1
|
Jain S, Narwal M, Omair Anwar M, Prakash N, Mohmmed A. Unravelling the anti-apoptotic role of Plasmodium falciparum Prohibitin-2 (PfPhb2) in maintaining mitochondrial homeostasis. Mitochondrion 2024:101956. [PMID: 39245193 DOI: 10.1016/j.mito.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein. A transgenic parasite line, generated using the selection-linked integration (SLI) strategy for C-terminal tagging, was utilized for cellular localization as well as for inducible knock-down of PfPhb2. We show that PfPhb2 localizes in the parasite mitochondrion during the asexual life cycle. Inducible knock-down of PfPhb2 by GlmS ribozyme caused no significant effect on the growth and multiplication of parasites. However, depletion of PfPhb2 under mitochondrial-specific stress conditions, induced by inhibiting the essential mitochondrial AAA-protease, ClpQ protease, results in enhanced inhibition of parasite growth, mitochondrial ROS production, mitochondrial membrane potential loss and led to mitochondrial fission/fragmentation, ultimately culminating in apoptosis-like cell-death. Further, PfPhb2 depletion renders the parasites more susceptible to mitochondrial targeting drug proguanil. These data suggest the functional involvement of PfPhb2 along with ClpQ protease in stabilization of various mitochondrial proteins to maintain mitochondrial homeostasis and functioning. Overall, we show that PfPhb2 has an anti-apoptotic role in maintaining mitochondrial homeostasis in the parasite.
Collapse
Affiliation(s)
- Shilpi Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Monika Narwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Md Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Neha Prakash
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
2
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
3
|
Zhou X, Li Y, Liu J, Lu W, Liu S, Li J, He Q. Pan-cancer Analysis Combined with Experiments Deciphers PHB Regulation for Breast Cancer Cell Survival and Predicts Biomarker Function. Comb Chem High Throughput Screen 2024; 27:2753-2763. [PMID: 37957856 DOI: 10.2174/0113862073266248231024113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Breast carcinoma has become the leading fatal disease among women. The location of prohibitin in the chromosome is close to the breast cancer susceptibility gene 1 (BRCA1). Accumulated research reported that prohibitin could interact with a variety of transcription factors and cell cycle-regulating proteins. OBJECTIVE This present study aims to comprehensively explore and reveal the biological functions of prohibitin on breast cancer via The Cancer Genome Atlas (TCGA) and validation experiment in vitro. METHODS Exploring the expression level of prohibitin across 27 tumors based on the TGGA database by bioinformatic methods and its relationship with tumor immune infiltration. Furthermore, we thus analyzed the biological roles of prohibitin on human breast cancer cell line MCF- 7 with pEGFP-prohibitin overexpression plasmid by western blotting and transwell-assay. RESULTS Firstly, we found prohibitin is overexpressed in most tumors based on The Cancer Genome Atlas database, and the negative relationships between prohibitin and tumors infiltrating lymphocytes including B lymphocyte, CD4 T lymphocyte, CD8 T lymphocyte, Neutrophil, Macrophage and Dendritic, and its significant correlation with the prognosis of human cancer. In vitro, expression not only inhibited cell viability and invasive abilities but also increased the apoptosis percentage of cells with a decreased percentage of the S phase and an increased G2 phase. The reduction of Bcl-2 was observed when prohibitin was upregulated, although the expression of E2F-1 did not change. CONCLUSION Although prohibitin is over-expressed in various cancer types, it functions as an important tumor suppressor that may suppress breast cancer cell proliferation and the invasive ability of MCF-7 by influencing its DNA synthesis and promoting cell apoptosis. All these may be likely associated with P53, erbB-2, and Bcl-2.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yue Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Jiali Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Wei Lu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Sanyuan Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Najem A, Krayem M, Sabbah S, Pesetti M, Journe F, Awada A, Désaubry L, Ghanem GE. Targeting Prohibitins to Inhibit Melanoma Growth and Overcome Resistance to Targeted Therapies. Cells 2023; 12:1855. [PMID: 37508519 PMCID: PMC10378173 DOI: 10.3390/cells12141855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies. Prohibitins (PHBs) are overexpressed in several types of cancers and implicated in the regulation of signaling networks that promote cell invasion and resistance to cell apoptosis. Herein, we show that PHBs are highly expressed in melanoma and are associated with not only poor survival but also with resistance to BRAFi/MEKi. We designed and identified novel specific PHB inhibitors that can inhibit melanoma cell growth in 3D spheroid models and a large panel of representative cell lines with different molecular subtypes, including those with intrinsic and acquired resistance to MAPKi, by significantly moderating both MAPK (CRAF-ERK axis) and PI3K/AKT pathways, and inducing apoptosis through the mitochondrial pathway and up-regulation of p53. In addition, autophagy inhibition enhances the antitumor efficacy of these PHB ligands. More important, these ligands can act in synergy with MAPKi to more efficiently inhibit cell growth and overcome drug resistance in both BRAF wild-type and mutant melanoma. In conclusion, targeting PHBs represents a very promising therapeutic strategy in melanoma, regardless of mutational status.
Collapse
Affiliation(s)
- Ahmad Najem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Serena Sabbah
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Matilde Pesetti
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laurent Désaubry
- Center of Research in Biomedicine of Strasbourg, Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, 67000 Strasbourg, France
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| |
Collapse
|
5
|
Activation of the Integrated Stress Response and ER Stress Protect from Fluorizoline-Induced Apoptosis in HEK293T and U2OS Cell Lines. Int J Mol Sci 2021; 22:ijms22116117. [PMID: 34204139 PMCID: PMC8201103 DOI: 10.3390/ijms22116117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prohibitin (PHB)-binding compound fluorizoline as well as PHB-downregulation activate the integrated stress response (ISR) in HEK293T and U2OS human cell lines. This activation is denoted by phosphorylation of eIF2α and increases in ATF4, ATF3, and CHOP protein levels. The blockage of the activation of the ISR by overexpression of GRP78, as well as an increase in IRE1 activity, indicate the presence of ER stress after fluorizoline treatment. The inhibition of the ER stress response in HEK293T and U2OS led to increased sensitivity to fluorizoline-induced apoptosis, indicating a pro-survival role of this pathway after fluorizoline treatment in these cell lines. Fluorizoline induced an increase in calcium concentration in the cytosol and the mitochondria. Finally, two different calcium chelators reduced fluorizoline-induced apoptosis in U2OS cells. Thus, we have found that fluorizoline causes increased ER stress and activation of the integrated stress response, which in HEK293T and U2OS cells are protective against fluorizoline-induced apoptosis.
Collapse
|
6
|
Núñez-Vázquez S, Sánchez-Vera I, Saura-Esteller J, Cosialls AM, Noisier AFM, Albericio F, Lavilla R, Pons G, Iglesias-Serret D, Gil J. NOXA upregulation by the prohibitin-binding compound fluorizoline is transcriptionally regulated by integrated stress response-induced ATF3 and ATF4. FEBS J 2020; 288:1271-1285. [PMID: 32648994 DOI: 10.1111/febs.15480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Fluorizoline is a new synthetic molecule that induces p53-independent apoptosis, in several tumor cell lines and in primary leukemia cells, by selectively targeting prohibitins (PHBs). In this study, we describe how fluorizoline induces BCL-2 homology 3-only protein NOXA, without modulating the protein levels of anti-apoptotic B-cell lymphoma-2 (BCL-2) family members prior to caspase activation, as well as how it synergizes with the BCL-2 and BCL-XL inhibitor ABT-737 to induce apoptosis. Interestingly, fluorizolinetreatment triggers the activation of the integrated stress response (ISR) in HeLa and HAP1 cells, with increased eukaryotic translation initiation factor 2α phosphorylation, and induction of ATF3, ATF4, and CHOP. Moreover, PHB downregulation induces similar ISR activation and apoptosis as with fluorizoline treatment. In addition, we studied the essential role of the pro-apoptotic protein NOXA in fluorizoline-induced apoptosis and we describe its mechanism of induction in HeLa and HAP1 cells. Moreover, we identified ATF3 and ATF4 as the transcription factors that bind to NOXA promoter upon fluorizoline treatment. Furthermore, using ATF3 and ATF4 CRISPR HeLa and HAP1 cells, we confirmed that both factors mediate the induction of NOXA and apoptosis by fluorizoline. In conclusion, fluorizoline treatment triggers the activation of the ISR that results in the induction of ATF3 and ATF4, important regulators of NOXA transcription in fluorizoline-induced apoptosis.
Collapse
Affiliation(s)
- Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Anaïs F M Noisier
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Huang R, Yang C, Zhang S. The Arabidopsis PHB3 is a pleiotropic regulator for plant development. PLANT SIGNALING & BEHAVIOR 2019; 14:1656036. [PMID: 31429630 PMCID: PMC6804698 DOI: 10.1080/15592324.2019.1656036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 06/01/2023]
Abstract
Prohibitins (PHBs) are composed of an obviously conserved protein family in eukaryotic cells. Despite the extensive and in-depth research of mammalian PHB1 and PHB2, the plant prohibitins functions are not completely elucidated and little is known about their mechanism of action. This review focuses on the current knowledge about the protein subcellular localization, interaction proteins and target genes of PHB3. Furthermore, we discussed the roles of PHB3 protein in plant growth and development, plant responses to abiotic or biotic stresses and its participation in phytohormonal signaling.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengchun Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
9
|
MacArthur IC, Bei Y, Garcia HD, Ortiz MV, Toedling J, Klironomos F, Rolff J, Eggert A, Schulte JH, Kentsis A, Henssen AG. Prohibitin promotes de-differentiation and is a potential therapeutic target in neuroblastoma. JCI Insight 2019; 5:127130. [PMID: 30998507 DOI: 10.1172/jci.insight.127130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gain of the long arm of chromosome 17 (17q) is a cytogenetic hallmark of high-risk neuroblastoma, yet its contribution to neuroblastoma pathogenesis remains incompletely understood. Combining whole-genome and RNA sequencing of neuroblastomas, we identified the prohibitin (PHB) gene as highly expressed in tumors with 17q gain. High PHB expression correlated with poor prognosis and was associated with loss of gene expression programs promoting neuronal development and differentiation. PHB depletion induced differentiation and apoptosis and slowed cell cycle progression of neuroblastoma cells, at least in part through impaired ERK1/2 activation. Conversely, ectopic expression of PHB was sufficient to increase proliferation of neuroblastoma cells and was associated with suppression of markers associated with neuronal differentiation and favorable neuroblastoma outcome. Thus, PHB is a 17q oncogene in neuroblastoma that promotes tumor cell proliferation, and de-differentiation.
Collapse
Affiliation(s)
- Ian C MacArthur
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Medical Scientist Training Program, Albert Einstein College of Medicine, New York, New York, USA
| | - Yi Bei
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael V Ortiz
- Department of Pediatrics and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Alex Kentsis
- Department of Pediatrics and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Departments of Pharmacology, Pediatrics, and Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center of the Max Delbrück Center and Charité Berlin, Berlin, Germany
| |
Collapse
|
10
|
Kosgodage US, Uysal-Onganer P, MacLatchy A, Mould R, Nunn AV, Guy GW, Kraev I, Chatterton NP, Thomas EL, Inal JM, Bell JD, Lange S. Cannabidiol Affects Extracellular Vesicle Release, miR21 and miR126, and Reduces Prohibitin Protein in Glioblastoma Multiforme Cells. Transl Oncol 2019; 12:513-522. [PMID: 30597288 PMCID: PMC6314156 DOI: 10.1016/j.tranon.2018.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumor in adults, with poor prognosis. Extracellular vesicles (EVs) are key-mediators for cellular communication through transfer of proteins and genetic material. Cancers, such as GBM, use EV release for drug-efflux, pro-oncogenic signaling, invasion and immunosuppression; thus the modulation of EV release and cargo is of considerable clinical relevance. As EV-inhibitors have been shown to increase sensitivity of cancer cells to chemotherapy, and we recently showed that cannabidiol (CBD) is such an EV-modulator, we investigated whether CBD affects EV profile in GBM cells in the presence and absence of temozolomide (TMZ). Compared to controls, CBD-treated cells released EVs containing lower levels of pro-oncogenic miR21 and increased levels of anti-oncogenic miR126; these effects were greater than with TMZ alone. In addition, prohibitin (PHB), a multifunctional protein with mitochondrial protective properties and chemoresistant functions, was reduced in GBM cells following 1 h CBD treatment. This data suggests that CBD may, via modulation of EVs and PHB, act as an adjunct to enhance treatment efficacy in GBM, supporting evidence for efficacy of cannabinoids in GBM.
Collapse
Affiliation(s)
- Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK.
| | - Amy MacLatchy
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Rhys Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Alistair V Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Geoffrey W Guy
- GW Research, Sovereign House, Vision Park, Cambridge, CB24 9BZ, UK.
| | - Igor Kraev
- The Open University, Walton Hall, Milton Keynes, UK.
| | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Jameel M Inal
- Extracellular Vesicle Research Unit and Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK.
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, UK.
| |
Collapse
|
11
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
12
|
Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: A Critical Role in Mitochondrial Functions and Implication in Diseases. Cells 2019; 8:cells8010071. [PMID: 30669391 PMCID: PMC6356732 DOI: 10.3390/cells8010071] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are ubiquitously expressed, and are present in the nucleus, cytosol, and mitochondria. Depending on the cellular localization, PHB1 and PHB2 have distinctive functions, but more evidence suggests a critical role within mitochondria. In fact, PHB proteins are highly expressed in cells that heavily depend on mitochondrial function. In mitochondria, these two proteins assemble at the inner membrane to form a supra-macromolecular structure, which works as a scaffold for proteins and lipids regulating mitochondrial metabolism, including bioenergetics, biogenesis, and dynamics in order to determine the cell fate, death, or life. PHB alterations have been found in aging and cancer, as well as neurodegenerative, cardiac, and kidney diseases, in which significant mitochondrial impairments have been observed. The molecular mechanisms by which prohibitins regulate mitochondrial function and their role in pathology are reviewed and discussed herein.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Giuseppe Sgaramella
- Water Research Institute (IRSA), National Research Council (CNR), Viale F. De Blasio, 5, 70132 Bari, Italy.
| | - Francesco Bellomo
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children's Hospital, Viale di S. Paolo, 15, 00149 Rome, Italy.
| | - Domenico De Rasmo
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
13
|
Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme. Int J Mol Sci 2018; 20:ijms20010103. [PMID: 30597867 PMCID: PMC6337164 DOI: 10.3390/ijms20010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.
Collapse
|
14
|
Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial Quality Control Mechanisms and the PHB (Prohibitin) Complex. Cells 2018; 7:cells7120238. [PMID: 30501123 PMCID: PMC6315423 DOI: 10.3390/cells7120238] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are essential for life, critical for development, maintenance of stem cells, adaptation to physiological changes, responses to stress, and aging. The complexity of mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing to the need of stoichiometrically assemble the oxidative phosphorylation (OXPHOS) system for ATP production. It requires, in addition, the import of a large number of proteins from the cytosol to keep optimal mitochondrial function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis, while it is itself essential for the synthesis of membrane lipids. To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to ensure that mitochondrial function meets cell, tissue, and organismal demands. Herein, we give an overview of mitochondrial mechanisms that are activated in response to stress, including mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPRmt). We then discuss the role of these stress responses in aging, with particular focus on Caenorhabditis elegans. Finally, we review observations that point to the mitochondrial prohibitin (PHB) complex as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and degradation, and responding to mitochondrial stress. Understanding how mitochondria responds to stress and how such responses are regulated is pivotal to combat aging and disease.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
15
|
Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells. Molecules 2018; 23:molecules23112820. [PMID: 30380765 PMCID: PMC6278577 DOI: 10.3390/molecules23112820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. β,β-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed.
Collapse
|
16
|
Kosgodage US, Mould R, Henley AB, Nunn AV, Guy GW, Thomas EL, Inal JM, Bell JD, Lange S. Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Front Pharmacol 2018; 9:889. [PMID: 30150937 PMCID: PMC6099119 DOI: 10.3389/fphar.2018.00889] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/23/2018] [Indexed: 01/05/2023] Open
Abstract
Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors. Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth in vivo. Cannabidiol (CBD), a phytocannabinoid derived from Cannabis sativa, has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity. Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231). CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release. The EMV modulating effects of CBD were found to be dose dependent (1 and 5 μM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy. We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.
Collapse
Affiliation(s)
- Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Rhys Mould
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Aine B Henley
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Geoffrey W Guy
- GW Research, Sovereign House Vision Park, Cambridge, United Kingdom
| | - E L Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Jameel M Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, United Kingdom.,Department of Pharmacology, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
17
|
Djehal A, Krayem M, Najem A, Hammoud H, Cresteil T, Nebigil CG, Wang D, Yu P, Bentouhami E, Ghanem GE, Désaubry L. Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells. Eur J Med Chem 2018; 155:880-888. [DOI: 10.1016/j.ejmech.2018.06.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022]
|
18
|
Zi Xu YX, Ande SR, Mishra S. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Lett 2018; 415:208-216. [DOI: 10.1016/j.canlet.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|
19
|
Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, Penalva LOF. MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting Prohibitin 1. BMC Cancer 2017; 17:750. [PMID: 29126391 PMCID: PMC5681823 DOI: 10.1186/s12885-017-3721-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Background Melanoma is the most lethal type of skin cancer. Since chemoresistance is a significant barrier, identification of regulators affecting chemosensitivity is necessary in order to create new forms of intervention. Prohibitin 1 (PHB1) can act as anti-apoptotic or tumor suppressor molecule, depending on its subcellular localization. Our recent data shown that accumulation of PHB1 protects melanoma cells from chemotherapy-induced cell death. Lacking of post-transcriptional regulation of PHB1 could explain this accumulation. Interestingly, most of melanoma patients have down-regulation of microRNA-195. Here, we investigate the role of miR-195, its impact on PHB1 expression, and on chemosensitivity in melanoma cells. Methods TCGA-RNAseq data obtained from 341 melanoma patient samples as well as a panel of melanoma cell lines were used in an expression correlation analysis between PHB1 and predicted miRNAs. miR-195 impact on PHB1 mRNA and protein levels and relevance of this regulation were investigated in UACC-62 and SK-MEL-5 melanoma lines by RT-qPCR and western blot, luciferase reporter and genetic rescue experiments. Cell proliferation, cell-cycle analysis and caspase 3/7 assay were performed to investigate the potential action of miR-195 as chemosensitizer in melanoma cells treated with cisplatin and temozolomide. Results Analysis of the TCGA-RNAseq revealed a significant negative correlation (Pearson) between miR-195 and PHB1 expression. Moreover, RT-qPCR data showed that miR-195 is down-regulated while PHB1 is up-regulated in a collection of melanoma cells. We demonstrated that miR-195 regulates PHB1 directly by RT-qPCR and western blot in melanoma cells and luciferase assays. To establish PHB1 as a relevant target of miR-195, we conducted rescue experiments in which we showed that PHB1 transgenic expression could antagonize the suppressive effect miR-195 on the proliferation of melanoma cells. Finally, transfection experiments combined with drug treatments performed in the UACC-62 and SK-MEL-5 melanoma cells corroborated miR-195 as potential anti-proliferative agent, with potential impact in sensitization of melanoma cell death. Conclusions This study support the role of miR-195 as anti-proliferative miRNA via targeting of PHB1 in melanoma cells. Electronic supplementary material The online version of this article (10.1186/s12885-017-3721-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priscila Daniele Ramos Cirilo
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil.,The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA.,Instituto Hermes Pardini, Setor de Pesquisa e Desenvolvimento, Av das Nações, 2448, Distrito Industrial, Vespasiano, MG, CEP 33200-000, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil
| | - Bruna Renata Silva Corrêa
- The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA.,Instituto Sírio-Libanês de Ensino e Pesquisa, Centro de Oncologia Molecular, Rua Prof. Daher Cutait, 69, São Paulo, SP, CEP 01308-060, Brazil
| | - Mei Qiao
- The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA
| | - Tatiane Katsue Furuya
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil
| | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil
| | - Luiz Otavio Ferraz Penalva
- The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA.
| |
Collapse
|