1
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Matic N, Pettersson L, Sellebjerg F, Lindberg L, Roberg K, Wiechec E. Prognostic value of hypoxia-responsive gene expression profile in patients diagnosed with head and neck squamous cell carcinoma. Transl Oncol 2024; 39:101841. [PMID: 38016355 PMCID: PMC10687700 DOI: 10.1016/j.tranon.2023.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a disease associated with a severe mortality and high risk of distant metastasis and local recurrence. Currently, surgery and radiotherapy are the main treatment modes, however, therapeutic efficacy of radiotherapy is linked to tumor resistance. Hypoxia has been shown to affect outcome of radiotherapy in HNSCC patients. The aim of this study was to verify the expression of the previously identified hypoxia-responsive genes (CA9, CASP14, LOX, GLUT3, SERPINE1, AREG, EREG, CCNB1 and KIF14) in HNSCC patient material as well as assess their prognostic potential. Tumor biopsies obtained before start of radiotherapy from 32 HNSCC patients classified as responders or non-responders were investigated in this study. The mRNA expression was quantified using RT-qPCR. The mRNA expression of CA9, SERPINE1 and KIF14 was significantly higher in the analyzed patient material compared with the non-cancerous oral tissue. Moreover, the KIF14 mRNA expression was significantly higher in the responder group compared to non-responders. Further studies demonstrated that knockdown of KIF14 reverses its radiosensitizing capability. Additionally, low expression of KIF14 mRNA correlated with significantly shorter OS (overall survival). In conclusion, our results suggest that KIF14 might be a useful prognostic and predictive marker in HNSCC.
Collapse
Affiliation(s)
- Natasa Matic
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping 58185, Sweden
| | - Lina Pettersson
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping 58185, Sweden
| | - Felicia Sellebjerg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping 58185, Sweden
| | - Lina Lindberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping 58185, Sweden
| | - Karin Roberg
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping 58185, Sweden; Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping 58185, Sweden.
| | - Emilia Wiechec
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping 58185, Sweden; Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping 58185, Sweden.
| |
Collapse
|
3
|
Hawley JE, Obradovic AZ, Dallos MC, Lim EA, Runcie K, Ager CR, McKiernan J, Anderson CB, Decastro GJ, Weintraub J, Virk R, Lowy I, Hu J, Chaimowitz MG, Guo XV, Zhang Y, Haffner MC, Worley J, Stein MN, Califano A, Drake CG. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell 2023; 41:1972-1988.e5. [PMID: 37922910 PMCID: PMC11184948 DOI: 10.1016/j.ccell.2023.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
When compared to other malignancies, the tumor microenvironment (TME) of primary and castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), and the effects of ADT and other treatments in this context are poorly understood. Here, we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in these immune subpopulations in response to treatment and a correlation with clinical outcomes. Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands in cell number in treatment-refractory patients.
Collapse
Affiliation(s)
- Jessica E Hawley
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aleksandar Z Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew C Dallos
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Emerson A Lim
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Karie Runcie
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey R Ager
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - James McKiernan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Christopher B Anderson
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Guarionex J Decastro
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Joshua Weintraub
- Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianhua Hu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark N Stein
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032 USA.
| | - Charles G Drake
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Tabassum G, Singh P, Gurung R, Hakami MA, Alkhorayef N, Alsaiari AA, Alqahtani LS, Hasan MR, Rashid S, Kumar A, Dev K, Dohare R. Investigating the role of Kinesin family in lung adenocarcinoma via integrated bioinformatics approach. Sci Rep 2023; 13:9859. [PMID: 37330525 PMCID: PMC10276827 DOI: 10.1038/s41598-023-36842-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
Lung cancer is the leading cause of mortality from cancer worldwide. Lung adenocarcinoma (LUAD) is a type of non-small cell lung cancer (NSCLC) with highest prevalence. Kinesins a class of motor proteins are shown to be involved in carcinogenesis. We conducted expression, stage plot and survival analyses on kinesin superfamily (KIF) and scrutinized the key prognostic kinesins. Genomic alterations of these kinesins were studied thereafter via cBioPortal. A protein-protein interaction network (PPIN) of selected kinesins and 50 closest altering genes was constructed followed by gene ontology (GO) term and pathway enrichment analyses. Multivariate survival analysis based on CpG methylation of selected kinesins was performed. Lastly, we conducted tumor immune infiltration analysis. Our results found KIF11/15/18B/20A/2C/4A/C1 to be significantly upregulated and correlated with poor survival in LUAD patients. These genes also showed to be highly associated with cell cycle. Out of our seven selected kinesins, KIFC1 showed the highest genomic alteration with highest number of CpG methylation. Also, CpG island (CGI) cg24827036 was discovered to be linked to LUAD prognosis. Therefore, we deduced that reducing the expression of KIFC1 could be a feasible treatment strategy and that it can be a wonderful individual prognostic biomarker. CGI cg24827036 can also be used as a therapy site in addition to being a great prognostic biomarker.
Collapse
Affiliation(s)
- Gulnaz Tabassum
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Atul Kumar
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
5
|
Zaki MSA, Eldeen MA, Abdulsahib WK, Shati AA, Alqahtani YA, Al-Qahtani SM, Otifi HM, Asiri A, Hassan HM, Emam Mohammed Ahmed H, Dawood SA, Negm A, Eid RA. A Comprehensive Pan-Cancer Analysis Identifies CEP55 as a Potential Oncogene and Novel Therapeutic Target. Diagnostics (Basel) 2023; 13:1613. [PMID: 37175004 PMCID: PMC10178510 DOI: 10.3390/diagnostics13091613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023] Open
Abstract
Emerging research findings have shown that a centrosomal protein (CEP55) is a potential oncogene in numerous human malignancies. Nevertheless, no pan-cancer analysis has been conducted to investigate the various aspects and behavior of this oncogene in different human cancerous tissues. Numerous databases were investigated to conduct a detailed analysis of CEP55. Initially, we evaluated the expression of CEP55 in several types of cancers and attempted to find the correlation between that and the stage of the examined malignancies. Then, we conducted a survival analysis to determine the relationship between CEP55 overexpression in malignancies and the patient's survival. Furthermore, we examined the genetic alteration forms and the methylation status of this oncogene. Additionally, the interference of CEP55 expression with immune cell infiltration, the response to various chemotherapeutic agents, and the putative molecular mechanism of CEP55 in tumorigenesis were investigated. The current study found that CEP55 was upregulated in cancerous tissues versus normal controls where this upregulation was correlated with a poor prognosis in multiple forms of human cancers. Additionally, it influenced the level of different immune cell infiltration and several chemokines levels in the tumor microenvironment in addition to the response to several antitumor drugs. Herein, we provide an in-depth understanding of the oncogenic activities of CEP55, identifying it as a possible predictive marker as well as a specific target for developing anticancer therapies.
Collapse
Affiliation(s)
- Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Waleed K. Abdulsahib
- Pharmacology and Toxicology Department, College of Pharmacy, Al Farahidi University, Baghdad 00965, Iraq
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Hassan M. Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Hesham M. Hassan
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | | | - Samy A. Dawood
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| |
Collapse
|
6
|
Jiayu F, Jiang Y, Zhou X, Zhou M, Pan J, Ke Y, Zhen J, Huang D, Jiang W. Comprehensive analysis of prognostic value, relationship to cell cycle, immune infiltration and m6A modification of ZSCAN20 in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:9550-9578. [PMID: 36462500 PMCID: PMC9792207 DOI: 10.18632/aging.204312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common tumor across the globe with a high mortality rate. ZSCAN20 is a ZNF transcription factor, a key determinant of gene expression. Nonetheless, the mechanism of ZSCAN20 as a potential clinical biomarker and therapeutic target for HCC is not understood. Here, TIMER, TCGA, ICGC databases and immunohistochemical (IHC) and Western Blot found ZSCAN20 mRNA and protein levels were upregulated. Additionally, Kaplan-Meier Plotter, GEPIA and TCGA databases showed high ZSCAN20 expression was related to the short survival time of HCC patients. Multivariate Cox analysis exposed that ZSCAN20 can act as an independent prognostic factor. We observed methylation level of ZSCAN20 was associated with the clinicopathological characteristics and prognosis of HCC patients through UALCAN. Furthermore, enrichment examination exposed functional association between ZSCAN20 and cell cycle, immune infiltration. Functional experiments showed that interference with ZSCAN20 significantly reduced the invasion, migration and proliferation abilities of HCC cells. An immune infiltration analysis showed that ZSCAN20 was associated with immune cells, particularly T cells. The expression of ZSCAN20 was correlated with poor prognosis in the Regulatory T-cell. And Real-Time RT-PCR analysis found interference with ZSCAN20 significantly reduced the expression of some chemokines. Finally, the TCGA and ICGC data analysis suggested that the ZSCAN20 expression was greatly related to m6A modifier related genes. In conclusion, ZSCAN20 can serve as a prognostic biomarker for HCC and provide clues about cell cycle, immune infiltration, and m6A modification.
Collapse
Affiliation(s)
- Fang Jiayu
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weifan Jiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
An Integrative Multi-Omics Analysis Based on Nomogram for Predicting Prostate Cancer Bone Metastasis Incidence. Genet Res (Camb) 2022; 2022:8213723. [PMID: 36245556 PMCID: PMC9537037 DOI: 10.1155/2022/8213723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background The most common site of prostate cancer metastasis is bone tissue with many recent studies having conducted genomic and clinical research regarding bone metastatic prostate cancer. However, further work is needed to better define those patients that are at an elevated risk of such metastasis. Methods SEER and TCGA databases were searched to develop a nomogram for predicting prostate cancer bone metastasis. Results Herein, we leveraged the Surveillance, Epidemiology, and End Results (SEER) database to construct a predictive nomogram capable of readily and accurately predicted the odds of bone metastasis in prostate cancer patients. This nomogram was utilized to assign patients with prostate cancer included in The Cancer Genome Atlas (TCGA) to cohorts at a high or low risk of bone metastasis (HRBM and LRBM, respectively). Comparisons of these LRBM and HRBM cohorts revealed marked differences in mutational landscapes between these patient cohorts, with increased frequencies of gene fusions, somatic copy number variations (CNVs), and single nucleotide variations (SNVs), particularly in the P53 gene, being evident in the HRBM cohort. We additionally identified lncRNAs, miRNAs, and mRNAs that were differentially expressed between these two patient cohorts and used them to construct a competing endogenous RNA (ceRNA) network. Moreover, three weighted gene co-expression network analysis (WGCNA) modules were constructed from the results of these analyses, with KIF14, MYH7, and COL10A1 being identified as hub genes within these modules. We further found immune response activity levels in the HRBM cohort to be elevated relative to that in the LRBM cohort, with single sample gene enrichment analysis (ssGSEA) scores for the immune checkpoint signature being increased in HRBM patient samples relative to those from LRBM patients. Conclusion We successfully developed a nomogram capable of readily detecting patients with prostate cancer at an elevated risk of bone metastasis.
Collapse
|
8
|
Chen P, Fan W, Hou Y, Wang F, Luo N. Role of kinesin family member 14 in disease monitoring and prognosis in patients with gastrointestinal cancer. Oncol Lett 2022; 23:156. [PMID: 35836481 PMCID: PMC9258591 DOI: 10.3892/ol.2022.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
Kinesin family member 14 (KIF14) is not only involved in numerous essential biological activities, such as cytokinesis and myelination, but also regulates several malignant behaviors and progression of cancer. However, its role in gastrointestinal cancer is rarely reported. Therefore, the present study aimed to investigate the association of KIF14 expression with disease-free survival (DFS) and overall survival (OS) times in patients with gastrointestinal cancer. A total of 101 patients with gastrointestinal cancer (36 patients with gastric cancer and 65 patients with colorectal cancer) were retrospectively reviewed, and their cancer samples were collected to detect the protein and mRNA expression levels of KIF14 using immunohistochemistry and reverse transcription-quantitative PCR, respectively. KIF14 protein expression was increased in cancer tissues compared with adjacent tissues (all P<0.001). The protein expression levels of KIF14 were positively associated with T stage (P<0.001), distant metastases (P=0.007) and TNM stage (P<0.001), while KIF14 mRNA expression was positively associated with T stage (P<0.001), lymph node metastasis (P=0.004), distant metastases (P=0.001) and TNM stage (P<0.001). High protein and mRNA expression levels of KIF14 were associated with worse DFS (P<0.001) and OS (P=0.016) times. In addition, high KIF14 protein expression independently predicted unfavorable DFS times (P=0.007). Subgroup analysis revealed that in patients with gastric cancer, KIF14 expression was associated with DFS and OS times, while in patients with colorectal cancer, KIF14 expression was only associated with DFS time, but not with OS time. In conclusion, KIF14 expression was not only associated with advanced pathological differentiation and TNM stage but was also associated with poor survival time in patients with gastrointestinal cancer. These results indicate the potential of KIF14 as a biomarker for gastrointestinal cancer prognosis.
Collapse
Affiliation(s)
- Ping Chen
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Weining Fan
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yujin Hou
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Fang Wang
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Na Luo
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
9
|
Christy J, Harini, Vasudevan S, Lingesan P, Anand DA. Deciphering the molecular interplay between pelvic inflammatory disease (PID) and ovarian cancer (OC)—A network biology approach. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
KIF4A Regulates the Progression of Pancreatic Ductal Adenocarcinoma through Proliferation and Invasion. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8249293. [PMID: 34805404 PMCID: PMC8601854 DOI: 10.1155/2021/8249293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Background Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed (P < 0.05) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) (P < 0.05, respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control (P < 0.05, respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.
Collapse
|
11
|
Qureshi Z, Ahmad M, Yang WX, Tan FQ. Kinesin 12 (KIF15) contributes to the development and tumorigenicity of prostate cancer. Biochem Biophys Res Commun 2021; 576:7-14. [PMID: 34474246 DOI: 10.1016/j.bbrc.2021.08.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023]
Abstract
In Asia, prostate cancer is becoming a growing concern, impacting both socially and economically, compared with what is seen in western countries. Hence, it is essential to know the mechanisms associated with the development and tumorigenesis of PCa for primary diagnosis, risk management, and development of therapy strategies against PCa. Kinesin family member 15 (KIF15), a kinesin family member, is a plus-end-directed kinesin that functions to form bipolar spindles. There is emerging evidence indicating that KIF15 plays a significant role in several malignancies, such as pancreatic cancer, hepatocellular carcinoma, lung adenocarcinoma, and breast cancer. Still, the function of KIF15 remains unclear in prostate cancer. Here, we study the functional importance of KIF15 in the tumorigenesis of PCa. The bioinformatic analysis from PCa patients revealed high KIF15 expression compared to normal prostate tissues. High expression hinting at a possible functional role of KIF15 in regulating cell proliferation of PCa, which was demonstrated by both in vitro and in vivo assays. Downregulation of KIF15 silenced the expression of CDK2, p-RB, and Cyclin D1 and likewise blocked the cells at the G1 stage of the cell cycle. In addition, KIF15 downregulation inhibited MEK-ERK signaling by significantly silencing p-ERK and p-MEK levels. In conclusion, this study confirmed the functional significance of KIF15 in the growth and development of prostate cancer and could be a novel therapeutic target for the treatment of PCa.
Collapse
Affiliation(s)
- Zeeshan Qureshi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mashaal Ahmad
- Department of Biochemistry and Cancer Institute of Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
12
|
Xiao L, Zhang S, Zheng Q, Zhang S. Dysregulation of KIF14 regulates the cell cycle and predicts poor prognosis in cervical cancer: a study based on integrated approaches. ACTA ACUST UNITED AC 2021; 54:e11363. [PMID: 34495250 PMCID: PMC8427749 DOI: 10.1590/1414-431x2021e11363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is the most common malignant tumor in females. Although persistent high-risk human papillomavirus (HPV) infection is a leading factor that causes CC, few women with HPV infection develop CC. Therefore, many mechanisms remain to be explored, such as aberrant expression of oncogenes and tumor suppressor genes. To identify promising prognostic factors and interpret the relevant mechanisms of CC, the RNA sequencing profile of CC was downloaded from the Cancer Genome Atlas and the Gene Expression Omnibus databases. The GSE63514 dataset was analyzed, and differentially expressed genes (DEGs) were obtained by weighted coexpression network analysis and the edgeR package in R. Fifty-three shared genes were mainly enriched in nuclear chromosome segregation and DNA replication signaling pathways. Through a protein-protein interaction network and prognosis analysis, the kinesin family member 14 (KIF14) hub gene was extracted from the set of 53 shared genes, which was overexpressed and associated with poor overall survival (OS) and disease-free survival (DFS) of CC patients. Mechanistically, gene set enrichment analysis showed that KIF14 was mainly enriched in the glycolysis/gluconeogenesis signaling pathway and DNA replication signaling pathway, especially in the cell cycle signaling pathway. RT-PCR and the Human Protein Atlas database confirmed that these genes were significantly increased in CC samples. Therefore, our findings indicated the biological function of KIF14 in cervical cancer and provided new ideas for CC diagnosis and therapies.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, Jingzhou Hospital, Yangtze University, Jinzhou, Hubei, China
| | - Sisi Zhang
- Department of Obstetrics and Gynecology, Jingzhou Hospital, Yangtze University, Jinzhou, Hubei, China
| | - Qingyu Zheng
- Department of Ultrasound, Zhijiang People's Hospital, Yichang, Hubei, China
| | - Shuirong Zhang
- Department of Obstetrics and Gynecology, Jingzhou Hospital, Yangtze University, Jinzhou, Hubei, China
| |
Collapse
|
13
|
Neska-Długosz I, Buchholz K, Durślewicz J, Gagat M, Grzanka D, Tojek K, Klimaszewska-Wiśniewska A. Prognostic Impact and Functional Annotations of KIF11 and KIF14 Expression in Patients with Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22189732. [PMID: 34575892 PMCID: PMC8466126 DOI: 10.3390/ijms22189732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic instability (GIN) has an important contribution to the pathology of colorectal cancer (CRC). Therefore, we selected mitosis and cytokinesis kinesins, KIF11 and KIF14, as factors of potential clinical and functional value in CRC, as their aberrant expression has been suspected to underlie GIN. We examined the expression and the prognostic and biological significance of KIF11 and KIF14 in CRC via in-house immunohistochemistry on tissue microarrays, public mRNA expression datasets, as well as bioinformatics tools. We found that KIF11 and KIF14 expression, at both the protein and mRNA level, was markedly altered in cancer tissues compared to respective controls, which was reflected in the clinical outcome of CRC patients. Specifically, we provide the first evidence that KIF11 protein and mRNA, KIF14 mRNA, as well as both proteins together, can significantly discriminate between CRC patients with better and worse overall survival independently of other relevant clinical risk factors. The negative prognostic factors for OS were high KIF11 protein, high KIF11 protein + low KIF14 protein, low KIF11 mRNA and low KIF14 mRNA. Functional enrichment analysis revealed that the gene sets related to the cell cycle, DNA replication, DNA repair and recombination, among others, were positively associated with KIF11 or KIF14 expression in CRC tissues. In TCGA cohort, the positive correlations between several measures related to GIN and the expression of KIFs were also demonstrated. In conclusion, our results suggest that CRC patients can be stratified into distinct risk categories by biological and molecular determinants, such as KIF11 and KIF14 expression and, mechanistically, this is likely attributable to their role in maintaining genome integrity.
Collapse
Affiliation(s)
- Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.)
| | - Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.)
| | - Krzysztof Tojek
- Department of General, Colorectal and Oncological Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-168 Bydgoszcz, Poland;
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.)
- Correspondence: ; Tel.: +48-52-585-4200; Fax: +48-52-585-4049
| |
Collapse
|
14
|
Li Y, Sun R, Li R, Chen Y, Du H. Prognostic Nomogram Based on Circular RNA-Associated Competing Endogenous RNA Network for Patients with Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9978206. [PMID: 34497684 PMCID: PMC8421160 DOI: 10.1155/2021/9978206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/14/2021] [Indexed: 11/29/2022]
Abstract
Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, the function and application of circRNAs in lung adenocarcinoma (LUAD) are still unknown. In this study, we constructed a circRNA-associated competitive endogenous RNA (ceRNA) network to investigate the regulatory mechanism of LUAD procession and further constructed a prognostic signature to predict overall survival for LUAD patients. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were selected to construct the ceRNA network. Based on the TargetScan prediction tool and Pearson correlation coefficient, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs, and 49 DEmRNAs. GO and KEGG enrichment indicated that the ceRNA network might be involved in the regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a PPI network containing 12 DEmRNAs was constructed. Univariate Cox regression analysis showed that three DEmRNAs were significantly associated with overall survival. Therefore, we constructed a three-gene prognostic signature for LUAD patients using the LASSO method in the TCGA-LUAD training cohort. By applying the signature, patients could be categorized into the high-risk or low-risk subgroups with significant survival differences (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009). The prognostic performance was confirmed in an independent GEO cohort (GSE42127, HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004). Multivariate Cox regression analysis proved that the three-gene signature was an independent prognostic factor. Combining the three-gene signature with clinical characters, a nomogram was constructed. The primary and external verification C-indexes were 0.717 and 0.716, respectively. The calibration curves for the probability of 3- and 5-year OS showed significant agreement between nomogram predictions and actual observations. Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and further constructed a useful prognostic signature to guide personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Yang Li
- Department of Central Laboratory, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Rongrong Sun
- Department of Medical Oncology, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Rui Li
- Department of Central Laboratory, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Yonggang Chen
- Department of Clinical Pharmacy, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - He Du
- Department of Medical Oncology, Affiliated Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| |
Collapse
|
15
|
Zhang QZ, Wen F, Yang HL, Cao YY, Peng RG, Wang YM, Nie L, Qin YK, Wu JJ, Zhao X, Zi D. GADD45α alleviates the CDDP resistance of SK-OV3/cddp cells via redox-mediated DNA damage. Oncol Lett 2021; 22:720. [PMID: 34429760 PMCID: PMC8371983 DOI: 10.3892/ol.2021.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Epithelial ovarian cancer has the highest mortality rate of all malignant ovarian cancer types. Great progress has been made in the treatment of ovarian cancer in recent years. However, drug resistance has led to a low level of 5-year survival rate of epithelial ovarian cancer, and the molecular mechanism of which remains unknown. The aim of the present study was to identify the role of redox status in the cisplatin (CDDP) resistance of ovarian cancer. CDDP-resistant SK-OV3 (SK-OV3/cddp) cells were prepared and their reactive oxygen species and glutathione levels were investigated. The effects of hydrogen peroxide on the CDDP sensitivity of the SK-OV3/cddp cells and their expression levels of the redox-associated protein growth arrest and DNA damage 45a (GADD45α) were also investigated. In addition, the impact of GADD45α overexpression on cell viability was evaluated in vitro and in vivo, and the levels of Ser-139 phosphorylated H2A histone family member X (γ-H2AX), which is associated with DNA damage, were detected. The results suggested that redox status affected the drug resistance of the ovarian cancer cells by increasing the expression of GADD45α. The overexpression of GADD45α reversed the CDDP resistance of the SK-OV3/cddp cells and increased the level of γ-H2AX. In conclusion, GADD45α alleviated the CDDP resistance of SK-OV3/cddp cells via the induction of redox-mediated DNA damage.
Collapse
Affiliation(s)
- Qi-Zhu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fang Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Han-Lin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan-Yan Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ren Guo Peng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan-Mei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lei Nie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan-Kun Qin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin-Jian Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xing Zhao
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, P.R. China.,National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
16
|
Abd Wahab NA, Abas F, Othman I, Naidu R. Diarylpentanoid (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one) (MS13) Exhibits Anti-proliferative, Apoptosis Induction and Anti-migration Properties on Androgen-independent Human Prostate Cancer by Targeting Cell Cycle-Apoptosis and PI3K Signalling Pathways. Front Pharmacol 2021; 12:707335. [PMID: 34366863 PMCID: PMC8343533 DOI: 10.3389/fphar.2021.707335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.
Collapse
Affiliation(s)
- Nurul Azwa Abd Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
17
|
Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia 2021; 23:743-753. [PMID: 34225099 PMCID: PMC8259224 DOI: 10.1016/j.neo.2021.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic and aggressive subtype of breast cancer and cases presenting with lymph node involvement have worse outcomes. This study aimed to determine the regions of copy number variation (CNV) associated with lymph node metastasis in TNBC patients. CNV analyses were performed in a study cohort of 23 invasive ductal carcinomas (IDCs), 12 lymph node metastases (LNmets), and 7 normal adjacent tissues (NATs); as well as in an independent cohort containing 70 TNBC IDCs and the same 7 NATs. CNV-associated genes were analyzed using GO-enrichment and Pathway analysis. The prognostic role for genes showing CNV-based changes in messenger RNA expression was determined using the Kaplan-Meier plotter database. For the IDCs, there were a number of variations that were common in both the study and independent cohorts in the amplified regions of 1q, 8q, 19 (p and q), 2p, 5p and the deleted regions in 8p followed by 5q, and 19p. The most frequently amplified regions in the LNmets of the study cohort were 4q28.3, 2p, 3q24, 1q21.2, 10p, 12p11.1, 8q, 20p11.22-20p11.21, 21q22.13, 6p22.1 and the most frequently deleted regions were in 1p36.23, 4q21.1 and 5q. A total of 686 (441 amplified and 245 deleted) genes were associated with LNmets. The LNmet-associated genes were highly enriched for “regulation of complement activation,” “regulation of protein activation cascade,” “regulation of humoral immune response,” “oxytocin signalling pathway,” and “TRAIL binding” pathways. Moreover, 6/686 LNmet-associated genes showed CNV-based changes in their mRNA expression of which, high expression of ASPM and KIF14 was significantly associated with worse relapse-free survival. This study has identified several CNV regions in TNBC that could play a major role in metastasis to the lymph node.
Collapse
Affiliation(s)
- Mamta Pariyar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrea Johns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
18
|
Cai Z, Wei Y, Chen S, Gong Y, Fu Y, Dai X, Zhou Y, Yang H, Tang L, Liu H. Screening and identification of key biomarkers in alimentary tract cancers: A bioinformatic analysis. Cancer Biomark 2021; 29:221-233. [PMID: 32623389 DOI: 10.3233/cbm-201580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alimentary tract cancers (ATCs) are the most malignant cancers in the world. Numerous studies have revealed the tumorigenesis, diagnosis and treatment of ATCs, but many mechanisms remain to be explored. METHODS To identify the key genes of ATCs, microarray datasets of oesophageal cancer, gastric cancer and colorectal cancer were obtained from the Gene Expression Omnibus (GEO) database. In total, 207 differentially expressed genes (DEGs) were screened. KEGG and GO function enrichment analyses were conducted, and a protein-protein interaction (PPI) network was generated and gene modules analysis was performed using STRING and Cytoscape. RESULTS Five hub genes were screened, and the associated biological processes indicated that these genes were mainly enriched in cellular processes, protein binding and metabolic processes. Clinical survival analysis showed that COL10A1 and KIF14 may be significantly associated with the tumorigenesis or pathology grade of ATCs. In addition, relative human ATC cell lines along with blood samples and tumour tissues of ATC patients were obtained. The data proved that high expression of COL10A1 and KIF14 was associated with tumorigenesis and could be detected in blood. CONCLUSION In conclusion, the identification of hub genes in the present study helped us to elucidate the molecular mechanisms of tumorigenesis and identify potential diagnostic indicators and targeted treatment for ATCs.
Collapse
Affiliation(s)
- Zeling Cai
- Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi Wei
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shuai Chen
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Gong
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yue Fu
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xianghua Dai
- Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojun Yang
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyang Liu
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Klimaszewska-Wiśniewska A, Neska-Długosz I, Buchholz K, Durślewicz J, Grzanka D, Kasperska A, Antosik P, Zabrzyński J, Grzanka A, Gagat M. Prognostic Significance of KIF11 and KIF14 Expression in Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13123017. [PMID: 34208606 PMCID: PMC8234517 DOI: 10.3390/cancers13123017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Prognostic markers for survival stratification of patients with pancreatic adenocarcinoma (PAC) are missing yet. Therefore, the primary aim of this study was to assess the expression, clinical associations, and survival implications of KIF11 and KIF14 in PACs. In addition, the genes co-expressed with KIF11 or KIF14 were predicted and functionally annotated. Herein, we found that the expression patterns of KIF11 and KIF14 alter significantly in PACs, at both protein and mRNA levels, and this may be harnessed for patient prognosis. KIF11 and KIF14 could be defined as positive prognostic biomarkers based on the protein-based immunohistochemistry data, while they were associated with adverse prognosis based on the transcriptomic data. We also captured a five-gene prognostic signature and the biology associated with it. The findings of the present study suggest that KIF11 or KIF14 proteins, as well as a new five-gene panel, may serve as potentially useful prognostic biomarkers for PAC. Abstract Available biomarkers for pancreatic adenocarcinoma (PAC) are inadequate to guide individual patient prognosis or therapy. Therefore, herein we aimed to verify the hypothesis that differences in the expression of KIF11 and KIF14, i.e., molecular motor proteins being primarily implicated in cell division events could account for the differences in the clinical outcome of PAC patients. In-house immunohistochemistry was used to evaluate the protein expressions of KIF11 and KIF14 in PAC, whereas RNA-seq datasets providing transcript expression data were obtained from public sources. IHC and mRNA results were correlated with clinicopathological features and overall survival (OS). Furthermore, the genes co-expressed with KIF11 or KIF14 were predicted and functionally annotated. In our series, malignant ducts displayed more intense but less abundant KIF11 staining than normal-appearing ducts. The former was also true for KIF14, whereas the prevalence of positive staining was similar in tumor and normal adjacent tissues. Based on categorical immunoreactive scores, we found KIF11 and KIF14 to be frequently downregulated or upregulated in PAC cases, respectively, and those with elevated levels of either protein, or both together, were associated with better prognosis. Specifically, we provide the first evidence that KIF11 or KIF14 proteins can robustly discriminate between patients with better and worse OS, independently of other relevant clinical risk factors. In turn, mRNA levels of KIF11 and KIF14 were markedly elevated in tumor tissues compared to normal tissues, and this coincided with adverse prognosis, even after adjusting for multiple confounders. Tumors with low predicted KIF11 or KIF14 expression were seen to have enrichment for circadian clock, whereas those with high levels were enriched for the genomic instability-related gene set. KIF11 and KIF14 were strongly correlated with one another, and CEP55, ASPM, and GAMT were identified as the main hub genes. Importantly, the combined expression of these five genes emerged as the most powerful independent prognostic indicator associated with poor survival outcome compared to classical clinicopathological factors and any marker alone. In conclusion, our study identifies novel prognostic biomarkers for PAC, which await validation.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
- Correspondence: ; Tel.: +48-52-585-42-00; Fax: +48-52-585-40-49
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
| | - Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
| | - Anna Kasperska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
| | - Jan Zabrzyński
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (I.N.-D.); (K.B.); (J.D.); (D.G.); (A.K.); (P.A.); (J.Z.)
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| |
Collapse
|
20
|
Huo Q, Li Z, Chen S, Wang J, Li J, Xie N. VWCE as a potential biomarker associated with immune infiltrates in breast cancer. Cancer Cell Int 2021; 21:272. [PMID: 34020650 PMCID: PMC8140436 DOI: 10.1186/s12935-021-01955-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Von Willebrand Factor C and EGF Domains (VWCE) is an important gene that regulates cell adhesion, migration, and interaction. However, the correlation between VWCE expression and immune infiltrating in breast cancer remain unclear. In this study, we investigated the correlation between VWCE expression and immune infiltration levels in breast cancer. METHODS The expression of VWCE was analyzed by the tumor immune estimation resource (TIMER) and DriverDB databases. Furthermore, genes co-expressed with VWCE and gene ontology (GO) enrichment analysis were investigated by the STRING and Enrichr web servers. Also, we performed the single nucleotide variation (SNV), copy number variation (CNV), and pathway activity analysis through GSCALite. Subsequently, the relationship between VWCE expression and tumor immunity was analyzed by TIMER and TISIDB databases, and further verified the results using Quantitative Real-Time PCR (RT-PCR), Western blotting, and immunohistochemistry. RESULTS The results showed that the expression of VWCE mRNA in breast cancer tissue was significantly lower than that in normal tissues. We found that the expression level of VWCE was associated with subtypes, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status of breast cancer patients, but there was no significant difference in the expression of VWCE was found in age and nodal status. Further analyses indicated that VWCE was correlated with the activation or inhibition of multiple oncogenic pathways. Additionally, VWCE expression was negatively correlated with the expression of STAT1 (Th1 marker, r = - 0.12, p = 6e-05), but positively correlated with the expression of MS4A4A (r = 0.28, p = 0). These results suggested that the expression of VWCE was correlated with immune infiltration levels of Th1 and M2 macrophage in breast cancer. CONCLUSIONS In our study, VWCE expression was associated with a better prognosis and was immune infiltration in breast cancer. These findings demonstrate that VWCE is a potential prognostic biomarker and correlated with tumor immune cell infiltration, and maybe a promising therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China
| | - Zhenwei Li
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China
| | - Siqi Chen
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China
| | - Juan Wang
- Department of Clinical Medicine , University of South China , Hengyang , 421001 , China
| | - Jiaying Li
- Department of Clinical Medicine , University of South China , Hengyang , 421001 , China
| | - Ni Xie
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China.
| |
Collapse
|
21
|
Huo Q, He X, Li Z, Yang F, He S, Shao L, Hu Y, Chen S, Xie N. SCUBE3 serves as an independent poor prognostic factor in breast cancer. Cancer Cell Int 2021; 21:268. [PMID: 34006286 PMCID: PMC8130162 DOI: 10.1186/s12935-021-01947-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences indicate that the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) plays a key role in the development and progression of many human cancers. However, the underlying mechanism and prognosis value of SCUBE3 in breast cancer are still unclear. METHODS The clinical data of 137 patients with breast cancer who underwent surgical resection in Taizhou Hospital of Zhejiang Province were retrospectively analyzed. We first conducted a comprehensive study on the expression pattern of SCUBE3 using the Tumor Immune Estimation Resource (TIMER) and UALCAN databases. In addition, the expression of SCUBE3 in breast tumor tissues was confirmed by immunohistochemistry. The protein-protein interaction analysis and functional enrichment analysis of SCUBE3 were analyzed using the STRING and Enrichr databases. Moreover, tissue microarray (TMA) was used to analyze the relationship between SCUBE3 expression levels and clinical-pathological parameters, such as histological type, grade, the status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2). We further supplemented and identified the above results using the UALCAN and bc-GenExMiner v4.4 databases from TCGA data. The correlation between the expression of SCUBE3 and survival was calculated by multivariate Cox regression analysis to investigate whether SCUBE3 expression may be an independent prognostic factor of breast cancer. RESULTS We found that the expression level of SCUBE3 was significantly upregulated in breast cancer tissue compared with adjacent normal tissues. The results showed that the distribution of breast cancer patients in the high expression group and the low expression group was significantly different in ER, PR, HER2, E-cadherin, and survival state (p < 0.05), but there was no significant difference in histologic grade, histologic type, tumor size, lymph node metastasis, TMN stage, subtypes, or recurrence (p > 0.05). In addition, the high expression of SCUBE3 was associated with relatively poor prognosis of ER- (p = 0.012), PR- (p = 0.029), HER2 + (p = 0.007). The multivariate Cox regression analysis showed that the hazard ratio (HR) was 2.80 (95% CI 1.20-6.51, p = 0.0168) in individuals with high SCUBE3 expression, and HR was increased by 1.86 (95% CI 1.06-3.25, p = 0.0300) for per 1-point increase of SCUBE3 expression. CONCLUSIONS These findings demonstrate that the high expression of SCUBE3 indicates poor prognosis in breast cancer. SCUBE3 expression may serve as a potential diagnostic indicator of breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xi He
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.,The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhenwei Li
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Fan Yang
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Shengnan He
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ling Shao
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ye Hu
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Siqi Chen
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ni Xie
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
22
|
The Drosophila Forkhead/Fox transcription factor Jumeau mediates specific cardiac progenitor cell divisions by regulating expression of the kinesin Nebbish. Sci Rep 2021; 11:3221. [PMID: 33547352 PMCID: PMC7864957 DOI: 10.1038/s41598-021-81894-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Forkhead (Fkh/Fox) domain transcription factors (TFs) mediate multiple cardiogenic processes in both mammals and Drosophila. We showed previously that the Drosophila Fox gene jumeau (jumu) controls three categories of cardiac progenitor cell division—asymmetric, symmetric, and cell division at an earlier stage—by regulating Polo kinase activity, and mediates the latter two categories in concert with the TF Myb. Those observations raised the question of whether other jumu-regulated genes also mediate all three categories of cardiac progenitor cell division or a subset thereof. By comparing microarray-based expression profiles of wild-type and jumu loss-of-function mesodermal cells, we identified nebbish (neb), a kinesin-encoding gene activated by jumu. Phenotypic analysis shows that neb is required for only two categories of jumu-regulated cardiac progenitor cell division: symmetric and cell division at an earlier stage. Synergistic genetic interactions between neb, jumu, Myb, and polo and the rescue of jumu mutations by ectopic cardiac mesoderm-specific expression of neb demonstrate that neb is an integral component of a jumu-regulated subnetwork mediating cardiac progenitor cell divisions. Our results emphasize the central role of Fox TFs in cardiogenesis and illustrate how a single TF can utilize different combinations of other regulators and downstream effectors to control distinct developmental processes.
Collapse
|
23
|
Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 Promote Cell Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis of Patients with HCC. Cancer Manag Res 2020; 12:13241-13257. [PMID: 33380832 PMCID: PMC7767722 DOI: 10.2147/cmar.s285367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. In this study, we performed the integrated bioinformatics analysis to identify potential biomarkers and biological pathways in HCC. Methods Gene expression profiles were obtained from the Gene Expression Omnibus database (GSE55048, GSE55758, and GSE56545) for the screening of the common differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. DEGs were subjected to Gene Ontology, KEGG pathway, and Reactome pathway analysis. The hub genes were identified by using protein–protein interaction (PPI) network analysis. The hub genes in HCC were further subjected to overall survival analysis of HCC patients. The hub genes were further validated by in vitro functional assays. Results A total of 544 common differentially expressed genes were screened from three datasets. Gene Ontology, KEGG and Reactome analysis results showed that DEGs are significantly associated with the biological process of cell cycle, cell division, and DNA replication. PPI network analysis identified 20 hub genes from the DEGs. These hub genes except CENPE were all significantly up-regulated in the HCC tissues when compared to non-tumor tissues. The Kaplan–Meier survival analysis results showed that the high expression of the 20 hub genes was associated with shorter survival of the HCC patients. Further validation studies showed that knockdown of KIF14 and KIF23 both suppressed the proliferative potential, increased the caspase-3/-7 activity, up-regulated Bax expression, and promoted the invasive and migratory abilities in the HCC cells. In addition, knockdown of KIF14 and KIF23 enhanced chemosensitivity to cisplatin and sorafenib in the HCC cells. Finally, the high expression of KIF14 and KIF23 was associated with shorter progression-free survival, recurrence-free survival, and disease-specific survival of patients with HCC. Conclusion In conclusion, the present study performed the integrated bioinformatics analysis and showed that KIF14 and KIF23 silence attenuated cell proliferation, invasion, and migration, and promoted chemosensitivity of HCC cells. KIF14 and KIF23 may serve as potential biomarkers for predicting the worse prognosis of patients with HCC.
Collapse
Affiliation(s)
- Chunxia Cheng
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Xingxing Wu
- Deparment of Pediatric Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Yu Shen
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Quanxi Li
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| |
Collapse
|
24
|
Liu C, Li X, Shao H, Li D. Identification and Validation of Two Lung Adenocarcinoma-Development Characteristic Gene Sets for Diagnosing Lung Adenocarcinoma and Predicting Prognosis. Front Genet 2020; 11:565206. [PMID: 33408736 PMCID: PMC7779611 DOI: 10.3389/fgene.2020.565206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is one of the main types of lung cancer. Because of its low early diagnosis rate, poor late prognosis, and high mortality, it is of great significance to find biomarkers for diagnosis and prognosis. Methods: Five hundred and twelve LUADs from The Cancer Genome Atlas were used for differential expression analysis and short time-series expression miner (STEM) analysis to identify the LUAD-development characteristic genes. Survival analysis was used to identify the LUAD-unfavorable genes and LUAD-favorable genes. Gene set variation analysis (GSVA) was used to score individual samples against the two gene sets. Receiver operating characteristic (ROC) curve analysis and univariate and multivariate Cox regression analysis were used to explore the diagnostic and prognostic ability of the two GSVA score systems. Two independent data sets from Gene Expression Omnibus (GEO) were used for verifying the results. Functional enrichment analysis was used to explore the potential biological functions of LUAD-unfavorable genes. Results: With the development of LUAD, 185 differentially expressed genes (DEGs) were gradually upregulated, of which 84 genes were associated with LUAD survival and named as LUAD-unfavorable gene set. While 237 DEGs were gradually downregulated, of which 39 genes were associated with LUAD survival and named as LUAD-favorable gene set. ROC curve analysis and univariate/multivariate Cox proportional hazards analyses indicated both of LUAD-unfavorable GSVA score and LUAD-favorable GSVA score were a biomarker of LUAD. Moreover, both of these two GSVA score systems were an independent factor for LUAD prognosis. The LUAD-unfavorable genes were significantly involved in p53 signaling pathway, Oocyte meiosis, and Cell cycle. Conclusion: We identified and validated two LUAD-development characteristic gene sets that not only have diagnostic value but also prognostic value. It may provide new insight for further research on LUAD.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Shao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Liu J, Li D, Zhang X, Li Y, Ou J. Histone Demethylase KDM3A Promotes Cervical Cancer Malignancy Through the ETS1/KIF14/Hedgehog Axis. Onco Targets Ther 2020; 13:11957-11973. [PMID: 33239895 PMCID: PMC7682655 DOI: 10.2147/ott.s276559] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Lysine demethylase 3A (KDM3A) has been increasingly recognized as an important epigenetic regulator involved in cancer development. This study aims to explore the relevance of KDM3A to cervical cancer (CC) progression and the molecules involved. Materials and Methods Tumor and the adjacent tissues from CC patients were collected. KDM3A expression in tissues and CC cell lines and its correlation with the survival and prognosis of patients were determined. Malignant potentials of CC cells and the angiogenesis ability of HUVECs were measured to evaluate the function of KDM3A on CC progression. The interactions among KDM3A, H3K9me2 and ETS1, and the binding between ETS1 and KIF14 were validated through ChIP and luciferase assays. Altered expression of ETS1 and KIF14 was introduced to explore their roles in CC development. Results KDM3A was abundantly expressed in CC tissues and cells and linked to dismal prognosis of CC patients. Knockdown of KDM3A suppressed malignant behaviors of CC cells. KDM3A was found to increase ETS1 expression through the demethylation of H3K9me2. Overexpression of ETS1 blocked the inhibiting roles of sh-KDM3A. ETS1 could bind to the promoter region of KIF14 to trigger its transcription. Overexpression ofKIF14aggravated the malignant behaviors of CC cells and the angiogenesis ability of HUVECs, and it activated the Hedgehog signaling pathway. Artificial activation of Hedgehog by Sag1.5 diminished the effects of sh-KDM3A. These changes were reproduced in vivo. Conclusion This study evidenced that KDM3A promotes ETS1-mediated KIF14 transcription to promote CC progression with the involvement of the Hedgehog activation.
Collapse
Affiliation(s)
- Jinyu Liu
- Frist Department of Gynecologic Oncology, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| | - Dongqing Li
- Second Department of Gynecologic Oncology, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| | - Xin Zhang
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| | - Yanyan Li
- Frist Department of Gynecologic Oncology, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| | - Jian Ou
- Department of Gynecological Oncology Radiotherapy, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| |
Collapse
|
26
|
Zhang Y, Cheng Y, Zhang Z, Bai Z, Jin H, Guo X, Huang X, Li M, Wang M, Shu XS, Yuan Y, Ying Y. CDCA2 Inhibits Apoptosis and Promotes Cell Proliferation in Prostate Cancer and Is Directly Regulated by HIF-1α Pathway. Front Oncol 2020; 10:725. [PMID: 32509575 PMCID: PMC7248370 DOI: 10.3389/fonc.2020.00725] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a major serious malignant tumor and is commonly diagnosed in older men. Identification of novel cancer-related genes in PCa is important for understanding its tumorigenesis mechanism and developing new therapies against PCa. Here, we used RNA sequencing to identify the specific genes, which are upregulated in PCa cell lines and tissues. The cell division cycle associated protein (CDCA) family, which plays a critical role in cell division and proliferation, is upregulated in the PCa cell lines of our RNA-Sequencing data. Moreover, we found that CDCA2 is overexpressed, and its protein level positively correlates with its histological grade, clinical stage, and Gleason Score. CDCA2 was further found to be upregulated and correlated with poor prognosis and patient survival in multiple cancer types in The Cancer Genome Atlas (TCGA) dataset. The functional study suggests that inhibition of CDCA2 will lead to apoptosis and lower proliferation in vitro. Silencing of CDCA2 also repressed tumor growth in vivo. Loss of CDCA2 affects several oncogenic pathways, including MAPK signaling. In addition, we further demonstrated that CDCA2 was induced in hypoxia and directly regulated by the HIF-1α/Smad3 complex. Thus, our data indicate that CDCA2 could act as an oncogene and is regulated by hypoxia and the HIF-1αpathway. CDCA2 may be a useful prognostic biomarker and potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Yixiang Zhang
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yingduan Cheng
- Department of Translational Molecular Medicine, Saint John's Health Center, John Wayne Cancer Institute, PHS, Santa Monica, CA, United States
| | - Zhaoxia Zhang
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhongyuan Bai
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hongtao Jin
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaojing Guo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyan Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Meiqi Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Maolin Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xing-Sheng Shu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Yeqing Yuan
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Huo Q, Li Z, Cheng L, Yang F, Xie N. SIRT7 Is a Prognostic Biomarker Associated With Immune Infiltration in Luminal Breast Cancer. Front Oncol 2020; 10:621. [PMID: 32528869 PMCID: PMC7247806 DOI: 10.3389/fonc.2020.00621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Sirtuin 7 (SIRT7), a protein-coding gene whose abnormal expression and function are associated with carcinogenesis. However, the prognosis of SIRT7 in different breast cancer subtypes and its correlation with tumor-infiltrating lymphocytes remain unclear. Methods: The expression and survival data of SIRT7 in patients with breast cancer were analyzed using Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interaction Analysis (GEPIA), The Human Protein Atlas (HPA), UALCAN, Breast Cancer Gene-Expression Miner (BC-GenExMiner), and Kaplan-Meier plotter databases. Also, the expression correlations between SIRT7 and immune infiltration gene markers were analyzed using TIMER and further verified the results using immunohistochemistry. Results: SIRT7 exhibited higher expression levels in breast cancer tissues than the adjacent normal tissues. SIRT7 expression was significantly correlated with sample type, subclass, cancer stage, menopause status, age, nodal status, estrogen receptor (ER), progesterone receptor (PR), and triple-negative status. High SIRT7 expression was associated with poor prognosis in breast cancer-luminal A [overall survival (OS): hazard ratio (HR) = 1.54, p = 1.70e-02; distant metastasis-free survival (DMFS): HR = 1.56, p = 2.60e-03]. Moreover, the expression of SIRT7 was positively correlated with the expression of IRF5 (M1 macrophages marker, r = 0.165, p = 1.13e-04) and PD1 (T cell exhaustion marker, r = 0.134, p = 1.74e-03). These results suggested that the expression of SIRT7 was related to M1 macrophages and T cell exhaustion infiltration in breast cancer-luminal. Conclusions: These findings demonstrate that the high expression of SIRT7 indicates poor prognosis in breast cancer as well as increased immune infiltration levels of M1 macrophages and T cell exhaustion in breast cancer-luminal. Thus, SIRT7 may serve as a candidate prognostic biomarker for determining prognosis associated with immune infiltration in breast cancer-luminal.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhenwei Li
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
29
|
Yang B, Wang S, Xie H, Wang C, Gao X, Rong Y, Liu Z, Lu Y. KIF18B promotes hepatocellular carcinoma progression through activating Wnt/β-catenin-signaling pathway. J Cell Physiol 2020; 235:6507-6514. [PMID: 32052444 DOI: 10.1002/jcp.29444] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the functional roles of kinesin family member 18B (KIF18B) in hepatocellular carcinoma (HCC) development, as well as the related molecular mechanisms. Tissue specimens were collected from 105 patients with HCC, and the messenger RNA (mRNA) and protein levels of KIF18B were detected using quantitative real-time polymerase chain reaction and immunohistochemistry assays, respectively. The χ2 test was performed to estimate the association of KIF18B with clinical characteristics of patients with HCC. Effects of KIF18B expression on biological behaviors of HCC cells were detected by clone formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and transwell assays. The expression patterns of proteins were investigated using Western blot analysis. HCC tissues and cell lines showed significant upregulation of KIF18B at both mRNA and protein levels (p > .05, for all). Furthermore, the elevated KIF18B expression was positively correlated with the tumor-node-metastasis stage (p = .015) and lymph node metastasis (p = .007). Knockdown of KIF18B might suppress HCC cell clone formation, proliferation, migration, and invasion in vitro. Besides, the activity of Wnt/β-catenin pathway was also significantly inhibited after the KIF18B knockdown. However, the antitumor actions caused by KIF18B knockdown might be reversed by lithium chloride treatment, which was the inducer of Wnt/β-catenin-signaling pathway. KIF18B may serve as an oncogene in HCC through enhancing the activity of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Bin Yang
- Department of Comprehensive Liver Cancer, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shengzhi Wang
- Department of General Surgery, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hui Xie
- Department of Interventional Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chunping Wang
- Department of Comprehensive Liver Cancer, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xudong Gao
- Department of Comprehensive Liver Cancer, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Comprehensive Liver Cancer, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhenwen Liu
- Liver Transplantation Research Center, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yinying Lu
- Department of Comprehensive Liver Cancer, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Wang Z, Wang Y, Peng M, Yi L. UBASH3B Is a Novel Prognostic Biomarker and Correlated With Immune Infiltrates in Prostate Cancer. Front Oncol 2020; 9:1517. [PMID: 32010618 PMCID: PMC6974685 DOI: 10.3389/fonc.2019.01517] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Background: UBASH3B (STS1) is an important gene that negatively regulates T-cell receptor signaling in activated T-lymphocytes that involved in cancers. However, the function of UBASH3B in prostate cancer (PCa) and the correlation between UBASH3B and tumor-infiltrating immune cells still remain unclear. Methods: Real-time PCR and immunohistochemistry were applied to detect mRNA and protein expression of UBASH3B in PCa patients and benign prostate hyperplasia patients (BPH). Clinical features of patients with PCa were recorded and Kaplan Meier curve was subsequently plotted. Based on mRNA expression of UBASH3B, patients with PCa from TCGA database were divided into low-UBASH3B-expression group and high-UBASH3B-expression group for construct lncRNA-miRNA-mRNA network and analyzing GO and KEGG pathways. Single gene analysis method was performed by using GSEA to interpret gene expression data in PCa. The PPI network was constructed using STRING and the correlation between UBASH3B and tumor-infiltrating immune cells was analyzed by TIMER and CIBERSORT. Results: The mRNA and protein expression of UBASH3B were upregulated in PCa. The abundant expression of UBASH3B is associated with poor prognosis in PCa. The subnetwork of UBASH3B contains three lncRNAs (MIAT, LINC01297, MYLK-AS1) and four miRNAs (hsa-miR-200a-3p, hsa-miR-455-5p, hsa-miR-192-5p, hsamiR- 215-5P). The mRNA expression of UBASH3B was involved in 28 KEGG pathways. GSEA analysis showed that 18 hallmark gene sets were significantly enriched in high-UBASH3B-expression, whereas 1 gene set was enriched in low-UBASH3B-expression. PPI network revealed a tightly interaction between UBASH3B and LCP2 (an immune related gene). TIMER and CIBERSORT database indicated that UBASH3B was correlated with 11 types of tumor-infiltrating immune cells (naïve B cell, memory B cells, resting CD4+ memory T cell, activated CD4+ memory T cell, regulatory T cell, activated NK cell, M2 macrophages, resting dendritic cells, activated dendritic cells, resting mast cells, neutrophils). Conclusions: In conclusion, UBASH3B may be a novel potential prognostic biomarker and is associated with tumor-infiltrating immune cells in tumor microenvironment, suggesting UBASH3B as a potential target for future treatment of PCa.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Zhang L, Zhu G, Wang X, Liao X, Huang R, Huang C, Huang P, Zhang J, Wang P. Genome‑wide investigation of the clinical significance and prospective molecular mechanisms of kinesin family member genes in patients with lung adenocarcinoma. Oncol Rep 2019; 42:1017-1034. [PMID: 31322267 PMCID: PMC6667890 DOI: 10.3892/or.2019.7236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
The current study aimed to identify the potential clinical significance and molecular mechanisms of kinesin (KIF) family member genes in lung adenocarcinoma (LUAD) using genome-wide RNA sequencing (RNA-seq) datasets derived from The Cancer Genome Atlas (TCGA) database. Clinical parameters and RNA-seq data of patients with LUAD from the TCGA database enabled the assessment of the clinical significance of KIF genes, while the potential mechanisms of their interactions in LUAD were investigated by gene set enrichment analysis (GSEA). A gene signature with potential prognostic value was constructed via a stepwise multivariable Cox analysis. In total, 23 KIF genes were identified to be differentially expressed genes (DEGs) between the LUAD tumor and adjacent non-cancerous tissues. Of these, 8 differentially expressed KIF genes were strongly found to be strongly associated with the overall survival of patients with LUAD. Three of these genes were found to be able to be grouped as a potential prognostic gene signature. Patients with higher risk scores calculated using this gene signature were found to have a markedly higher risk of mortality (adjusted P=0.003; adjusted HR, 1.576; 95% CI, 1.166–2.129). Time-dependent receiver operating characteristic analysis indicated that this prognostic signature was able to accurately predict patient prognosis with an area under curve of 0.636, 0.643,0.665, 0.670 and 0.593 for the 1-, 2-, 3-, 4- and 5-year survival, respectively. This prognostic gene signature was identified as an independent risk factor for LUAD and was able to more accurately predict prognosis in comparison to other known clinical parameters, as shown via comprehensive survival analysis. GSEA enrichment revealed that that KIF14, KIF18B and KIF20A mediated basic cell physiology through the regulation of the cell cycle, DNA replication, and DNA repair biological processes and pathways. On the whole, the findings of this study identified 23 KIF genes that were DEGs between LUAD tumor and adjacent non-cancerous tissues. In total, 8 of these genes had the potential to function as prognostic and diagnostic biomarkers in patients with LUAD.
Collapse
Affiliation(s)
- Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chunxia Huang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ping Huang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Wang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
32
|
Identification of KIF11 As a Novel Target in Meningioma. Cancers (Basel) 2019; 11:cancers11040545. [PMID: 30991738 PMCID: PMC6521001 DOI: 10.3390/cancers11040545] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Kinesins play an important role in many physiological functions including intracellular vesicle transport and mitosis. The emerging role of kinesins in different cancers led us to investigate the expression and functional role of kinesins in meningioma. Therefore, we re-analyzed our previous microarray dataset of benign, atypical, and anaplastic meningiomas (n = 62) and got evidence for differential expression of five kinesins (KIFC1, KIF4A, KIF11, KIF14 and KIF20A). Further validation in an extended study sample (n = 208) revealed a significant upregulation of these genes in WHO°I to °III meningiomas (WHO°I n = 61, WHO°II n = 88, and WHO°III n = 59), which was most pronounced in clinically more aggressive tumors of the same WHO grade. Immunohistochemical staining confirmed a WHO grade-associated upregulated protein expression in meningioma tissues. Furthermore, high mRNA expression levels of KIFC1, KIF11, KIF14 and KIF20A were associated with shorter progression-free survival. On a functional level, knockdown of kinesins in Ben-Men-1 cells and in the newly established anaplastic meningioma cell line NCH93 resulted in a significantly inhibited tumor cell proliferation upon siRNA-mediated downregulation of KIF11 in both cell lines by up to 95% and 71%, respectively. Taken together, in this study we were able to identify the prognostic and functional role of several kinesin family members of which KIF11 exhibits the most promising properties as a novel prognostic marker and therapeutic target, which may offer new treatment options for aggressive meningiomas.
Collapse
|
33
|
Frumento G, Zuo J, Verma K, Croft W, Ramagiri P, Chen FE, Moss P. CD117 (c-Kit) Is Expressed During CD8 + T Cell Priming and Stratifies Sensitivity to Apoptosis According to Strength of TCR Engagement. Front Immunol 2019; 10:468. [PMID: 30930902 PMCID: PMC6428734 DOI: 10.3389/fimmu.2019.00468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/21/2019] [Indexed: 01/04/2023] Open
Abstract
CD117 (cKit) is the receptor for stem cell factor (SCF) and plays an important role in early haemopoiesis. We show that CD117 is also expressed following priming of mature human CD8+ T cells in vitro and is detectable following primary infection in vivo. CD117 expression is mediated through an intrinsic pathway and is suppressed by IL-12. Importantly, the extent of CD117 expression is inversely related to the strength of the activating stimulus and subsequent engagement with cell-bound SCF markedly increases susceptibility to apoptosis. CD117 is therefore likely to shape the pattern of CD8+ T cell immunodominance during a primary immune response by rendering cells with low avidity for antigen more prone to apoptosis. Furthermore, CD117+ T cells are highly sensitive to apoptosis mediated by galectin-1, a molecule commonly expressed within the tumor microenvironment, and CD117 expression may therefore represent a novel and potentially targetable mechanism of tumor immune evasion.
Collapse
Affiliation(s)
- Guido Frumento
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,NHS Blood and Transplant, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,Centre for Computational Biology, University of Birmingham Birmingham, United Kingdom
| | - Pradeep Ramagiri
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom
| | - Frederick E Chen
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,NHS Blood and Transplant, Birmingham, United Kingdom.,Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust Birmingham, United Kingdom.,Royal London Hospital, Barts Health NHS Trust London, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham, United Kingdom.,Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust Birmingham, United Kingdom
| |
Collapse
|
34
|
The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene 2018; 678:90-99. [DOI: 10.1016/j.gene.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
35
|
Yang Z, Li C, Yan C, Li J, Yan M, Liu B, Zhu Z, Wu Y, Gu Q. KIF14 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in human gastric cancer. Biochim Biophys Acta Mol Basis Dis 2018; 1865:181-192. [PMID: 30404039 DOI: 10.1016/j.bbadis.2018.10.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
The kinesin family member 14 (KIF14) is a potential oncogene and is involved in the metastasis of various cancers. Nevertheless, its function in gastric cancer (GC) remains poorly defined. The expression of KIF14 was examined in GC cell lines and a clinical cohort of GC specimens by qPCR, western blotting and immunohistochemistry (IHC) staining. The relationship between KIF14 expression and the clinicopathological features was analyzed. The effect of KIF14 on cell proliferation, colony formation, invasion and migration were investigated in vitro and in vivo. The expression of KIF14 was significantly increased in the GC tissues and cell lines. High KIF14 expression was associated with tumor stage, tumor-node-metastasis (TNM) stage and metastasis. KIF14 was an independent prognostic factor for the overall survival of GC, and a higher expression of KIF14 predicted a poorer survival. KIF14 silencing resulted in attenuated proliferation, invasion and migration in human gastric cancer cells, whereas KIF14 ectopic expression facilitated these biological abilities. Notably, the depressed expression of KIF14 inhibited Akt phosphorylation, while overexpressed KIF14 augmented Akt phosphorylation. Additionally, there was a significant correlation between the expression of KIF14 and p‑Akt in GC tissues. Importantly, the proliferation, invasion and migration of the GC cells, which was promoted by KIF14 overexpression, was abolished by the Akt inhibitor MK-2206, while Akt overexpression greatly rescued the effects induced by KIF14 knockdown. Our findings are the first to demonstrate that KIF14 is overexpressed in GC, is correlated with poor prognosis and plays a crucial role in the progression and metastasis of GC.
Collapse
Affiliation(s)
- Zhongyin Yang
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qinlong Gu
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Observations on spontaneous tumor formation in mice overexpressing mitotic kinesin Kif14. Sci Rep 2018; 8:16152. [PMID: 30385851 PMCID: PMC6212535 DOI: 10.1038/s41598-018-34603-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The KIF14 locus is gained and overexpressed in various malignancies, with prognostic relevance. Its protein product, a mitotic kinesin, accelerates growth of normal mammary epithelial cells in vitro and retinoblastoma tumours in a mouse model, while KIF14 knockdown blocks growth of brain, liver, ovarian, breast, prostate, and other tumour cells and xenografts. However, the tumour-initiating effects of Kif14 overexpression have not been studied. We aged a cohort of Kif14-overexpressing transgenic mice and wild-type littermates and documented survival, cause of death, and tumour burden. The Kif14 transgene was expressed in all tissues examined, and was associated with increased proliferation marker expression. Neither mouse weights nor overall survival differed between genotypes. However, Kif14 transgenic mice showed a higher incidence of fatal lymphomas (73 vs. 50%, p = 0.03, Fisher’s exact test), primarily follicular and diffuse B-cell lymphomas. Non-tumour findings included a bilateral ballooning degeneration of lens in 12% of Kif14 transgenic mice but no wild-type mice (p = 0.02). Overall, this work reveals a novel association of Kif14 overexpression with lymphoma but suggests that Kif14 does not have as prominent a role in initiating cancer in other cell types as it does in accelerating tumour development in response to other oncogenic insults.
Collapse
|
37
|
Ortega-Bernal D, La Rosa CHGD, Arechaga-Ocampo E, Alvarez-Avitia MA, Moreno NS, Rangel-Escareño C. A meta-analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncol Lett 2018; 16:1899-1911. [PMID: 30008882 DOI: 10.3892/ol.2018.8861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
Melanoma represents one of the most aggressive malignancies and has a high tendency to metastasize. The present study aims to investigate the molecular mechanisms of two pathways to cancer transformation with the purpose of identifying potential biomarkers. Our approach is based on a meta-analysis of gene expression profiling contrasting two scenarios: A model that describes a transformation pathway from melanocyte to melanoma and a second model where transformation occurs through an intermediary nevus. Data consists of three independent, publicly available microarray datasets from the Gene Expression Omnibus (GEO) database comprising samples from melanocytes, nevi and melanoma. The present analysis identified 808 differentially expressed genes (528 upregulated and 360 downregulated) in melanoma compared with nevi, and 2,331 differentially expressed genes (946 upregulated and 1,385 downregulated) in melanoma compared with melanocytes. Further analysis narrowed down this list, since 682 differentially expressed genes were found in both models (417 upregulated and 265 downregulated). Enrichment analysis identified relevant dysregulated pathways. This article also presented a discussion on significant genes including ADAM like decysin 1, neudesin neurotrophic factor, MMP19, apolipoprotein L6, C-X-C motif chemokine ligand (CXCL)8, basic, immunoglobulin-like variable motif containing and CXCL16. These are of particular interest because they encode secreted proteins hence represent potential blood biomarkers for the early detection of malignant transformation in both scenarios. Cytotoxic T-lymphocyte associated protein 4, an important therapeutic target in melanoma treatment, was also upregulated in both comparisons indicating a potential involvement in immune tolerance, not only at advanced stages but also during the early transformation to melanoma. The results of the present study may provide a research direction for studying the mechanisms underlying the development of melanoma, depending on its origin.
Collapse
Affiliation(s)
- Daniel Ortega-Bernal
- Natural Sciences Department, Universidad Autónoma Metropolitana, Mexico City 05300, Mexico
| | | | - Elena Arechaga-Ocampo
- Natural Sciences Department, Universidad Autónoma Metropolitana, Mexico City 05300, Mexico
| | | | - Nora Sobrevilla Moreno
- Medical Oncology Department, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| |
Collapse
|