integration Reveals Dynamic Metabolic Regulation in Bladder Cancer. Cancers (Basel) 2021; 13:2719. [PMID: 34072826 PMCID: PMC8198168 DOI: 10.3390/cancers13112719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments. In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently, one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA enhance the activity of histone demethylases and acetyl transferases, increasing gene expression, while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation contributes to tumor development and progression. Moreover, it summarizes non-invasive biomarkers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the therapeutic options in BC.
Collapse
Affiliation(s)
- Alba Loras
- Unidad Mixta de Investigación en TICs Aplicadas a la Reingeniería de Procesos Socio-Sanitarios (eRPSS), Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Cristina Segovia
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - José Luis Ruiz-Cerdá
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Departamento de Cirugía, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
23
|
Research Progress of Urine Biomarkers in the Diagnosis, Treatment, and Prognosis of Bladder Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33959906 DOI: 10.1007/978-3-030-63908-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bladder cancer (BC) is one of the most common tumor with high incidence. Relative to other cancers, BC has a high rate of recurrence, which results in increased mortality. As a result, early diagnosis and life-long monitoring are clinically significant for improving the long-term survival rate of BC patients. At present, the main methods of BC detection are cystoscopy and biopsy; however, these procedures can be invasive and expensive. This can lead to patient refusal and reluctance for monitoring. There are several BC biomarkers that have been approved by the FDA, but their sensitivity, specificity, and diagnostic accuracy are not ideal. More research is needed to identify suitable biomarkers that can be used for early detection, evaluation, and observation. There has been heavy research in the proteomics and genomics of BC and many potential biomarkers have been found. Although the advent of metabonomics came late, with the recent development of advanced analytical technology and bioinformatics, metabonomics has become a widely used diagnostic tool in clinical and biomedical research. It should be emphasized that despite progress in new biomarkers for BC diagnosis, there remains challenges and limitations in metabonomics research that affects its translation into clinical practice. In this chapter, the latest literature on BC biomarkers was reviewed.
Collapse
|
24
|
De Matteis S, Bonafè M, Giudetti AM. Urinary Metabolic Biomarkers in Cancer Patients: An Overview. Methods Mol Biol 2021; 2292:203-212. [PMID: 33651364 DOI: 10.1007/978-1-0716-1354-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The pathogenesis of cancer involves multiple molecular alterations at the level of genome, epigenome, and stromal environment, resulting in several deregulated signal transduction pathways. Metabolites are not only end products of gene and protein expression but also a consequence of the mutual relationship between the genome and the internal environment. Considering that metabolites serve as a comprehensive chemical fingerprint of cell metabolism, metabolomics is emerging as the method able to discover metabolite biomarkers that can be developed for early cancer detection, prognosis, and response to treatment. Urine represents a noninvasive source, available and rich in metabolites, useful for cancer diagnosis, prognosis, and treatment monitoring. In this chapter, we reported the main published evidences on urinary metabolic biomarkers in the studied cancers related to hepatopancreatic and urinary tract with the aim at discussing their promising role in clinical practice.
Collapse
Affiliation(s)
- Serena De Matteis
- Department of Medicine, Section of Oncology, University of Verona, Verona, Italy.
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, University of Bologna, Bologna, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
25
|
Pan M, Qin C, Han X. Lipid Metabolism and Lipidomics Applications in Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:1-24. [PMID: 33740240 PMCID: PMC8287890 DOI: 10.1007/978-981-33-6785-2_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Lipids are the critical components of cellular and plasma membrane, which constitute an impermeable barrier of cellular compartments, and play important roles on numerous cellular processes including cell growth, proliferation, differentiation, and signaling. Alterations in lipid metabolism have been implicated in the development and progression of cancers. However, unlike other biomolecules, the diversity in the structures and characteristics of lipid species results in the limited understanding of their metabolic alterations in cancers. Lipidomics is an emerging discipline that studies lipids in a large scale based on analytical chemistry principles and technological tools. Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) uses direct infusion to avoid difficulties from alterations in concentration, chromatographic anomalies, and ion-pairing alterations to improve resolution and achieve rapid and accurate qualitative and quantitative analysis. In this chapter, lipids and lipid metabolism relevant to cancer research are introduced, followed by a brief description of MDMS-SL and other shotgun lipidomics techniques and some applications for cancer research.
Collapse
Affiliation(s)
- Meixia Pan
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
- Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
26
|
Raja G, Jung Y, Jung SH, Kim TJ. 1H-NMR-based metabolomics for cancer targeting and metabolic engineering –A review. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol 2020; 14:100907. [PMID: 33217646 PMCID: PMC7683339 DOI: 10.1016/j.tranon.2020.100907] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis could improve lung cancer survival rate. The availability of blood-based screening could increase lung cancer patient uptake. An interdisciplinary mechanism combines metabolomics and machine learning methods. Metabolic biomarkers could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction.
Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.
Collapse
|
28
|
Shahid M, Yeon A, Kim J. Metabolomic and lipidomic approaches to identify biomarkers for bladder cancer and interstitial cystitis (Review). Mol Med Rep 2020; 22:5003-5011. [PMID: 33174036 PMCID: PMC7646957 DOI: 10.3892/mmr.2020.11627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022] Open
Abstract
The discovery, introduction and clinical use of prognostic and diagnostic biomarkers has significantly improved outcomes for patients with various illnesses, including bladder cancer (BC) and other bladder-related diseases, such as benign bladder dysfunction and interstitial cystitis (IC). Several sensitive and noninvasive clinically relevant biomarkers for BC and IC have been identified. Metabolomic- and lipidomic-based biomarkers have notable clinical potential in improving treatment outcomes for patients with cancer; however, there are also some noted limitations. This review article provides a short and concise summary of the literature on metabolomic and lipidomic biomarkers for BC and IC, focusing on the possible clinical utility of profiling metabolic alterations in BC and IC.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Surgery, Cedars‑Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Austin Yeon
- Department of Surgery, Cedars‑Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jayoung Kim
- Department of Surgery, Cedars‑Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
29
|
Analysis of open chromatin regions in bladder cancer links β-catenin mutations and Wnt signaling with neuronal subtype of bladder cancer. Sci Rep 2020; 10:18667. [PMID: 33122695 PMCID: PMC7596510 DOI: 10.1038/s41598-020-75688-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
Urothelial carcinoma of the bladder is the most frequent bladder cancer affecting more than 400,000 people each year. Histopathologically, it is mainly characterized as muscle invasive bladder cancer (MIBC) and non-muscle invasive bladder cancer (NMIBC). Recently, the studies largely driven by consortiums such as TCGA identified the mutational landscape of both MIBC and NMIBC and determined the molecular subtypes of bladder cancer. Because of the exceptionally high rate of mutations in chromatin proteins, bladder cancer is thought to be a disease of chromatin, pointing out to the importance of studying epigenetic deregulation and the regulatory landscape of this cancer. In this study, we have analyzed ATAC-seq data generated for MIBC and integrated our findings with gene expression and DNA methylation data to identify subgroup specific regulatory patterns for MIBC. Our computational analysis revealed three MIBC regulatory clusters, which we named as neuronal, non-neuronal and luminal outlier. We have identified target genes of neuronal regulatory elements to be involved in WNT signaling, while target genes of non-neuronal and luminal outlier regulatory regions were enriched in epithelial differentiation and drug metabolism, respectively. Neuronal regulatory elements were determined to be ß-catenin targets (p value = 3.59e−08) consisting of genes involved in neurogenesis such as FGF9, and PROX1, and significantly enriched for TCF/LEF binding sites (p value = 1e−584). Our results showed upregulation of ß-catenin targets regulated by neuronal regulatory elements in three different cohorts, implicating ß-catenin signature in neuronal bladder cancer. Further, integration with mutation data revealed significantly higher oncogenic exon 3 ß-catenin mutations in neuronal bladder cancer compared to non-neuronal (odds ratio = 31.33, p value = 1.786e−05). Our results for the first time identify regulatory elements characterizing neuronal bladder cancer and links these neuronal regulatory elements with WNT signaling via mutations in β-catenin and its destruction complex components.
Collapse
|
30
|
Kwon HN, Lee H, Park JW, Kim YH, Park S, Kim JJ. Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach. Cancers (Basel) 2020; 12:cancers12102904. [PMID: 33050308 PMCID: PMC7599479 DOI: 10.3390/cancers12102904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary There are currently no effective specific biomarkers for the screening of early gastric cancer. Recently, metabolomics has been used to profile small endogenous metabolites, demonstrating significant potential in the diagnosis/screening of cancer, owing to its ability to conduct a noninvasive sample analysis. Here, we performed a urine metabolomics analysis in the context of an early diagnosis of gastric cancer. This approach showed very high diagnostic sensitivity and specificity and performed significantly better than the analysis of serum tumor markers modalities. An additional genomic data analysis revealed the up-regulation of several genes in gastric cancer. This metabolomics-based early diagnosis approach may have the potential for mass screening an average-risk population and may facilitate endoscopic examination through risk stratification. Abstract The early detection of gastric cancer (GC) could decrease its incidence and mortality. However, there are currently no accurate noninvasive markers for GC screening. Therefore, we developed a noninvasive diagnostic approach, employing urine nuclear magnetic resonance (NMR) metabolomics, to discover putative metabolic markers associated with GC. Changes in urine metabolite levels during oncogenesis were evaluated using samples from 103 patients with GC and 100 age- and sex-matched healthy controls. Approximately 70% of the patients with GC (n = 69) had stage I GC, with the majority (n = 56) having intramucosal cancer. A multivariate statistical analysis of the urine NMR data well discriminated between the patient and control groups and revealed nine metabolites, including alanine, citrate, creatine, creatinine, glycerol, hippurate, phenylalanine, taurine, and 3-hydroxybutyrate, that contributed to the difference. A diagnostic performance test with a separate validation set exhibited a sensitivity and specificity of more than 90%, even with the intramucosal cancer samples only. In conclusion, the NMR-based urine metabolomics approach may have potential as a convenient screening method for the early detection of GC and may facilitate consequent endoscopic examination through risk stratification.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea;
- Stem Cells and Metabolism Research Program, Faculty of Medicine/Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Hyuk Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.W.P.); (Y.-H.K.)
| | - Ji Won Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.W.P.); (Y.-H.K.)
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.W.P.); (Y.-H.K.)
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea;
- Correspondence: (S.P.); (J.J.K.); Tel.: +82-(2)-880-7834 (S.P.); +82-(2)-3410-3409 (J.J.K.); Fax: +82-(2)-880-7831 (S.P.); +82-(2)-3410-6983 (J.J.K.)
| | - Jae J. Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.W.P.); (Y.-H.K.)
- Correspondence: (S.P.); (J.J.K.); Tel.: +82-(2)-880-7834 (S.P.); +82-(2)-3410-3409 (J.J.K.); Fax: +82-(2)-880-7831 (S.P.); +82-(2)-3410-6983 (J.J.K.)
| |
Collapse
|
31
|
Elsawy AA, Awadalla A, Maher S, Ahmed AE, Youssef MM, Abol-Enein H. Diagnostic Performance of Novel Urine-Based mRNA Tests (Xpert and Urinary Metabolomics Markers Assay) for Bladder Cancer Detection in Patients with Hematuria. Bladder Cancer 2020. [DOI: 10.3233/blc-200318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Hematuria is the most frequent presenting symptom in the vast majority of bladder cancer (BC) patients. The current recommended evaluation of hematuria includes cross sectional imaging and cystoscopy with possible high negative results, expensive costs and substantial patient burden. OBJECTIVES: To validate novel urine-based mRNA-dependant tests; Xpert test and urinary metabolomics assay (CRAT and SLC 25A20genes expression) for BC detection in patients with hematuria. METHODS: Patients presented with hematuria to our tertiary care hospital were evaluated by CT urogram and office white light cystoscopy with subsequent inpatient biopsy for positive findings. Voided precystoscopy urine samples were prospectively collected. Xpert test, assay of targeted urinary metabolomics and cytology, were performed. The tests characteristics presumably were calculated based on the ability to identify BC noninvasively. RESULTS: Between March 2018 and June 2019, 181 patients were included in the final analysis with mean (±SD) age 62 (±10) years with 168 (92.8%) males. Macroscopic hematuria was encountered in 153 (84.5%) patients with irritative bladder symptoms in 48 (26.5%) patients. BC was confirmed by cystoscopy/biopsy in 36 (19.9%) patients. The performance characteristics of Xpert alone (SN: 73%, SP: 83%, NPV: 92%, PPV: 52%) (AUC 0.84, 95% CI 0.75–0.93, p = 0.001), metabolomics assay alone (SN: 89%, SP: 93%, NPV: 97%, PPV: 78%) (AUC 0.91, 95% CI 0.85–0.98, p < 0.001) and combination of both test results (SN: 66%, SP: 98%, NPV: 92%, PPV: 97%) (AUC 0.83, 95% CI 0.74–0.93, p = 0.001) were notably superior to urine cytology (SN: 30%, SP: 84%, NPV: 83%, PPV: 33%) (AUC 0.58, 95% CI 0.47–0.69, p = 0.154) for BC prediction. Cystoscopy-negative patients (CNP) were followed-up for a median (range) 12 (2–19) months. Re-cystoscopy was done for 35 patients with persistent symptoms. BC was diagnosed in 6 patients. Xpert and urinary metabolomics results were observably positive in those 6 patients. CONCLUSION: Xpert test and assay of urinary metabolomics (CRAT and SLC 25A20 genes expression) have the potential for BC detection in hematuria patients. These non invasive urine based tests can help prioritization of the use of invasive diagnostic tests in systems with long waiting times.
Collapse
Affiliation(s)
- Amr A. Elsawy
- Urology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Shaza Maher
- Department of Chemistry, Faculty of Science, Mansoura University, Egypt
| | - Asmaa E. Ahmed
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Magdy M. Youssef
- Department of Chemistry, Faculty of Science, Mansoura University, Egypt
| | - Hassan Abol-Enein
- Urology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Wang T, Yu X, Lin J, Qin C, Bai T, Xu T, Wang L, Liu X, Li S. Adipose-Derived Stem Cells Inhibited the Proliferation of Bladder Tumor Cells by S Phase Arrest and Wnt/β-Catenin Pathway. Cell Reprogram 2020; 21:331-338. [PMID: 31809208 PMCID: PMC6918853 DOI: 10.1089/cell.2019.0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs), which are present in most organs and tissues, were evaluated as a novel medium for stem cell therapy. In this study, we investigated the effects and underlying mechanisms of ADSCs in bladder tumor (BT) cells. SV-HUC, T24, and EJ cells were cultured with ADSCs and conditioned medium from ADSCs (ADSC-CM). We observed that in routine culture, ADSCs significantly inhibited the proliferation of T24 and EJ cells in a dose-dependent manner. In addition, ADSC-CM attenuated the viability of T24 and EJ cells in a dose-dependent manner. Cell cycle analysis indicated that ADSC-CM was capable of inducing T24 and EJ cells S phase arrest and downregulating the expression of CDK 1, whereas the expression of cyclin A was increased. ADSC-CM could induce apoptosis in T24 cells. The mechanism of this effect likely involved the caspase3/7 pathway and Wnt/β-catenin pathway. These findings demonstrated that ADSCs could inhibit the proliferation of BT cells via secretory factors.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Cong Qin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Bai
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenglan Li
- Department of Radiography, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Shahid M, Kim M, Jin P, Zhou B, Wang Y, Yang W, You S, Kim J. S-Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer. Int J Biol Sci 2020; 16:2490-2505. [PMID: 32792852 PMCID: PMC7415425 DOI: 10.7150/ijbs.45640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Protein S-palmitoylation is a powerful post-translational modification that regulates protein trafficking, localization, turnover, and signal transduction. Palmitoylation controls several important cellular processes, and, if dysregulated, can lead to cancer, cardiovascular disease, and neurological disorders. The role of protein palmitoylation in mediating resistance to systemic cisplatin-based chemotherapies in cancer is currently unknown. This is of particular interest because cisplatin is currently the gold standard of treatment for bladder cancer (BC), and there are no feasible options after resistance is acquired. Using unbiased global proteomic profiling of purified S-palmitoylated peptides combined with intensive bioinformatics analyses, we identified 506 candidate palmitoylated proteins significantly enriched in cisplatin-resistant BC cells. One of these proteins included PD-L1, which is highly palmitoylated in resistant cells. Pharmacological inhibition of fatty acid synthase (FASN) suppressed PD-L1 palmitoylation and expression, which suggests the potential use of FASN-PD-L1-targeted therapeutic strategies in BC patients. Taken together, these results highlight the role of protein palmitoylation in mediating BC chemoresistance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peng Jin
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Liu X, Zhang M, Cheng X, Liu X, Sun H, Guo Z, Li J, Tang X, Wang Z, Sun W, Zhang Y, Ji Z. LC-MS-Based Plasma Metabolomics and Lipidomics Analyses for Differential Diagnosis of Bladder Cancer and Renal Cell Carcinoma. Front Oncol 2020; 10:717. [PMID: 32500026 PMCID: PMC7243740 DOI: 10.3389/fonc.2020.00717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) and Renal cell carcinoma(RCC) are the two most frequent genitourinary cancers in China. In this study, a comprehensive liquid chromatography-mass spectrometry (LC-MS) based method, which utilizes both plasma metabolomics and lipidomics platform, has been carried out to discriminate the global plasma profiles of 64 patients with BC, 74 patients with RCC, and 141 healthy controls. Apparent separation was observed between cancer (BC and RCC) plasma samples and controls. The area under the receiving operator characteristic curve (AUC) was 0.985 and 0.993 by plasma metabolomics and lipidomics, respectively (external validation group: AUC was 0.944 and 0.976, respectively). Combined plasma metabolomics and lipidomics showed good predictive ability with an AUC of 1 (external validation group: AUC = 0.99). Then, separation was observed between the BC and RCC samples. The AUC was 0.862, 0.853 and 0.939, respectively, by plasma metabolomics, lipidomics and combined metabolomics and lipidomics (external validation group: AUC was 0.802, 0.898, and 0.942, respectively). Furthermore, we also found eight metabolites that showed good predictive ability for BC, RCC and control discrimination. This study indicated that plasma metabolomics and lipidomics may be effective for BC, RCC and control discrimination, and combined plasma metabolomics and lipidomics showed better predictive performance. This study would provide a reference for BC and RCC biomarker discovery, not only for early detection and screening, but also for differential diagnosis.
Collapse
Affiliation(s)
- Xiang Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingxin Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangming Cheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyan Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Tang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
35
|
Peng T, Wang G, Cheng S, Xiong Y, Cao R, Qian K, Ju L, Wang X, Xiao Y. The role and function of PPARγ in bladder cancer. J Cancer 2020; 11:3965-3975. [PMID: 32328200 PMCID: PMC7171493 DOI: 10.7150/jca.42663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily, participates in multiple physiological and pathological processes. Extensive studies have revealed the relationship between PPARγ and various tumors. However, the expression and function of PPARγ in bladder cancer seem to be controversial. It has been demonstrated that PPARγ affects the occurrence and progression of bladder cancer by regulating proliferation, apoptosis, metastasis, and reactive oxygen species (ROS) and lipid metabolism, probably through PPARγ-SIRT1 feedback loops, the PI3K-Akt signaling pathway, and the WNT/β-catenin signaling pathway. Considering the frequent relapses after chemotherapy, some researchers have focused on the relationship between PPARγ and chemotherapy sensitivity in bladder cancer. Moreover, the feasibility of PPARγ ligands as potential therapeutic targets for bladder cancer has been uncovered. Taken together, this review summarizes the relevant literature and our findings to explore the complicated role and function of PPARγ in bladder cancer.
Collapse
Affiliation(s)
- Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Songtao Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| |
Collapse
|
36
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Baltazar F, Jerónimo C. The metabolic landscape of urological cancers: New therapeutic perspectives. Cancer Lett 2020; 477:76-87. [PMID: 32142920 DOI: 10.1016/j.canlet.2020.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023]
Abstract
Deregulation of cell metabolism is an established cancer hallmark that contributes to tumor initiation and progression, as well as tumor heterogeneity. In solid tumors, alterations in different metabolic pathways, including glycolysis, pentose phosphate pathway, glutaminolysis and fatty acid metabolism, support the high proliferative rates and macromolecule biosynthesis of cancer cells. Despite advances in therapy, urothelial tumors still exhibit high recurrence and mortality rates, especially in advanced stages of disease. These tumors harbor gene mutations and expression patterns which play an important role in metabolic reprogramming. Taking into account the unique metabolic features underlying carcinogenesis in these cancers, new and promising therapeutic targets based on metabolic alterations must be considered. Furthermore, the combination of metabolic inhibitors with conventional targeted therapies may improve effectiveness of treatments. This review will summarize the metabolic alterations present in urological tumors and the results with metabolic inhibitors currently available.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal.
| |
Collapse
|
37
|
Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA, Cheng LL. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 2020; 16:339-362. [PMID: 31092915 DOI: 10.1038/s41585-019-0185-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Urinary tests have been used as noninvasive, cost-effective tools for screening, diagnosis and monitoring of diseases since ancient times. As we progress through the 21st century, modern analytical platforms have enabled effective measurement of metabolites, with promising results for both a deeper understanding of cancer pathophysiology and, ultimately, clinical translation. The first study to measure metabolomic urinary cancer biomarkers using NMR and mass spectrometry (MS) was published in 2006 and, since then, these techniques have been used to detect cancers of the urological system (kidney, prostate and bladder) and nonurological tumours including those of the breast, ovary, lung, liver, gastrointestinal tract, pancreas, bone and blood. This growing field warrants an assessment of the current status of research developments and recommendations to help systematize future research.
Collapse
Affiliation(s)
- Sarah S Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Hohm
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Diagnostic and Interventional Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Lindsey A Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Leo L Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Graça G, Lau CHE, Gonçalves LG. Exploring Cancer Metabolism: Applications of Metabolomics and Metabolic Phenotyping in Cancer Research and Diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:367-385. [PMID: 32130709 DOI: 10.1007/978-3-030-34025-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered metabolism is one of the key hallmarks of cancer. The development of sensitive, reproducible and robust bioanalytical tools such as Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry techniques offers numerous opportunities for cancer metabolism research, and provides additional and exciting avenues in cancer diagnosis, prognosis and for the development of more effective and personalized treatments. In this chapter, we introduce the current state of the art of metabolomics and metabolic phenotyping approaches in cancer research and clinical diagnostics.
Collapse
Affiliation(s)
- Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| | - Chung-Ho E Lau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Luís G Gonçalves
- Proteomics of Non-Model Organisms Lab, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
39
|
Kim J, Kim WT, Kim WJ. Advances in urinary biomarker discovery in urological research. Investig Clin Urol 2019; 61:S8-S22. [PMID: 32055750 PMCID: PMC7004831 DOI: 10.4111/icu.2020.61.s1.s8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
A disease-specific biomarker (or biomarkers) is a characteristic reflecting a pathological condition in human body, which can be used as a diagnostic or prognostic tool for the clinical management. A urine-based biomarker(s) may provide a clinical value as attractive tools for clinicians to utilize in the clinical setting in particular to bladder diseases including bladder cancer and other bladder benign dysfunctions. Urine can be easily obtained by patients with no preparation or painful procedures required from patients' side. Currently advanced omics technologies and computational power identified potential omics-based novel biomarkers. An unbiased profiling based on transcriptomics, proteomics, epigenetics, metabolomics approaches et al. found that expression at RNA, protein, and metabolite levels are linked with specific bladder diseases and outcomes. In this review, we will discuss about the urine-based biomarkers reported by many investigators including us and how these biomarkers can be applied as a diagnostic and prognostic tool in clinical trials and patient care to promote bladder health. Furthermore, we will discuss how these promising biomarkers can be developed into a smart medical device and what we should be cautious about toward being used in real clinical setting.
Collapse
Affiliation(s)
- Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA, USA
| | - Won Tae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
40
|
Wang Z, Liu X, Liu X, Sun H, Guo Z, Zheng G, Zhang Y, Sun W. UPLC-MS based urine untargeted metabolomic analyses to differentiate bladder cancer from renal cell carcinoma. BMC Cancer 2019; 19:1195. [PMID: 31805976 PMCID: PMC6896793 DOI: 10.1186/s12885-019-6354-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
Background To discover biomarker panels that could distinguish cancers (BC and RCC) from healthy controls (HCs) and bladder cancers (BC) from renal cell carcinoma (RCC), regardless of whether the patients have haematuria. In addition, we also explored the altered metabolomic pathways of BC and RCC. Methods In total, 403 participants were enrolled in our study, which included 146 BC patients (77 without haematuria and 69 with haematuria), 115 RCC patients (94 without haematuria and 21 with haematuria) and 142 sex- and age-matched HCs. Their midstream urine samples were collected and analysed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarker panels and altered metabolic pathways. Results The panel of α-CEHC, β-cortolone, deoxyinosine, flunisolide, 11b,17a,21-trihydroxypreg-nenolone and glycerol tripropanoate could distinguish the patients with cancer from the HCs (the AUC was 0.950) and the external validation also displayed a good predictive ability (the AUC was 0.867). The panel of 4-ethoxymethylphenol, prostaglandin F2b, thromboxane B3, hydroxybutyrylcarnitine, 3-hydroxyphloretin and N′-formylkynurenine could differentiate BC from RCC without haematuria. The AUC was 0.829 in the discovering group and 0.76 in the external validation. The metabolite panel comprising 1-hydroxy-2-oxopropyl tetrahydropterin, 1-acetoxy-2-hydroxy-16-heptadecyn-4-one, 1,2-dehydrosalsolinol and L-tyrosine could significantly discriminate BC from RCC with haematuria (AUC was 0.913). Pathway analyses revealed altered lipid and purine metabolisms between cancer patients and HCs, together with disordered amino acid and purine metabolisms between BC and RCC with haematuria. Conclusions UPLC-MS urine metabolomic analyses could not only differentiate cancers from HCs but also discriminate BC from RCC. In addition, pathway analyses demonstrated a deeper metabolic mechanism of BC and RCC.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Xiaoyan Liu
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiang Liu
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Haidan Sun
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhengguang Guo
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Guoyang Zheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wei Sun
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
41
|
LncRNAs act as prognostic biomarkers in bladder carcinoma: A meta-analysis. Heliyon 2019; 5:e02785. [PMID: 31844718 PMCID: PMC6895706 DOI: 10.1016/j.heliyon.2019.e02785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
Background and purpose Increasing studies have shown that different kinds of lncRNAs play key role in the development of multiple carcinomas. Therefore, we conducted a meta-analysis to investigate an association between the expression level of lncRNAs and the prognosis of bladder cancer (death or other clinical outcomes). Methods A systematic literature search was performed by using PubMed. Twenty-four studies were included in the meta-analysis based on the inclusion and exclusion criteria. In total, there are 1652 independent participants. Results The result showed that high expression levels of lncRNAs were demonstrated to be associated with poor overall survival (OS) (HR = 2.33, 95%CI: 1.51–2.39, p < 0.01) in bladder carcinoma, but there was no significant correlation between lncRNAs level and recurrence-free survival (RFS) (pooled HR = 1.57, 95%CI 0.69–3.56, p = 0.284), and progression-free survival (PFS) (pooled HR = 1.37, 95%CI 0.79–2.38, p = 0.269). Additionally, increased lncRNAs expression was found to be moderately correlated with tumor stage and progression (II/III/IV vs. I, OR = 3.20, 95%CI: 1.72–5.98, p < 0.001). In addition, elevated lncRNAs expression predicted lymph node metastasis (LNM) significantly (pooled OR = 2.29, 95 % CI 1.33–3.95, p < 0.01). No significant heterogeneity was observed among studies except lymph node metastasis. Conclusion In conclusion, high expression levels of lncRNAs were demonstrated to be associated with poor OS and positive LNM, and lncRNAs might be potential prognostic markers in bladder cancer.
Collapse
|
42
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
43
|
Yang C, Sun X, Wang H, Lu T, Wu K, Guan Y, Tang J, Liang J, Sun R, Guo Z, Zheng S, Wu X, Jiang H, Jiang X, Zhong B, Niu X, Sun S, Wang X, Chen M, Fu G. Metabolomic profiling identifies novel biomarkers and mechanisms in human bladder cancer treated with submucosal injection of gemcitabine. Int J Mol Med 2019; 44:1952-1962. [PMID: 31545404 PMCID: PMC6777689 DOI: 10.3892/ijmm.2019.4347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Bladder cancer (BCa) is a common urinary tract malignancy with frequent recurrences after initial resection. Submucosal injection of gemcitabine prior to transurethral resection of bladder tumor (TURBT) may prevent recurrence of urothelial cancer. However, the underlying mechanism remains unknown. In the present study, ultra-performance liquid chromatography Q-Exactive mass spectrometry was used to profile tissue metabolites from 12 BCa patients. The 48 samples included pre- and post-gemcitabine treatment BCa tissues, as well as adjacent normal tissues. Principal component analysis (PCA) revealed that the metabolic profiles of pre-gemcitabine BCa tissues differed significantly from those of pre-gemcitabine normal tissues. A total of 34 significantly altered metabolites were further analyzed. Pathway analysis using MetaboAnalyst identified three metabolic pathways closely associated with BCa, including glutathione, purine and thiamine metabolism, while gluta-thione metabolism was also identified by the enrichment analysis using MetaboAnalyst. In search of the possible targets of gemcitabine, metabolite profiles were compared between the pre-gemcitabine normal and post-gemcitabine BCa tissues. Among the 34 metabolites associated with BCa, the levels of bilirubin and retinal recovered in BCa tissues treated with gemcitabine. When comparing normal bladder tissues with and without gemcitabine treatment, among the 34 metabolites associated with BCa, it was observed that histamine change may be associated with the prevention of relapse, whereas thiamine change may be involved in possible side effects. Therefore, by employing a hypothesis-free tissue-based metabolomics study, the present study investigated the metabolic signatures of BCa and found that bilirubin and retinal may be involved in the mechanism underlying the biomolecular action of submucosal injection of gemcitabine in urothelial BCa.
Collapse
Affiliation(s)
- Chao Yang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hengbing Wang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ting Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Keqing Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jing Tang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jian Liang
- Center of Reproduction and Genetic, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhongying Guo
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Sinian Zheng
- Department of Urology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaoli Wu
- Department of Pharmacy, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hesong Jiang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xi Jiang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaobing Niu
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Suan Sun
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
44
|
Jacyna J, Wawrzyniak R, Balayssac S, Gilard V, Malet-Martino M, Sawicka A, Kordalewska M, Nowicki Ł, Kurek E, Bulska E, Patejko M, Markuszewski M, Gutknecht P, Matuszewski M, Siebert J, Kaliszan R, Markuszewski MJ. Urinary metabolomic signature of muscle-invasive bladder cancer: A multiplatform approach. Talanta 2019; 202:572-579. [DOI: 10.1016/j.talanta.2019.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
|
45
|
Review and Comparison of Cancer Biomarker Trends in Urine as a Basis for New Diagnostic Pathways. Cancers (Basel) 2019; 11:cancers11091244. [PMID: 31450698 PMCID: PMC6770126 DOI: 10.3390/cancers11091244] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major causes of mortality worldwide and its already large burden is projected to increase significantly in the near future with a predicted 22 million new cancer cases and 13 million cancer-related deaths occurring annually by 2030. Unfortunately, current procedures for diagnosis are characterized by low diagnostic accuracies. Given the proved correlation between cancer presence and alterations of biological fluid composition, many researchers suggested their characterization to improve cancer detection at early stages. This paper reviews the information that can be found in the scientific literature, regarding the correlation of different cancer forms with the presence of specific metabolites in human urine, in a schematic and easily interpretable form, because of the huge amount of relevant literature. The originality of this paper relies on the attempt to point out the odor properties of such metabolites, and thus to highlight the correlation between urine odor alterations and cancer presence, which is proven by recent literature suggesting the analysis of urine odor for diagnostic purposes. This investigation aims to evaluate the possibility to compare the results of studies based on different approaches to be able in the future to identify those compounds responsible for urine odor alteration.
Collapse
|
46
|
Untargeted metabolomics analysis of rat hippocampus subjected to sleep fragmentation. Brain Res Bull 2019; 153:74-83. [PMID: 31419538 DOI: 10.1016/j.brainresbull.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 01/08/2023]
Abstract
Sleep fragmentation (SF) commonly occurs in several pathologic conditions and is especially associated with impairments of hippocampus-dependent neurocognitive functions. Although the effects of SF on hippocampus in terms of protein or gene levels were examined in several studies, the impact of SF at the metabolite level has not been investigated. Thus, in this study, the differentially expressed large-scale metabolite profiles of hippocampus in a rat model of SF were investigated using untargeted metabolomics approaches. Forty-eight rats were divided into the following 4 groups: 4-day SF group, 4-day exercise control (EC) group, 15-day SF group, and 15-day EC group (n = 12, each). SF was accomplished by forced exercise using a walking wheel system with 30-s on/90-s off cycles, and EC condition was set at 10-min on/30-min off. The metabolite profiles of rat hippocampi in the SF and EC groups were analyzed using liquid chromatography/mass spectrometry. Multivariate analysis revealed distinctive metabolic profiles and marker signals between the SF and corresponding EC groups. Metabolic changes were significant only in the 15-day SF group. In the 15-day SF group, L-tryptophan, myristoylcarnitine, and palmitoylcarnitine were significantly increased, while adenosine monophosphate, hypoxanthine, L-glutamate, L-aspartate, L-methionine, and glycerophosphocholine were decreased compared to the EC group. The alanine, aspartate, and glutamate metabolism pathway was observed as the common key pathway in the 15-day SF groups. The results from this untargeted metabolomics study provide a perspective on metabolic impact of SF on the hippocampus.
Collapse
|
47
|
Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci (Lond) 2019; 133:1745-1758. [PMID: 31358595 DOI: 10.1042/cs20190587] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
Tumor cells rely on aerobic glycolysis as their main energy resource (Warburg effect). Recent research has highlighted the importance of lipid metabolism in tumor progression, and certain cancers even turn to fatty acids as the main fuel. Related studies have identified alterations of fatty acid metabolism in human bladder cancer (BCa). Our microarray analysis showed that fatty acid metabolism was activated in BCa compared with normal bladder. The free fatty acid (FFA) level was also increased in BCa compared with paracancerous tissues. Inhibition of fatty acid oxidation (FAO) with etomoxir caused lipid accumulation, decreased adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) levels, suppressed BCa cell growth in vitro and in vivo, and reduced motility of BCa cells via affecting epithelial-mesenchymal transition (EMT)-related proteins. Furthermore, etomoxir induced BCa cell cycle arrest at G0/G1 phase through peroxisome proliferator-activated receptor (PPAR) γ-mediated pathway with alterations in fatty acid metabolism associated gene expression. The cell cycle arrest could be reversed by PPARγ antagonist GW9662. Taken together, our results suggest that inhibition of FAO with etomoxir may provide a novel avenue to investigate new therapeutic approaches to human BCa.
Collapse
|
48
|
Kouznetsova VL, Kim E, Romm EL, Zhu A, Tsigelny IF. Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics 2019; 15:94. [PMID: 31222577 DOI: 10.1007/s11306-019-1555-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Bladder cancer (BCa) is one of the most common and aggressive cancers. It is the sixth most frequently occurring cancer in men and its rate of occurrence increases with age. The current method of BCa diagnosis includes a cystoscopy and biopsy. This process is expensive, unpleasant, and may have severe side effects. Recent growth in the power and accessibility of machine-learning software has allowed for the development of new, non-invasive diagnostic methods whose accuracy and sensitivity are uncompromising to function. OBJECTIVES The goal of this research was to elucidate the biomarkers including metabolites and corresponding genes for different stages of BCa, show their distinguishing and common features, and create a machine-learning model for classification of stages of BCa. METHODS Sets of metabolites for early and late stages, as well as common for both stages were analyzed using MetaboAnalyst and Ingenuity® Pathway Analysis (IPA®) software. Machine-learning methods were utilized in the development of a binary classifier for early- and late-stage metabolites of BCa. Metabolites were quantitatively characterized using EDragon 1.0 software. The two modeling methods used are Multilayer Perceptron (MLP) and Stochastic Gradient Descent (SGD) with a logistic regression loss function. RESULTS We explored metabolic pathways related to early-stage BCa (Galactose metabolism and Starch and sucrose metabolism) and to late-stage BCa (Glycine, serine, and threonine metabolism, Arginine and proline metabolism, Glycerophospholipid metabolism, and Galactose metabolism) as well as those common to both stages pathways. The central metabolite impacting the most cancerogenic genes (AKT, EGFR, MAPK3) in early stage is D-glucose, while late-stage BCa is characterized by significant fold changes in several metabolites: glycerol, choline, 13(S)-hydroxyoctadecadienoic acid, 2'-fucosyllactose. Insulin was also seen to play an important role in late stages of BCa. The best performing model was able to predict metabolite class with an accuracy of 82.54% and the area under precision-recall curve (PRC) of 0.84 on the training set. The same model was applied to three separate sets of metabolites obtained from public sources, one set of the late-stage metabolites and two sets of the early-stage metabolites. The model was better at predicting early-stage metabolites with accuracies of 72% (18/25) and 95% (19/20) on the early sets, and an accuracy of 65.45% (36/55) on the late-stage metabolite set. CONCLUSION By examining the biomarkers present in the urine samples of BCa patients as compared with normal patients, the biomarkers associated with this cancer can be pinpointed and lead to the elucidation of affected metabolic pathways that are specific to different stages of cancer. Development of machine-learning model including metabolites and their chemical descriptors made it possible to achieve considerable accuracy of prediction of stages of BCa.
Collapse
Affiliation(s)
- Valentina L Kouznetsova
- Moores Cancer Center, UC San Diego, San Diego, USA
- San Diego Supercomputer Center, UC San Diego, San Diego, USA
| | - Elliot Kim
- REHS Program UC San Diego, San Diego, USA
| | | | - Alan Zhu
- REHS Program UC San Diego, San Diego, USA
| | - Igor F Tsigelny
- Moores Cancer Center, UC San Diego, San Diego, USA.
- San Diego Supercomputer Center, UC San Diego, San Diego, USA.
- Department of Neurosciences, UC San Diego, San Diego, USA.
- CureMatch Inc., San Diego, USA.
| |
Collapse
|
49
|
Burton C, Ma Y. Current Trends in Cancer Biomarker Discovery Using Urinary Metabolomics: Achievements and New Challenges. Curr Med Chem 2019; 26:5-28. [PMID: 28914192 DOI: 10.2174/0929867324666170914102236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The development of effective screening methods for early cancer detection is one of the foremost challenges facing modern cancer research. Urinary metabolomics has recently emerged as a potentially transformative approach to cancer biomarker discovery owing to its noninvasive sampling characteristics and robust analytical feasibility. OBJECTIVE To provide an overview of new developments in urinary metabolomics, cover the most promising aspects of hyphenated techniques in untargeted and targeted metabolomics, and to discuss technical and clinical limitations in addition to the emerging challenges in the field of urinary metabolomics and its application to cancer biomarker discovery. METHODS A systematic review of research conducted in the past five years on the application of urinary metabolomics to cancer biomarker discovery was performed. Given the breadth of this topic, our review focused on the five most widely studied cancers employing urinary metabolomics approaches, including lung, breast, bladder, prostate, and ovarian cancers. RESULTS As an extension of conventional metabolomics, urinary metabolomics has benefitted from recent technological developments in nuclear magnetic resonance, mass spectrometry, gas and liquid chromatography, and capillary electrophoresis that have improved urine metabolome coverage and analytical reproducibility. Extensive metabolic profiling in urine has revealed a significant number of altered metabolic pathways and putative biomarkers, including pteridines, modified nucleosides, and acylcarnitines, that have been associated with cancer development and progression. CONCLUSION Urinary metabolomics presents a transformative new approach toward cancer biomarker discovery with high translational capacity to early cancer screening.
Collapse
Affiliation(s)
- Casey Burton
- Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO, United States
| | - Yinfa Ma
- Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
50
|
Chen J, Hou H, Chen H, Luo Y, Zhang L, Zhang Y, Liu H, Zhang F, Liu Y, Wang A, Hu Q. Urinary metabolomics for discovering metabolic biomarkers of laryngeal cancer using UPLC-QTOF/MS. J Pharm Biomed Anal 2019; 167:83-89. [DOI: 10.1016/j.jpba.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
|