1
|
Bernardez B, Higuera O, Martinez-Callejo V, Cardeña-Gutiérrez A, Marcos Rodríguez JA, Santaballa Bertrán A, Majem M, Moreno-Martínez ME. Sex and gender differences in cancer pathogenesis and pharmacology. Clin Transl Oncol 2025:10.1007/s12094-025-03894-1. [PMID: 40164824 DOI: 10.1007/s12094-025-03894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Sex and gender may influence the epidemiology, pathogenesis, and prognosis of cancer. This narrative review describes sex and gender differences in the epidemiology and pathogenesis of cancer, and how such differences may impact the pharmacodynamics and pharmacokinetics of cancer treatment. For most types of cancer unrelated to reproductive function, incidence is higher in males than in females, except for gallbladder and thyroid cancers, which are much more common in women. Cancer mortality is higher in men than women; women account for a larger proportion of survivors. These differences may be related to biological differences in pathogenesis or differences in behaviors relating to cancer risk or detection. The pharmacokinetics and pharmacodynamics of cancer therapies also differ between sexes due to differences in body composition, physiology, and receptor expression. Overall, sex and gender are essential variables to be considered in research and clinical practice, influencing diagnosis, subtyping (biomarkers), prognostication, treatment, and dosage.
Collapse
Affiliation(s)
- Beatriz Bernardez
- Departament of Medicine and Pharmacology Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Oncology Pharmacy Unit, Pharmacy Service, University Clinic Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Santiago de Compostela Research Institute (IDIS), Santiago de Compostela, Spain
| | - Oliver Higuera
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Virginia Martinez-Callejo
- Oncology Pharmacy Unit, Pharmacy Service, Marqués de Valdecilla University Hospital, Avda Marqués de Valdecilla, S/N 39008, Santander, Spain.
| | - Ana Cardeña-Gutiérrez
- Department of Medical Oncology, Nuestra Señora de Candelaria University Hospital, Carretera General del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain.
| | | | | | - Margarita Majem
- Department of Medical Oncology, Santa Creu i Sant Pau Hospital, IIB Sant Pau, Barcelona, Spain
| | - Maria-Estela Moreno-Martínez
- Pharmacy Department, Santa Creu i Sant Pau Hospital, IIB Sant Pau, Barcelona, Spain
- Blanquerna School of Health Sciences, University Ramon Llull, Barcelona, Spain
| |
Collapse
|
2
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
3
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Kokeza J, Strikic A, Ogorevc M, Kelam N, Vukoja M, Dilber I, Zekic Tomas S. The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma. Int J Mol Sci 2023; 24:10575. [PMID: 37445752 DOI: 10.3390/ijms241310575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the second-most-common cancer while being the leading cause of cancer deaths worldwide. It has been found that glucose transporter 1 (GLUT1) and hypoxia-inducible factor 1α (HIF-1α) are overexpressed in various malignancies and that they correlate with the maximum standard uptake values (SUVmax) on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) and poor prognosis. In this study, we aim to evaluate the relationship between the SUVmax, GLUT1, and HIF-1α expression with primary tumor size, histological type, lymph node metastases, and patient survival. Of the 48 patients with non-small-cell lung cancer, those with squamous cell carcinomas (SCCs) had significantly higher GLUT1 and HIF-1α immunohistochemical expressions in comparison to adenocarcinomas (ACs), while there was no statistically significant difference in FDG accumulation between them. No significant correlation was noted between either GLUT1 or HIF-1α protein expression and FDG uptake and overall survival. However, an analysis of tumor transcriptomics showed a significant difference in overall survival depending on mRNA expression; patients with SCC and high HIF-1α levels survived longer compared to those with low HIF-1α levels, while patients with AC and low GLUT1 levels had a higher average survival time than those with high GLUT1 levels. Further studies are needed to determine the prognostic value of the expression of these factors depending on the histologic type.
Collapse
Affiliation(s)
- Josipa Kokeza
- Department of Pulmonology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Ante Strikic
- Department of Oncology and Radiotherapy, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Ivo Dilber
- Department of Oncology and Nuclear Medicine, General Hospital Zadar, Ul. Bože Peričića 5, 23000 Zadar, Croatia
| | - Sandra Zekic Tomas
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
- Department of Pathology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
5
|
Ito R, Yashiro M, Tsukioka T, Izumi N, Komatsu H, Inoue H, Yamamoto Y, Nishiyama N. GLUT1 and PKM2 may be useful prognostic predictors in patients with non‑small cell lung cancer following curative R0 resection. Oncol Lett 2023; 25:129. [PMID: 36844619 PMCID: PMC9950336 DOI: 10.3892/ol.2023.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Lung cancer has a poor prognosis despite recent progresses being made regarding its treatment. In addition, there is a paucity of reliable and independent prognostic predictors for non-small cell lung cancer (NSCLC) following curative resection. Glycolysis is associated with the malignancy and proliferation of cancer cells. Glucose transporter 1 (GLUT1) promotes glucose uptake, whereas pyruvate kinase M2 (PKM2) promotes anaerobic glycolysis. The present study aimed to evaluate the relationship between the expression of GLUT1 and PKM2 and the clinicopathological features of patients with NSCLC, and to identify a reliable prognostic factor for NSCLC following curative resection. Patients with NSCLC who underwent curative surgery were retrospectively enrolled to the present study. GLUT1 and PKM2 expression was assessed using immunohistochemistry. Subsequently, the association between the clinicopathological features of patients with NSCLC and the expression of GLUT1 and PKM2 was assessed. Of the 445 patients with NSCLC included in the present study, 65 (15%) were positive for both GLUT1 and PKM2 expression (G+/P+ group). GLUT1 and PKM2 positivity was significantly associated with sex, absence of adenocarcinoma, lymphatic invasion and pleural invasion. Furthermore, patients with NSCLC in the G+/P+ group presented significantly poorer survival rates than those expressing other markers. G+/P+ expression was significantly associated with poor disease-free survival. In conclusion, the findings of the present study indicated that the combination of GLUT1 and PKM2 may be considered a reliable prognostic factor for patients with NSCLC following curative resection, especially in patients with stage I NSCLC.
Collapse
Affiliation(s)
- Ryuichi Ito
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan,Cancer Center for Translational Research, Osaka Metropolitan University, Osaka 545-8585, Japan,Correspondence to: Dr Masakazu Yashiro, Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan, E-mail:
| | - Takuma Tsukioka
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Nobuhiro Izumi
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hiroaki Komatsu
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hidetoshi Inoue
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan,Cancer Center for Translational Research, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Noritoshi Nishiyama
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
6
|
Tsolou A, Koparanis D, Lamprou I, Giatromanolaki A, Koukourakis MI. Increased glucose influx and glycogenesis in lung cancer cells surviving after irradiation. Int J Radiat Biol 2023; 99:692-701. [PMID: 35976051 DOI: 10.1080/09553002.2022.2113837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Lung cancer is considered as one of the most frequent malignancies worldwide. Radiotherapy is the main treatment modality applied for locally advanced disease, but remnant surviving cancer tissue results in disease progression in the majority of irradiated lung carcinomas. Metabolic reprogramming is regarded as a cancer hallmark and is associated with resistance to radiation therapy. Here, we explored metabolic alterations possibly related to cancer cell radioresistance. MATERIALS AND METHODS We compared the expression of metabolism-related enzymes in the parental A549 lung cancer cell line along with two new cell lines derived from A549 cells after recovery from three (A549-IR3) and six (A549-IR6) irradiation doses with 4 Gy. Differential GLUT1 and GYS1 expression on proliferation and radioresistance were also comparatively investigated. RESULTS A549-IR cells displayed increased extracellular glucose absorption, and enhanced mRNA and protein levels of the GLUT1 glucose transporter. GLUT1 inhibition with BAY-876, suppressed cell proliferation and the effect was significantly more profound on A549-IR3 cells. Protein levels of molecules associated with aerobic or anaerobic glycolysis, or the phosphate pentose pathway were similar in all three cell lines. However, glycogen synthase 1 (GYS1) was upregulated, especially in the A549-IR3 cell line, suggestive of glycogen accumulation in cells surviving post irradiation. GYS1-gene silencing repressed the proliferation capacity of A549, but this increased their radioresistance. The radio-protective effect of the suppression of proliferative activity induced by GYS1 silencing did not protect A549-IR3 cells against further irradiation. CONCLUSIONS These findings indicate that GYS1 activity is a critical component of the metabolism of lung cancer cells surviving after fractionated radiotherapy. Targeting the glycogen metabolic reprogramming after irradiation may be a valuable approach to pursue eradication of the post-radiotherapy remnant of disease.
Collapse
Affiliation(s)
- Avgi Tsolou
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dimitrios Koparanis
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioannis Lamprou
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexandra Giatromanolaki
- Department of Pathology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
7
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
9
|
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16:561. [PMID: 35340885 PMCID: PMC8941341 DOI: 10.4081/oncol.2022.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
The primary metabolic substrate for cells is glucose, which acts as both a source of energy and a substrate in several processes. However, being lipophilic, the cell membrane is impermeable to glucose and specific carrier proteins are needed to allow transport. In contrast to normal cells, cancer cells are more likely to generate energy by glycolysis; as this process generates fewer molecules of adenosine triphosphate (ATP) than complete oxidative breakdown, more glucose molecules are needed. The increased demand for glucose in cancer cells is satisfied by overexpression of a number of glucose transporters, and decreased levels of others. As specific correlations have been observed between the occurrence of cancer and the expression of glucose carrier proteins, the presence of changes in expression of glucose transporters may be treated as a marker of diagnosis and/or prognosis for cancer patients.
Collapse
|
10
|
Chen L, Liu K, Zhao X, Shen H, Zhao K, Zhu W. Habitat Imaging-Based 18F-FDG PET/CT Radiomics for the Preoperative Discrimination of Non-small Cell Lung Cancer and Benign Inflammatory Diseases. Front Oncol 2021; 11:759897. [PMID: 34692548 PMCID: PMC8526895 DOI: 10.3389/fonc.2021.759897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To propose and evaluate habitat imaging-based 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomics for preoperatively discriminating non-small cell lung cancer (NSCLC) and benign inflammatory diseases (BIDs). Methods Three hundred seventeen 18F-FDG PET/CT scans were acquired from patients who underwent aspiration biopsy or surgical resection. All volumes of interest (VOIs) were semiautomatically segmented. Each VOI was separated into variant subregions, namely, habitat imaging, based on our adapted clustering-based habitat generation method. Radiomics features were extracted from these subregions. Three feature selection methods and six classifiers were applied to construct the habitat imaging-based radiomics models for fivefold cross-validation. The radiomics models whose features extracted by conventional habitat-based methods and nonhabitat method were also constructed. For comparison, the performances were evaluated in the validation set in terms of the area under the receiver operating characteristic curve (AUC). Pairwise t-test was applied to test the significant improvement between the adapted habitat-based method and the conventional methods. Results A total of 1,858 radiomics features were extracted. After feature selection, habitat imaging-based 18F-FDG PET/CT radiomics models were constructed. The AUC of the adapted clustering-based habitat radiomics was 0.7270 ± 0.0147, which showed significantly improved discrimination performance compared to the conventional methods (p <.001). Furthermore, the combination of features extracted by our adaptive habitat imaging-based method and non-habitat method showed the best performance than the other combinations. Conclusion Habitat imaging-based 18F-FDG PET/CT radiomics shows potential as a biomarker for discriminating NSCLC and BIDs, which indicates that the microenvironmental variations in NSCLC and BID can be captured by PET/CT.
Collapse
Affiliation(s)
- Ling Chen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Kanfeng Liu
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Zhao
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Shen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Kui Zhao
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wentao Zhu
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
11
|
King RJ, Qiu F, Yu F, Singh PK. Metabolic and Immunological Subtypes of Esophageal Cancer Reveal Potential Therapeutic Opportunities. Front Cell Dev Biol 2021; 9:667852. [PMID: 34307352 PMCID: PMC8295652 DOI: 10.3389/fcell.2021.667852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Esophageal cancer has the sixth highest rate of cancer-associated deaths worldwide, with many patients displaying metastases and chemotherapy resistance. We sought to find subtypes to see if precision medicine could play a role in finding new potential targets and predicting responses to therapy. Since metabolism not only drives cancers but also serves as a readout, metabolism was examined as a key reporter for differences. METHODS Unsupervised and supervised classification methods, including hierarchical clustering, partial least squares discriminant analysis, k-nearest neighbors, and machine learning techniques, were used to discover and display two major subgroups. Genes, pathways, gene ontologies, survival, and immune differences between the groups were further examined, along with biomarkers between the groups and against normal tissue. RESULTS Esophageal cancer had two major unique metabolic profiles observed between the histological subtypes esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). The metabolic differences suggest that ESCC depends on glycolysis, whereas EAC relies more on oxidative metabolism, catabolism of glycolipids, the tricarboxylic acid (TCA) cycle, and the electron transport chain. We also noted a robust prognostic risk associated with COQ3 expression. In addition to the metabolic alterations, we noted significant alterations in key pathways regulating immunity, including alterations in cytokines and predicted immune infiltration. ESCC appears to have increased signature associated with dendritic cells, Th17, and CD8 T cells, the latter of which correlate with survival in ESCC. We bioinformatically observed that ESCC may be more responsive to checkpoint inhibitor therapy than EAC and postulate targets to enhance therapy further. Lastly, we highlight correlations between differentially expressed enzymes and the potential immune status. CONCLUSION Overall, these results highlight the extreme differences observed between the histological subtypes and may lead to novel biomarkers, therapeutic strategies, and differences in therapeutic response for targeting each esophageal cancer subtype.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
12
|
Zhang G, Dong R, Kong D, Liu B, Zha Y, Luo M. The Effect of GLUT1 on Survival Rate and the Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis. Anticancer Agents Med Chem 2021; 22:223-238. [PMID: 34238200 DOI: 10.2174/1871520621666210708115406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of non-small cell lung cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear. OBJECTIVE This study aims to learn more about the character of GLUT1 in LUAD and LUSC. METHODS A meta-analysis was performed to evaluate the GLUT1 protein level, and bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset. RESULTS Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics by cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC. CONCLUSION GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.
Collapse
Affiliation(s)
- Guihua Zhang
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Rong Dong
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Yan Zha
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Meng Luo
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| |
Collapse
|
13
|
Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021; 21:393-407. [PMID: 33879867 PMCID: PMC8284191 DOI: 10.1038/s41568-021-00348-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Curing cancer through precision medicine is the paramount aim of the new wave of molecular and genomic therapies. Currently, whether patients with non-reproductive cancers are male or female according to their sex chromosomes is not adequately considered in patient standard of care. This is a matter of consequence because there is growing evidence that these cancer types generally initiate earlier and are associated with higher overall incidence and rates of death in males compared with females. Gender, in contrast to sex, refers to a chosen sexual identity. Hazardous lifestyle choices (notably tobacco smoking) differ in prevalence between genders, aligned with disproportionate cancer risk. These add to underlying genetic predisposition and influences of sex steroid hormones. Together, these factors affect metabolism, immunity and inflammation, and ultimately the fidelity of the genetic code. To accurately understand how human defences against cancer erode, it is crucial to establish the influence of sex. Our Perspective highlights evidence from basic and translational research indicating that including genetic sex considerations in treatments for patients with cancer will improve outcomes. It is now time to adopt the challenge of overhauling cancer medicine based on optimized treatment strategies for females and males.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Franco Caramia
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua B Rubin
- Department of Pediatrics and Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Ygal Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Haupt S, Haupt Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front Genet 2021; 12:632719. [PMID: 33664771 PMCID: PMC7920968 DOI: 10.3389/fgene.2021.632719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
There are many differences in cancer manifestation between men and women. New understanding of the origin of these point to fundamental distinctions in the genetic code and its demise. Tumour suppressor protein p53 is the chief operating officer of cancer defence and critically acts to safeguard against sustained DNA damaged. P53 cannot be ignored in cancer sex disparity. In this review we discuss the greater prevalence and associated death rates for non-reproductive cancers in males. The major tumour suppressor protein p53, encoded in the TP53 gene is our chosen context. It is fitting to ask why somatic TP53 mutation incidence is estimated to be disproportionately higher among males in the population for these types of cancers compared with females? We scrutinised the literature for evidence of predisposing genetic and epigenetic alterations that may explain this sex bias. Our second approach was to explore whether redox activity, either externally imposed or inherent to males and females, may define distinct risks that could contribute to the clear cancer sex disparities.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Wu W, Hu Z, Zhao Q, Zhang X, Zhang H, Wang H, Xue W, Yu L, Duan G. Down-Regulation of Hypoxia-Inducible Factor-1α and Downstream Glucose Transporter Protein-1 Gene by β-elemene Enhancing the Radiosensitivity of Lung Adenocarcinoma Transplanted Tumor. Onco Targets Ther 2020; 13:11627-11635. [PMID: 33223837 PMCID: PMC7671467 DOI: 10.2147/ott.s275956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To study the effect of β-elemene on the radiosensitivity of A549 cell xenograft tumor and potential mechanisms by which β-elemene regulates the expression of hypoxia-inducible factor-1α (HIF-1α) and glucose transporter protein-1 (GLUT-1). Methods Using an A549 cell transplantation tumor model with male nude mice, we studied the effect of β-elemene on the radiosensitivity of non-small cell lung cancer (NSCLC). The expression of HIF-1α and GLUT-1 was detected by real-time PCR, Western blotting and immunohistochemistry. The relationship between the radiosensitivity of β-elemene and the expression of HIF-1α and GLUT-1 was analyzed. Results β-elemene and radiotherapy intervened in the growth of transplanted tumors in varying degrees. The enhancement factor (EF=2.44>1) was calculated; β-elemene at 45 mg/kg had the most significant enhanced effect on radiosensitivity. When β-elemene was used in combination with radiation, the expression of HIF-1α and GLUT-1 was significantly decreased, and there was a positive correlation between the two genes. Conclusion β-elemene exhibits a radiosensitizing effect on A549 cell xenograft tumor. The underlying molecular mechanism is probably associated with the down-regulation of HIF-1α and GLUT-1 expression, suggesting that β-elemene may directly or indirectly inhibit the expression of HIF-1α and GLUT-1. There is a positive significant correlation between expression of HIF-1α and GLUT-1. HIF-1α and downstream GLUT-1 could be used as a new target for the radiosensitization of NSCLC.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei North University, Zhangjiakou, People's Republic of China
| | - Zhonghui Hu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Hua Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Huien Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Lei Yu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei Children's Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
16
|
Pezzuto A, D'Ascanio M, Ricci A, Pagliuca A, Carico E. Expression and role of p16 and GLUT1 in malignant diseases and lung cancer: A review. Thorac Cancer 2020; 11:3060-3070. [PMID: 32945604 PMCID: PMC7606016 DOI: 10.1111/1759-7714.13651] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death and in most cases it is often diagnosed at an advanced stage. Many genetic and microenvironmental factors are able to modify the cell cycle inducing carcinogenesis and tumor growth. Among the metabolic and genetic factors that come into play in carcinogenesis and tumor cell differentiation and growth there are two different proteins that should be considered which are glucose transporters (GLUTs) and p16INK4 The first are glucose transporters which are strongly involved in tumor metabolism, notably accelerating cancer cell metabolism both in aerobic and anaerobic conditions. There are different subtypes of GLUT family factors of which GLUT 1 is the most important and widely expressed. By contrast, p16 is mainly a tumor‐suppressor protein that acts on cyclin‐dependent kinase favoring cell cycle arrest in the G1 phase. Our search focused on the action of the aforementioned factors.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular-Pulmonary Science Department, Sant' Andrea Hospital-Sapienza University, Rome, Italy
| | - Michela D'Ascanio
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| | - Alberto Ricci
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| | - Alessandra Pagliuca
- Cardiovascular-Pulmonary Science Department, Sant' Andrea Hospital-Sapienza University, Rome, Italy
| | - Elisabetta Carico
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules 2020; 10:biom10060868. [PMID: 32517099 PMCID: PMC7356687 DOI: 10.3390/biom10060868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.
Collapse
|
18
|
Commander R, Wei C, Sharma A, Mouw JK, Burton LJ, Summerbell E, Mahboubi D, Peterson RJ, Konen J, Zhou W, Du Y, Fu H, Shanmugam M, Marcus AI. Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun 2020; 11:1533. [PMID: 32210228 PMCID: PMC7093428 DOI: 10.1038/s41467-020-15219-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Phenotypic heterogeneity exists within collectively invading packs of tumor cells, suggesting that cellular subtypes cooperate to drive invasion and metastasis. Here, we take a chemical biology approach to probe cell:cell cooperation within the collective invasion pack. These data reveal metabolic heterogeneity within invasive chains, in which leader cells preferentially utilize mitochondrial respiration and trailing follower cells rely on elevated glucose uptake. We define a pyruvate dehydrogenase (PDH) dependency in leader cells that can be therapeutically exploited with the mitochondria-targeting compound alexidine dihydrochloride. In contrast, follower cells highly express glucose transporter 1 (GLUT1), which sustains an elevated level of glucose uptake required to maintain proliferation. Co-targeting of both leader and follower cells with PDH and GLUT1 inhibitors, respectively, inhibits cell growth and collective invasion. Taken together, our work reveals metabolic heterogeneity within the lung cancer collective invasion pack and provides rationale for co-targeting PDH and GLUT1 to inhibit collective invasion. The presence of phenotypic heterogeneity in collectively invading cells suggests cooperation amongst distinct subtypes of cells to promote invasion and metastasis. Here, the authors use chemical biology tools and report metabolic heterogeneity within the lung cancer collective invasion pack.
Collapse
Affiliation(s)
- R Commander
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - C Wei
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - A Sharma
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - J K Mouw
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - L J Burton
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - E Summerbell
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - D Mahboubi
- Graduate Program in Molecular Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - R J Peterson
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA, USA
| | - J Konen
- Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Y Du
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA.,Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - H Fu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA.,Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - M Shanmugam
- Winship Cancer Institute, Emory University, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| | - A I Marcus
- Winship Cancer Institute, Emory University, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Sharma A, Boise LH, Shanmugam M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers (Basel) 2019; 11:E1144. [PMID: 31405035 PMCID: PMC6721599 DOI: 10.3390/cancers11081144] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular growth and proliferation depend upon the acquisition and synthesis of specific metabolites. These metabolites fuel the bioenergy, biosynthesis, and redox potential required for duplication of cellular biomass. Multicellular organisms maintain tissue homeostasis by balancing signals promoting proliferation and removal of cells via apoptosis. While apoptosis is in itself an energy dependent process activated by intrinsic and extrinsic signals, whether specific nutrient acquisition (elevated or suppressed) and their metabolism regulates apoptosis is less well investigated. Normal cellular metabolism is regulated by lineage specific intrinsic features and microenvironment driven extrinsic features. In the context of cancer, genetic abnormalities, unconventional microenvironments and/or therapy engage constitutive pro-survival signaling to re-program and rewire metabolism to maintain survival, growth, and proliferation. It thus becomes particularly relevant to understand whether altered nutrient acquisition and metabolism in cancer can also contribute to the evasion of apoptosis and consequently therapy resistance. Our review attempts to dissect a causal relationship between two cancer hallmarks, i.e., deregulated cellular energetics and the evasion of programmed cell death with primary focus on the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Liu L, Lei B, Wang L, Chang C, Yang H, Liu J, Huang G, Xie W. Protein kinase C-iota-mediated glycolysis promotes non-small-cell lung cancer progression. Onco Targets Ther 2019; 12:5835-5848. [PMID: 31410027 PMCID: PMC6646854 DOI: 10.2147/ott.s207211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/18/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose To determine whether protein kinase C-iota (PKC-iota) is associated with glucose metabolism in non-small-cell lung cancer (NSCLC) and whether its regulatory effect on metabolic and biological changes observed in NSCLC can be mediated by glucose transporter 1 (GLUT1). Patients and methods Forty-five NSCLC patients underwent combined 18F-fludeoxyglucose (18F-FDG) positron emission tomography and computed tomography (PET/CT) before surgery, and another eighty-one NSCLC patients were followed-up for 1–91 months after tumor resection. The rate of glucose metabolism in NSCLC was quantified by measuring the maximum standardized uptake value (SUVmax) by 18F-FDG PET/CT. PKC-iota and GLUT1 in NSCLC were detected by immunostaining. In vitro, PKC-iota was knocked down, whereas GLUT1 was silenced with or without PKC-iota overexpression to identify the role of PKC-iota in glycolysis. Spearman’s rank correlation coefficient was used in the correlation analysis. Kaplan-Meier analysis was used to assess survival duration. Results There was a positive relationship between PKC-iota expression and SUVmax in NSCLC (r=0.649, P<0.001). PKC-iota expression also showed a positive relationship with GLUT1 in NSCLC tissues (r=0.686, P<0.001). Patients whose NSCLC tissues highly co-expressed PKC-iota and GLUT1 had worse prognosis compared with patients without high co-expression of PKC-iota and GLUT1. In vitro, PKC-iota silencing significantly decreased the expression of GLUT1 and inhibited glucose uptake and glycolysis; c-Myc silencing restrained PKC-iota-mediated GLUT1 elevation; GLUT1 knockdown remarkably suppressed PKC-iota-mediated glycolysis and cell growth. Conclusion In NSCLC, the rate of glucose metabolism was positively correlated with PKC-iota expression. PKC-iota increased glucose accumulation and glycolysis by upregulating c-Myc/GLUT1 signaling and is thus involved in tumor progression.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Yang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Huang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Pettenuzzo N, Brustolin L, Coltri E, Gambalunga A, Chiara F, Trevisan A, Biondi B, Nardon C, Fregona D. Cu II and Au III Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019; 14:1162-1172. [PMID: 31091012 DOI: 10.1002/cmdc.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Indexed: 11/07/2022]
Abstract
This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.
Collapse
Affiliation(s)
- Nicolò Pettenuzzo
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Elisa Coltri
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Federica Chiara
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Andrea Trevisan
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
22
|
Wei R, Mao L, Xu P, Zheng X, Hackman RM, Mackenzie GG, Wang Y. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct 2019; 9:5682-5696. [PMID: 30310905 DOI: 10.1039/c8fo01397g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous studies propose that epigallocatechin-3-gallate (EGCG), an abundant polyphenol in green tea, has anti-cancer properties. However, its mechanism of action in breast cancer remains unclear. This study investigated the capacity of EGCG to suppress breast cancer cell growth in vitro and in vivo, characterizing the underlying mechanisms, focusing on the effect of EGCG on glucose metabolism. EGCG reduced breast cancer 4T1 cell growth in a concentration- (10-320 μM) and time- (12-48 h) dependent manner. EGCG induced breast cancer apoptotic cell death at 24 h, as evidenced by annexin V/PI, caspase 3, caspase 8 and caspase 9 activation. Furthermore, EGCG affected the expression of 16 apoptosis-related genes, and promoted mitochondrial depolarization. EGCG induced autophagy concentration-dependently in 4T1 cells by modulating the levels of the autophagy-related proteins Beclin1, ATG5 and LC3B. Moreover, EGCG affected glucose, lactate and ATP levels. Mechanistically, EGCG significantly inhibited the activities and mRNA levels of the glycolytic enzymes hexokinase (HK), phosphofructokinase (PFK), and lactic dehydrogenase (LDH), and to a lesser extent the activity of pyruvate kinase (PK). In addition, EGCG decreased the expression of hypoxia-inducible factor 1α (HIF1α) and glucose transporter 1 (GLUT1), critical players in regulating glycolysis. In vivo, EGCG reduced breast tumor weight in a dose-dependent manner, reduced glucose and lactic acid levels and reduced the expression of the vascular endothelial growth factor (VEGF). In conclusion, EGCG exerts an anti-tumor effect through the inhibition of key enzymes that participate in the glycolytic pathway and the suppression of glucose metabolism.
Collapse
Affiliation(s)
- Ran Wei
- Institute of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen Z, Tian D, Liao X, Zhang Y, Xiao J, Chen W, Liu Q, Chen Y, Li D, Zhu L, Cai S. Apigenin Combined With Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells. Front Pharmacol 2019; 10:260. [PMID: 30967777 PMCID: PMC6438929 DOI: 10.3389/fphar.2019.00260] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are characterized by abnormally increased glucose uptake and active bio-energy and biosynthesis to support the proliferation, metastasis, and drug resistant survival. We examined the therapeutic value of the combination of apigenin (a natural small-molecule inhibitor of Glut1 belonging to the flavonoid family) and gefitinib on epidermal growth factor receptor (EGFR)-resistant mutant non-small cell lung cancer, to notably damage glucose utilization and thus suppress cell growth and malignant behavior. Here, we demonstrate that apigenin combined with gefitinib inhibits multiple oncogenic drivers such as c-Myc, HIF-1α, and EGFR, reduces Gluts and MCT1 protein expression, and inactivates the 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, which regulates glucose uptake and maintains energy metabolism, leading to impaired energy utilization in EGFR L858R-T790M-mutated H1975 lung cancer cells. H1975 cells exhibit dysregulated metabolism and apoptotic cell death following treatment with apigenin + gefitinib. Therefore, the combined apigenin + gefitinib treatment presents an attractive strategy as alternative treatment for the acquired resistance to EGFR-TKIs in NSCLC.
Collapse
Affiliation(s)
- ZiSheng Chen
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiaowen Liao
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yifei Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jinghua Xiao
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Weiping Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Qingxia Liu
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yun Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongmin Li
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lianyu Zhu
- Department of Neurology, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Koh YW, Lee SJ, Han JH, Haam S, Jung J, Lee HW. PD-L1 protein expression in non-small-cell lung cancer and its relationship with the hypoxia-related signaling pathways: A study based on immunohistochemistry and RNA sequencing data. Lung Cancer 2019; 129:41-47. [PMID: 30797490 DOI: 10.1016/j.lungcan.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Therapies that target programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) have shown promising efficacy in non-small-cell lung cancer (NSCLC). Hypoxia-related genes are also important regulators of PD-L1, and the role of PD-L1 in NSCLC is still not clear. The objective of this study was to investigate PD-L1 expression and its correlation with hypoxic-inducible factor 1α (HIF1A), vascular endothelial growth factor A (VEGFA), glucose transporter 1 (GLUT1), and carbonic anhydrase 9 (CAIX) expression in NSCLC patients. The association between PD-L1 expression and survival was also determined. MATERIALS AND METHODS PD-L1/protein expression was evaluated in 295 resected NSCLCs and its correlation with HIF1A, VEGFA, GLUT1, CAIX expression and survival was determined based on immunohistochemical and RNA sequencing data obtained from The Cancer Genome Atlas (TCGA) database. RESULTS PD-L1 protein expression was significantly correlated with HIF1A, VEGFA, GLUT1, and CAIX expression only in adenocarcinoma when a 10% or a 50% cut-off was used. PD-L1 mRNA expression was also significantly correlated with HIF1A, VEGFA, GLUT1, and CAIX expression in adenocarcinoma. Univariate analysis revealed that HIF1A expression was associated with poor recurrence-free survival (RFS), and GLUT1 was associated with poor overall survival (OS) and RFS. GLUT1 was an independent prognostic factor for OS in multivariate analysis of immunohistochemical and TCGA data (p = 0.024 and 0.029, respectively). Patients with low expression of both PD-L1 and GLUT1 had longer OS than other patterns in immunohistochemical and TCGA data (p = 0.003 and 0.051, respectively). CONCLUSIONS PD-L1 protein and mRNA expression were correlated with HIF1A, VEGFA, GLUT1, and CAIX expression in adenocarcinoma alone. Low expression of GLUT1 and low expression of both PD-L1 and GLUT1 were associated with improved prognosis. Our findings support the rationale for co-targeting hypoxia-related genes and PD-L1 in cancer therapy. Expression of hypoxia-related genes may be helpful in selecting patients appropriate for PD-L1 therapy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Su Jin Lee
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joonho Jung
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
25
|
Zhang N, Li Z, Xiao W, Yang F, Gao W, Sun ZG. KLF6-SV1 is a new prognostic biomarker in postoperative patients with non-small cell lung cancer. Cancer Manag Res 2018; 10:3937-3944. [PMID: 30310314 PMCID: PMC6165774 DOI: 10.2147/cmar.s171805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives Non-small cell lung cancer (NSCLC) is aggressive and associated with a poor prognosis. Recent studies have revealed that several genes are involved in the origin and progression of NSCLC. Kruppel-like factor 6 (KLF6) inactivation has been shown in some malignant tumors. KLF6-SV1, as one of the alternatively spliced KLF6 isoforms, has been found to be correlated with metastatic potential and poor survival in some cancers. The purpose of this study was to investigate the clinical and prognostic significance of KLF6-SV1 expression in NSCLC patients after curative resection. Patients and methods A total of 79 patients were enrolled in this study. Enumeration data were analyzed using the chi-squared test or Fisher’s exact probability test. Measurement data were represented as average±SD and t-test (homoscedasticity) or t’-test (homoscedasticity uneven). Univariate analysis was performed by modeling Kaplan–Meier survival curves. The log-rank test was used to calculate the survival rate. Multivariate analysis was carried out by the use of the Cox proportional hazard model. Results KLF6-SV1 expression was correlated with pN (P<0.05) and pTNM stage (P<0.05). The expression of KLF6-SV1 in the adenocarcinoma group was significantly higher than that in the squamous cell carcinoma group (P<0.05). The 5-year survival rate for 79 NSCLC patients was 40.5%, and it was significantly associated with differentiation (P<0.05), pN (P<0.01), pTNM stage (P<0.01) and high expression of KLF6-SV1 (P<0.01). Cox multivariate regression demonstrated that differentiation, pN and KLF6-SV1 expression were independent factors for the 5-year survival rate. Conclusion KLF6-SV1 expression in adenocarcinoma was significantly higher than that in the squamous cell carcinoma, and high expression of KLF6-SV1 was significantly associated with pN and pTNM stage and poor survival in NSCLC patients.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Zhe Li
- Department of Medical Examination, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Wei Xiao
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China,
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China,
| |
Collapse
|
26
|
Turetta M, Bulfoni M, Brisotto G, Fasola G, Zanello A, Biscontin E, Mariuzzi L, Steffan A, Di Loreto C, Cesselli D, Del Ben F. Assessment of the Mutational Status of NSCLC Using Hypermetabolic Circulating Tumor Cells. Cancers (Basel) 2018; 10:cancers10080270. [PMID: 30110953 PMCID: PMC6115779 DOI: 10.3390/cancers10080270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 01/11/2023] Open
Abstract
Molecular characterization is currently a key step in NSCLC therapy selection. Circulating tumor cells (CTC) are excellent candidates for downstream analysis, but technology is still lagging behind. In this work, we show that the mutational status of NSCLC can be assessed on hypermetabolic CTC, detected by their increased glucose uptake. We validated the method in 30 Stage IV NSCLC patients: peripheral blood samples were incubated with a fluorescent glucose analog (2-NBDG) and analyzed by flow cytometry. Cells with the highest glucose uptake were sorted out. EGFR and KRAS mutations were detected by ddPCR. In sorted cells, mutated DNA was found in 85% of patients, finding an exact match with primary tumor in 70% of cases. Interestingly, in two patients multiple KRAS mutations were detected. Two patients displayed different mutations with respect to the primary tumor, and in two out of the four patients with a wild type primary tumor, new mutations were highlighted: EGFR p.746_750del and KRAS p.G12V. Hypermetabolic CTC can be enriched without the need of dedicated equipment and their mutational status can successfully be assessed by ddPCR. Finally, the finding of new mutations supports the possibility of probing tumor heterogeneity.
Collapse
Affiliation(s)
- Matteo Turetta
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Michela Bulfoni
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
- IOV-IRCCS, Immunology and Molecular Oncology Unit, V. Gattamelata 64, 35128 Padova, Italy.
- DISCOG, University of Padova, V. Giustiniani 2, 35128 Padova, Italy.
| | - Gianpiero Fasola
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Andrea Zanello
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Eva Biscontin
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Carla Di Loreto
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Daniela Cesselli
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Fabio Del Ben
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| |
Collapse
|
27
|
Zhou YX, Zhou KM, Liu Q, Wang H, Wang W, Shi Y, Ma YQ. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients. Future Oncol 2018; 14:1801-1815. [PMID: 29629851 DOI: 10.2217/fon-2017-0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. MATERIALS & METHODS Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. RESULTS Glut1 positivity was associated with tumor size (p < 0.01), depth of invasion (p = 0.021), Tumor, Node, Metastasis stage (IA+IB,II+IIB,IIIA+IIIB,IVA+IVB; p = 0.004), lymph node metastasis (p = 0.002) and nerve invasion (p = 0.050). C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. CONCLUSION Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ya-Xing Zhou
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ke-Ming Zhou
- Hypertension Center of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang, PR China
| | - Qian Liu
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Hui Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Wen Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Yi Shi
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Yu-Qing Ma
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
28
|
Sun ZG, Zhang M, Yang F, Gao W, Wang Z, Zhu LM. Clinical and prognostic significance of signal transducer and activator of transcription 3 and mucin 1 in patients with non-small cell lung cancer following surgery. Oncol Lett 2018. [PMID: 29541195 PMCID: PMC5835865 DOI: 10.3892/ol.2018.7858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) and mucin 1 (MUC1) are associated with development, progression and a poor prognosis in several types of cancer. The present study investigated the levels of STAT3 and MUC1 in patients with non-small cell lung cancer (NSCLC) following surgery. In total, 98 patients with NSCLC were enrolled into the study. STAT3, phosphorylated (p)-STAT3 and MUC1 expression in NSCLC specimens obtained from patients were investigated using immunohistochemical analysis. Enumeration results were analyzed using the χ2 test or Fisher's exact probability test. Spearman's rank correlation was used to analyze correlations between STAT3, p-STAT3 and MUC1 expression. Univariate analysis was conducted using the Kaplan-Meier estimator curve method and Cox regression multivariate analysis was performed in order to determine prognostic factors. Results demonstrated that STAT3 and p-STAT3 expression was identified in 82 and 51 patients, respectively. Furthermore, the expression of MUC1 was identified in 61/98 cases (62.2%) and STAT3 expression was significantly associated with pathological tumor-node-metastasis stage (pTNM; P<0.01). p-STAT3 expression was associated with pathological type (P<0.01), pathological lymph nodes (pN; P<0.01) and pTNM (P<0.05). MUC1 expression was associated with pathological type (P<0.05), pathological tumor pT (P<0.05), pN (P<0.01) and pTNM (P<0.01). STAT3 expression was positively associated with p-STAT3 expression (P<0.05) and p-STAT3 expression was positively associated with MUC1 expression (P<0.01). Overall, the results identified that the 3-year survival rate was 56.1% and was significantly associated with the degree of differentiation (P<0.05), pT (P<0.01), pN (P<0.01), pTNM stage (P<0.01), p-STAT3 expression (P<0.01) and MUC1 expression (P<0.05). Results obtained from the Cox multivariate regression analysis demonstrated that pN and p-STAT3 expression were independent factors associated with the 3-year survival rate.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liang-Ming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|